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Strong Law of Large Numbers for *- Mixing
Sequence

Bainian Li, Kongsheng Zhang

Abstract—Strong law of large numbers and complete convergence
for sequences of *-mixing random variables are investigated. In
particular, Teicher’s strong law of large numbers for independent
random variables are generalized to the case of *-mixing random
sequences and extended to independent and identically distributed
Marcinkiewicz Law of large numbers for *-mixing.
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I. INTRODUCTION

LET (Ω, F, P ) be a probability space and let {Xn, n =
1, 2, ...} be a sequence of real-valued random variables

defined on (Ω, F, P ). For each positive integer n, let Fnbe the
smallest σ-algebra with respect to which Xn is measurable and
for n ≤ m, let Fm

n be the smallest σ-algebra with respect to
which Xn, ..., Xm are jointly measurable.

Definition 1.1. Let {Xn, n ≥ 1} be a sequence of random
variable, Xn is named *-mixing if there exists a positive
integer N and function f such that f ↓ 0 and for all
n ≥ N, m ≥ 1, A ∈ Fm

1 , B ∈ F∞
m+n,

|P (AB)− P (A)P (B)| ≤ f(n)P (A)P (B). (1)

Evidently, inequality (1) is equivalent to the condition for all
B ∈ F∞

m+n,

|P (B|Fm
1 )− P (B)| ≤ f(n)P (B) a.s. (2)

It follows that Xn is integrable, and

|E(Xm+n|Fm
1 )− E(Xm+n)| ≤ f(n)E|Xm+n| (3)

The following strong law for *-mixing sequences can be found
in Blum[1].

Theorem A. Let {Xn, n ≥ 1} be a *-mixing sequence such
that EXn = 0, and EX2

n <∞, n ≥ 1, and
∑∞

i=1 EX2
i /i2 <

∞, then
n∑

i=1

Xi/n −→ 0, a.s. (4)

In this paper we shall further generalize Theorem A.

II. MAIN RESULTS

Theorem 2.1. Let {Yn, n ≥ 1} be a nonnegative *-mixing
sequence such that EYi = μi ≤ K < ∞, for all i, and∑∞

i=1 EY 2
i /i2 <∞, then

lim
n→∞

1

n

n∑
i=1

(Yi − μi) = 0, a.s. (5)
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To complete the proof, we need the following lemma
Lemma 2.2. ([2]) Suppose {Yn, n ≥ 1} is a *-mixing

sequence, EYi < ∞, i ≥ 1, for any σ−field B ∈ Fm
1 , m ≥

M , then

|E(Ym+n|B)− E(Ym+n)| ≤ f(m)E|Ym+n|. (6)

Proof of Theorem 2.1. Let Xi = Yi − μi, then EXi =
0, E|Xi| ≤ 2K, it suffices to prove

lim
n→∞

1

n

n∑
i=1

Xi = 0, a.s. (7)

By lemma 2.2, for any ε > 0, there exists M ′ > 0 for all
n ≥ 2, we get

|E(XnM ′+R|F (n−1)M ′+R

M ′+R )| ≤ f(M ′)E|XnM ′+R| ≤ 2Kε,
(8)

where R is a nonnegative integer, and 0 ≤ R ≤ M ′ − 1. For
R = 0, 1, ..., M ′ − 1, we prove

N∑
n=2

XnM ′+R/N → 0(N →∞). (9)

Let H0 = F0 = (Ω, Φ) , Hn = FnM ′+R
M ′+R , n ≥ 2.

Clearly Hn ↑, for fixed R, let

Zn = XnM ′+R − E(XnM ′+R|Hn−1), n ≥ 2.

Obviously, {Zn, Hn, n ≥ 2} is a martingale differ-
ence. By virtue of condition expectation, we obtain
E{(E(XnM ′+R|Hn−1))

2}
= E{E(XnM ′+R|Hn−1) ·E(XnM ′+R|Hn−1)}
= E{E(XnM ′+R · E(XnM ′+R|Hn−1)|Hn−1)}
= E{XnM ′+RE(XnM ′+R|Hn−1)}.
Hence,

EZ2
n = EX2

nM ′+R − 2E(XnM ′+RE(XnM ′+R|Hn−1))

+E{(E(XnM ′+R|Hn−1))
2}

= EX2
nM ′+R − E{(E(XnM ′+R|Hn−1))

2}
≤ EX2

nM ′+R,

it follows that
∞∑

n=2

EZ2
n/n2 ≤

∞∑
n=2

EX2
nM ′+R/n2

=

∞∑
n=2

EX2
nM ′+R/(nM ′ + R)2(

nM ′ + R

n
)2

≤ 4(M ′)2
∞∑

i=1

EX2
i /i2, (10)
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since EX2
i ≤ EY 2

i + K2.

Combined with (10) and
∑∞

i=1 EY 2
i /i2 < ∞, we deduce

that
∑∞

n=2 EZ2
n/n2 <∞.

By using condition expectation again, one concludes
∞∑

n=2

E(Z2
n|Hn−1)/n2 <∞. (11)

From (11) and Theorem 8.1(see Chow[3]), we have

N∑
n=2

Zn/N −→ 0 a.s. (12)

Since (8) implies

|E(XnM ′+R|Hn−1)| ≤ 2Kε, n ≥ 2,

hence

|
N∑

n=2

E(XnM ′+R|Hn−1)|/N ≤ 2Kε. (13)

Combined with (12) and (13), this yields (9). For R =
0, 1, ..., M ′ − 1, one has

(X2M ′ + X3M ′ + ... + XNM ′)/N → 0, (N →∞) a.s.

(X2M ′+1 +X3M ′+1 + ...+XNM ′+1)/N → 0, (N →∞) a.s.

1
N

(X2M ′+(M ′−1) + X3M ′+(M ′−1) + . . . + XNM ′+(M ′−1))
→ 0, (N →∞) a.s.

From the above results, one has

(N+1)M ′−1∑
i=2M ′

Xi/N → 0, (N →∞) a.s., (14)

which deduces (7) and completes the proof.

Theorem 2.3. ([3]) Let {Xn, n ≥ 1} be a *-mixing
sequence such that EXn = 0, EX2

n < ∞, n ≥ 1. Suppose
that

∑∞
n=1 a−2

n EX2
n < ∞ and supn a−1

n

∑n

i=1 E|Xi| < ∞,
where{an} is a sequence of positive constants increasing to
∞. Then

a−1
n

n∑
i=1

Xi −→ 0, a.s. (15)

Proof. Given ε > 0, choose n0 ≥ N so large that f(n0) <
ε.

From Lemma 2.2 we deduce that for all positive integers i
and j,

|E(Xin0+j |Xn0+j , X2n0+j, ..., X(i−1)n0+j)|

= |E[E(Xin0+j |X1, X2, ..., X(i−1)n0+j)

|Xn0+j , X2n0+j , ..., X(i−1)n0+j ]|

≤ f(n0)E|Xin0+j | a.s.

If n ≥ n0, choose nonnegative integers q and r such that
0 ≤ r ≤ n0 − 1 and n = qn0 + r. Then

a−1
n

∑n

i=1 Xi = a−1
n

∑n0
i=1 Xi + a−1

n

∑q−1
i=1

∑q−1
i=1 Xin0+j

+ a−1
n

∑r

j=1 Xqn0+j

= I1 + I2, (16)

where I1 = a−1
n

∑n0
i=1 Xi, I2 = a−1

n

∑q−1
i=1

∑q−1
j=1 Xin0+j +

a−1
n

∑r

j=1 Xqn0+j .

Obviously, I1 → 0, a.s.(n→∞), I2 is dominated by

I2 =

q−1∑
j=1

a−1
n

q−1∑
i=1

|[Xin0+j

−E(Xin0+j |Xn0+j , X2n0+j , . . . , X(i−1)n0+j)]|

+

r∑
j=1

a−1
n |Xqn0+j − E(Xqn0+j |Xn0+j , X2n0+j , . . . ,

X(q−1)n0+j)|+ f(n0)a
−1
n

n∑
i=n0+1

E|Xi|.

Based on the fact
∑∞

n=1 a−2
n EX2

n < ∞ and Theorem
2.18([3]), we see that the first two terms here converge a.s.
to zero. The second term is convergent to zero since r is
fixed, and by supn a−1

n

∑n

i=1 E|Xi| < ∞, the last term also
converges a.s. to zero. We deduce that for all ε > 0,

lim sup
n

|b−1
n

n∑
i=1

Xi| < ε(sup
n

b−1
n

n∑
i=1

|Xi|) a.s.,

which completes the proof.

Lemma 2.4. Let {Xn, n ≥ 1} be a sequence of *-mixing
random variables satisfying

∑∞
n=1 f(n) <∞, p ≥ 2. Assume

that EXn = 0 and E|Xn|p <∞ for each n ≥ 1. Then there
exists a constant C depending only on p and f such that

E

(
max

1<j<n
|

a+j∑
i=a+1

Xi|p
)
≤ C

⎡
⎣

a+j∑
i=a+1

E|Xi|p +

(
a+j∑

i=a+1

EX2
i

)p/2
⎤
⎦ ,

for every a ≥ 0 and n ≥ 1. In particular, we have

E

(
max

1<j<n
|

j∑
i=1

Xi|p
)
≤ C

⎡
⎣ n∑

i=1

E|Xi|p +

(
n∑

i=1

EX2
i

)p/2
⎤
⎦ ,

for every n ≥ 1.

Proof.

E

(
a+j∑

i=a+1

Xi

)2

=

a+j∑
i=a+1

EX2
i + 2

∑
a+1≤i<j≤a+n

E(XiXj)

≤
a+j∑

i=a+1

EX2
i + 2 ·

∑
a+1≤i<j≤a+n

f(j − i)E|Xi|E|Xj |

≤
a+j∑

i=a+1

EX2
i + 2 ·

∑
a+1≤i<j≤a+n

f(j − i)E(X2
i )1/2E(X2

j )1/2

≤
a+j∑

i=a+1

EX2
i +
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n−1∑
k=1

a+n−k∑
i=a+1

f(k)(EX2
i + EX2

k+i)

≤
(

1 + 2

∞∑
k=1

f(k)

)
a+j∑

i=a+1

EX2
i

= C1

a+j∑
i=a+1

EX2
i

It is well known that *-mixing is also ϕ-mixing. Therefore,
by [4, Lemma 2.2]) we can immediately complete the proof
of Lemma 2.4.

Lemma 2.5. Let {Xn, n ≥ 1} be a zero-mean *-mixing
and

∑∞
k=1 f(k) < ∞, for some p ≥ 2, supi E|Xi|p < ∞.

Then there exists constant C > 0 depending only on p for
any real-valued sequence {ani}, such that

E|
n∑

i=1

aniXi|p ≤ C(

n∑
i=1

a2
ni)

p/2.

Proof. Let ani = 0, i > n, since
∑∞

k=1 f(k) < ∞,
supi E|Xi|p <∞. By Lemma 2.4, we have

E(|
n∑

i=1

aniXi|p ≤ C

⎡
⎣ n∑

i=1

E|aniXi|p +

(
n∑

i=1

EaniX
2
i

)p/2
⎤
⎦

≤ C[

n∑
i=1

|ani|p + (

n∑
i=1

a2
ni)

p/2].

Since p ≥ 2, it follows that

(
∑n

i=1 |ani|p)1/p ≤ (
∑n

i=1 a2
ni)

1/2

⇔ (
∑n

i=1 |ani|p) ≤ (
∑n

i=1 a2
ni)

p/2, which proves the
statement.

Remark 1.

(1) Lemma 2.5 implies that *-mixing is a Lacunary System.

(2) If ani = 1, we have

E(|
n∑

i=1

Xi|)p ≤ cnp/2.

III. LARGER DEVIATIONS FOR *-MIXING

Theorem 3.1. Let {Xn, n ≥ 1} be a zero-mean *-mixing,∑∞
k=1 f(k) < ∞, for some p > 2, E|Xi|p < ∞. If there

exists 1/2 < r ≤ 1, θ = 2r − 1 and positive constant K such
that

∑n

i=1 a2
ni ≤ Knθ, (i = 1, 2, ..., n), then

n−r

n∑
i=1

aniXi −→ 0, a.s. (17)

Proof. Denote Sn =
∑n

i=1 aniXi, by Markov’s inequality,
we have

P{Sn ≥ nrx} ≤ E|Sn|p
xpnpr

.

From lemma 2.5, we obtain
∞∑

n=1

P{|Sn| ≥ nrx} ≤
∞∑

n=1

E|Sn|p
xpnpr

≤
∞∑

n=1

C(
∑n

i=1 a2
ni)

p/2

xpnpr

≤
∞∑

n=1

CK

xpnp/2
<∞.

Inequality (17) follows from Borel-Cantelli lemma.

Remark 2. Marcinkiewicz Law of large numbers of inde-
pendent and identically distributed variables has been extended
to the case of *-mixing.

Theorem 3.2. Let {Xn, n ≥ 1} be a zero-mean *-mixing,∑∞
k=1 f(k) < ∞, for some p > 2, E|Xi|p < ∞. If there

exists 1/2 < r ≤ 1, θ = 1− 2/p and positive constant K such
that

∑n

i=1 a2
ni ≤ Knθ, (i = 1, 2, ..., n), then

∑n

i=1 aniXi√
n logn

−→ 0, a.s. (18)

Proof. By Markov’s inequality and lemma 2.5, we obtain∑∞
n=1 P{|∑n

i=1 aniXi/
√

n logn| ≥ x}
≤∑∞

n=1
E|Sn|p

xpnp/2(log n)p/2

≤∑∞
n=1

C(
∑

n

i=1
a2

ni)
p/2

xpnp/2(log n)p/2

≤∑∞
n=1

CKnp/2−1

xpnp/2(log n)p/2

=
∑∞

n=1
CK

xpn(log n)p/2

<∞.

Therefore, inequality (18) follows from Borel-Cantelli
lemma.
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