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Abstract—The effect of small non-parallelism of the base flow 

on the stability of slightly curved mixing layers is analyzed in the 
present paper. Assuming that the instability wavelength is much 
smaller than the length scale of the variation of the base flow we 
derive an amplitude evolution equation using the method of multiple 
scales. The proposed asymptotic model provides connection between 
parallel flow approximations and takes into account slow 
longitudinal variation of the base flow.  
 

Keywords—shallow water, parallel flow assumption, weakly 
nonlinear analysis, method of multiple scales 

I. INTRODUCTION 
INEAR stability of shallow mixing layers is investigated in 
[1]-[5]. Experimental study of shallow mixing layers is 

conducted in [6]-[8]. It is shown in [1]-[8] that bottom friction 
plays an important role in the development of instability. In 
particular, bottom friction (1) has a stabilizing influence on 
the flow; (2) reduces the growth of a mixing layer; and (3) 
prevents the development of three-dimensional instabilities 
because of the limited water depth.  
     The effect of stream curvature on the stability of mixing 
layers in deep water is analyzed in [9]-[11]. It is shown in [9] 
that curvature has a stabilizing effect on the growth rate of 
perturbations in a stably curved mixing layer. However, in the 
case of unstably curved mixing layer curvature increases the 
growth rate of the most unstable mode.  
      Theoretical analyses of linear stability of shallow mixing 
layers in [1]-[5] are based on a parallel flow assumption. In 
other words, the base flow profile is not allowed to evolve 
downstream (experiments in [5],[6] show that the base flow 
profile is slightly changing downstream).  Asymptotic 
schemes have been developed in the past in order to take into 
account small non-parallelism of the base flow (see, for 
example, [12]). The basic assumption in [12] is that the 
instability wavelength λ is much smaller than the length scale 
L of the longitudinal variations of the base flow. The method 
described in [12] is used in [13] in order to analyze non-
parallel effects in shallow water flows.  

Slow longitudinal variation of the base flow is taken into 
account in the present paper. Method of multiple scales  

 
I. Eglite is with the Riga Technical University, Riga, Latvia (phone: 371-

6708-9528; fax: 371-6708-9694; e-mail: irina.eglite@ gmail.com).  
A.A. Kolyshkin  is with the Riga Technical University, Riga, Latvia 

(phone: 371-6708-9586; fax: 371-6708-9694; e-mail: akoliskins@ rbs.lv). 

similar to [12] and [13] is applied to slightly curved shallow 
mixing layers. An evolution equation for the perturbation 
amplitude is derived. The coefficients of the equation depend 
on the two components of the base flow.  

II. ASYMPTOTIC SCHEME 
Consider the system of shallow water equations of the form 
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where u and v are the depth-averaged velocity components in 
the x and y -directions, respectively, p is the pressure, fc is 

the friction coefficient, h is water depth and R is the radius of 
curvature of the flow. It is assumed that the radius of 
curvature is much larger than the width of the mixing layer so 
that 1/1 <<R .  
     Introducing the stream function by the relations  
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and eliminating the pressure we rewrite (1)-(3) in the form 
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Following [12] we introduce a slow longitudinal coordinate, 

xX ε= , where 1/~ <<Lλε . Here λ is the wavelength of a 
perturbation and L is the length scale that characterizes the 
longitudinal evolution of the base flow.  
     The base flow stream function ),(0 Xyψ should satisfy 
(4). The velocity components of the base flow are denoted 
by ),( XyU and ),( XyVε , respectively. Both functions  
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are assumed to be of order unity.  
The stream function ),,( tyxψ is assumed to be of the form 
 

),,,('),(),,( 0 tyxXytyx ψψψ +=                                  (5) 
 
where ),,(' tyxψ is the fluctuating part.  

Substituting (5) into (4), linearizing the resulting equation 
in the neighborhood of the base flow, keeping only terms of 
the first order in ε and dropping the primes we obtain 
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Following the WKBJ approximation (see, for example, 

[12]) the perturbation stream function ),,( tyxψ is 
decomposed into a slow varying amplitude function 

),( Xyϕ and a fast varying phase function εθ /)( X in 
accordance with the formula 
 

( )[ ]tXiXytyx ωεθϕψ −= /)(exp),(),,( .                      (7) 
 
 The function ),( Xyϕ is sought in the form 
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Substituting (7) and (8) into (6) and collecting the terms 

containing the same powers of ε we obtain the set of 
equations for the functions ),...,(),,( 21 XyXy ϕϕ  

 At the leading order the following equation is obtained: 
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Here kx =θ  and prime now denotes the derivative with 
respect to y .  
Note that under the parallel flow assumption )( yUU = and 
equation (9) together with zero boundary conditions at 

∞± represents the eigenvalue problem. The solution of the 
corresponding eigenvalue problem can be used in order to 
determine the conditions of the linear stability of the base flow 

)( yUU = . Assuming that the base flow is slowly evolving 
downstream, that is, ),( XyUU = we formally obtain the 
same problem as for the linear stability case. The only 
difference is that now the argument X appear in (8) as a 
parameter. Thus, ),( ωθ Xkx = satisfies the local dispersion 
relation 
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In this case ),(1 Xyϕ is the corresponding eigenfuction which 
can be written in the form 
 

),()(),(1 XyXAXy Φ=ϕ ,                                               (10) 
 

where )( XA is an unknown amplitude and ),( XyΦ is a 
normalized eigenfuction (satisfying, for example, the 
condition 1),0( =Φ X ).  Using (10) the following equation at 
order ε is obtained: 
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In accordance with the Fredholm’s alternative equation (11) 
has a solution if and only if the function F in (12) is 
orthogonal to the corresponding adjoint eigenfunction 

),(~ XyΦ of the adjoint operator L~ : 

∫
+∞

∞−

=Φ .0~ dyF                                                                       (13) 

 
Applying solvability condition (13) we obtain an amplitude 
evolution equation of the form 



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:5, No:4, 2011

696

 

 

 

,0)()( =+ AXN
dX
dAXM                                                 (14) 

 
where  
 

,~
'2

''''32
1)(

2

dy
iUk

h
c

R
U

UUUkk

kU
iXM

f
Φ

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

Φ+Φ−

Φ−Φ+Φ−Φ

−
= ∫

∞+

∞−

ω

ω
 

 

.)/(

~

]'2

22[
2

)'''('2''

''''3

32

)( 2

2

dykU

ikVU
dX
dki

X
Uik

x
iUk

h
c

kV
XR

U
X
U

X
U

X
U

dX
dkUk

X
Uk

dX
dk

x
k

iXN

f

ω

ωω

−

Φ

⎪
⎪
⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪

⎨

⎧

Φ−Φ+

Φ
∂
∂

+
∂
Φ∂

+

Φ−Φ+
∂
Φ∂

−Φ
∂
∂

+

∂
Φ∂

−
∂
Φ∂

+Φ−

∂
Φ∂

−Φ+
∂
Φ∂

= ∫
∞+

∞−

 

 
Thus, the asymptotic scheme described in the paper resulted in 
the following approximation for the fluctuating part of the 
stream function: 
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Formula (15) takes into account slow longitudinal variation of 
the base flow.  

III. DISCUSSION  
A few important conclusions can be drawn from the 

asymptotic analysis presented in the previous section (see 
[14]). First, it follows from (15) that each multiplier on the 
right-hand side of (15) contains information related to both 
amplitude and phase of the perturbation. Second, the selection 
of the perturbed quantities plays an important role in the 
calculation of the growth rate and phase speed of the 
perturbation. Third, the growth rate and the phase speed of the 
perturbation depend not only on the perturbed quantity 
(velocity component or pressure), but also on the location of 
the downstream station where the quantities are calculated.  
Hence, a meaningful comparison of the weakly nonlinear 
model (14) can be made only if a particular quantity of interest 
Q is selected (for example, longitudinal velocity component 
or pressure). In this case (see [14]) a local wave number 

Lk can be defined by the formula 
 

),(ln),( yxQ
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where LiLrL ikkk += . The values of Lrk and Lik are 
interpreted as the local phase speed and local spatial growth 
rate, respectively. Thus, in  order to compare weakly nonlinear 
model (14) with experimental data the following steps should 
be performed: (1) select a flow quantity Q ; (2) measure the 
quantity Q at some point ),( yx ; compute the right-hand side 
of (16) at the same point ),( yx . In summary, weakly 
nonlinear model (14) can be validated if detailed experimental 
data or numerical results of the solution of nonlinear shallow 
water equations are available.  

IV. CONCLUSION 
An amplitude evolution equation for the stability of slightly 

curved mixing layers is derived in the present paper under the 
assumption of small longitudinal variation of the base flow. It 
is assumed that a typical wavelength of a perturbation is much 
smaller than the wavelength associated with the longitudinal 
variation of the base flow.  The method of multiple scales is 
used in the analysis. The perturbation stream function is 
decomposed into a slowly varying amplitude function and a 
fast varying phase function. Validity of the proposed model is 
discussed.  
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