
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:8, 2009

2132

Abstract—Automatic reusability appraisal is helpful in

evaluating the quality of developed or developing reusable software
components and in identification of reusable components from
existing legacy systems; that can save cost of developing the
software from scratch. But the issue of how to identify reusable
components from existing systems has remained relatively
unexplored. In this research work, structural attributes of software
components are explored using software metrics and quality of the
software is inferred by different Neural Network based approaches,
taking the metric values as input. The calculated reusability value
enables to identify a good quality code automatically. It is found that
the reusability value determined is close to the manual analysis used
to be performed by the programmers or repository managers. So, the
developed system can be used to enhance the productivity and
quality of software development.

Keywords—Neural Network, Software Reusability, Software
Metric, Accuracy, MAE, RMSE.

I. INTRODUCTION
HE demand for new software applications is currently
increasing at the exponential rate, as is the cost to develop

them. The numbers of qualified and experienced professionals
required for this extra work are not increasing commensurably
[1]. Software professionals have recognized reuse as a
powerful means of potentially overcoming the above said
software crisis [2,3] and it promises significant improvements
in software productivity and quality [4,5]. There are two
approaches for reuse of code: develop the reusable code from
scratch or identify and extract the reusable code from already
developed code. The organizations that has experience in
developing software, but not yet used the software reuse
concept, there exists extra cost to develop the reusable
components from scratch to build and strengthen their
reusable software reservoir [4]. The cost of developing the
software from scratch can be saved by identifying and
extracting the reusable components from already developed
and existing software systems or legacy systems [6]. But the
issue of how to identify reusable components from existing
systems has remained relatively unexplored. In both the cases,
whether we are developing software from scratch or reusing
code from already developed projects, there is a need of

Harpreet Kaur is working as Lecturer in Department of Computer Science
& Engineering, Rayat Bahra College of Engineering & Bio-Technology for
Women, Sahauran, Mohali (India).

Parvinder S. Sandhu and Amanpreet Singh are associated with Rayat Bahra
Institute of Engineering &Bio-Technology, Sahauran, Mohali (India).

evaluating the quality of the potentially reusable piece of
software.

The aim of Metrics is to predict the quality of the software
products. Various attributes, which determine the quality of
the software, include maintainability, defect density, fault
proneness, normalized rework, understandability, reusability
etc. The requirement today is to relate the reusability attributes
with the metrics and to find how these metrics collectively
determine the reusability of the software component. To
achieve both the quality and productivity objectives it is
always recommended to go for the software reuse that not
only saves the time taken to develop the product from scratch
but also delivers the almost error free code, as the code is
already tested many times during its earlier reuse.

Tracz observed that for programmers to reuse software they
must first find it useful [7]. Experimental results confirm that
prediction of reusability is possible but it involves more than
the set of metrics that are being used [8]. According to Poulin
[9], in some sense, researchers have fully explored most
traditional methods of measuring reusability: complexity,
module size, interface characteristics, etc., but the ability to
reuse software also depends on domain characteristics. It
means we should concentrate on evaluating the software in
terms of its relevancy to a particular domain.

The contribution of metrics to the overall objective of the
software quality is understood and recognized [10, 11, 12].
But how these metrics collectively determine reusability of a
software component is still at its naïve stage although a
number of attempts are mode in [15-22]. A neural network
approach could serve as an economical and automatic tool, to
generate reusability ranking of software components [13]. In
this paper, neural network approach is extensively explored to
automatic evaluate the reusability of Object-oriented software
components in existing systems as well as the developed
reusable components. Inputs to Neural Network system are
provided in form of structural attributes of software
component in form of metric values and output is the
reusability value category. In this paper a different types of
Neural Networks are experimented.

II. PROPOSED METHODOLOGY
Reusability evaluation System for Object oriented Software

Components can be framed using following steps:

A. Selection & Refinement of Metrics
Selection and refinement of metrics targeting the quality

Modeling of Reusability of Object Oriented
Software System

Parvinder S. Sandhu, Harpreet Kaur, and Amanpreet Singh

T

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:8, 2009

2133

of object oriented software system and perform parsing of
the software system to generate the Meta information
related to that Software. The metrics of [17] [22] are used
and details of the metrics are as under:

i) Weighted Methods per Class (WMC): According to this
metric if a Class C, has n methods and c1, c2 …, cn be the
complexity of the methods, then WMC(C) = c1 + c2 +… + cn.
Mc Cabe’s complexity metric is chosen for calculating the
complexity values of the methods of a class; the value is
normalized so that nominal complexity for a method takes on
a value of 1.0. If all method complexities are considered to be
unity, then WMC = n i.e. the number of methods existing in
that class [23] [24].

“Tuned WMC” (TWMC) measure is used as input to the
NF inference engine by restricting the WMC value in between
0 and 1 with help of sigmoid function shown below:

e cxacaxf)(1
1),,(

−−+
= (1)

Where a=10 and c=0.5 .

ii) Depth of Inheritance Tree (DIT): According to this
metric Depth of inheritance of a class is “the maximum length
from the node to the root of the tree". More is the depth of the
inheritance tree greater the reusability of the class
corresponding to the root of that tree as the class properties
are shared by more derived classes under that class. Greater
depth dilutes the abstraction and there is a need to set the
minimum and maximum DIT value for a class as a
contribution towards the reusability [23] [24].

The definition of DIT is ambiguous when multiple
inheritance and multiple roots are present as the alternative
length of the path is not being considered in case of multiple
inheritance. If all the ancestor classes coming in common path
are added to the ancestor classes of alternative paths then that
will be the true representation of the theoretical basis of the
DIT metric.

“Lack of Tuned Degree of Inheritance” (LTDIT) measure is
used as input to the NF inference system, in order to restrict
the input value between 0 and 1.

iii) Number of Children (NOC): According to this metric,
Number of children (NOC) of a class is the number of
immediate sub-classes subordinated to a class in the class
hierarchy. Thus, greater is the value of NOC, greater will be
the reusability of the parent class. Hence, there should be
some minimum value of NOC for a parent class for its
reusability [23] [24].

Theoretical basis of NOC metric relates to the notion of
scope of properties. It is a measure of how many sub-classes
are going to inherit the methods of the parent class. The
definition of NOC metric gives the distorted view of the
system as it counts only the immediate sub-classes instead of
all the descendants of the class. The NOC value of a class (say
class ‘i’) should reflect all the subclasses that share the
properties of that class as shown in the following equation:

∑+=
sesAllSubclas

i
iNOCNiNOC)()((2)

Where N is the total number of immediate subclasses of class
i.
In order to restrict the input value between 0 and 1, we have
used “Lack of Tuned Number of Children” (LTNOC) measure
as input to the NF inference system.

iv) Coupling Between Object Classes (CBO): According to
this metric, “Coupling Between Object Classes” (CBO) for a
class is a count of the number of other classes to which it is
coupled. Theoretical basis of CBO relates to the notion that an
object is coupled to another object if one of them acts on the
other. Here, we are restricting the unidirectional use of
methods or instance variables of another object by the object
of the class whose reusability is to be measured. As Coupling
between Object classes increases, reusability decreases and it
becomes harder to modify and test the software system. So,
there is a need to set some maximum value of coupling level
for its reusability and if the value of CBO for a class is beyond
that maximum value then the class is said to be non-reusable
[23] [24].

In order to restrict the input value between 0 and 1, we have
used “Lack of CBO” (LCBO) measure as input to the NF
inference system.

v) Lack of Cohesion in Methods (LCOM): Consider a Class
C1 with n methods M1, M2 ..., Mn. Let {Ij} = set of instance
variables used by method Mi .There are n such sets {I1}, {I2},
..., {In}. Let P = {(Ii , Ij) | Ii ∩ Ij = ∅ } and Q = {(Ii , Ij) | Ii
∩ Ij ≠ ∅ }. If all n sets {I1}, {I2}, {In} are ∅ then P =
∅ [25]. Lack of Cohesion in Methods (LCOM) of a class can
be defined as:

LCOM = |P| - |Q|, if |P| > |Q|
LCOM = 0 otherwise

The high value of LCOM indicates that the methods in the
class are not really related to each other and vice versa. It
means that low value of LCOM depicts high internal strength
of the class which results into high reusability. So, there
should be some maximum value of LCOM after that class
becomes non-reusable [23] [24].

“Tuned LCOM” (TLCOM) measure is used as input to the
NF inference engine by restricting the LCOM value between 0
and 1 with help of sigmoid function as shown in the following
equation:

e cxacaxf)(1
1),,(

−−+
= (3)

Where a=4 and c=1.5.

B. Collection of Metric Values
Collect the object oriented components and generate the

different metric values of the exemplars.

C. Modeling of the Reusability Data
The different Neural Network approaches are used for the

Modeling of the reusability data as generated from the previous
step. For each approach following steps are used:

o Perform the Training of the Neural Network

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:8, 2009

2134

o After training tests the Neural Network on
the basis of Accuracy, MAE and RMSE.

The mean absolute error is chosen as the standard error.
The technique having lower value of mean absolute error is
chosen as the best modeling or prediction technique.
• Mean absolute error

Mean absolute error, MAE is the average of the difference
between predicted and actual value in all test cases; it is the
average prediction error. The formula for calculating MAE is
given in equation shown below [26]:

n
cacaca nn

−++−+− ...
2211

(4)

Assuming that the actual output is a, expected output is c.
• Root mean-squared error

RMSE is frequently used measure of differences between
values predicted by a model or estimator and the values
actually observed from the thing being modeled or estimated.
It is just the square root of the mean square error as shown in
equation given below [26]:

The mean-squared error is one of the most commonly used
measures of success for numeric prediction. This value is
computed by taking the average of the squared differences
between each computed value and its corresponding correct
value. The root mean-squared error is simply the square root
of the mean-squared-error. The root mean-squared error gives
the error value the same dimensionality as the actual and
predicted values.

III. RESULTS & DISCUSSION
The proposed Neural based methodology is implemented in

MATLAB 7.4 environment is one such facility that lends a
high performance language for technical computing. A variety
of neural network techniques are experimented in the study to
predict reusability of the objected oriented software
components. The list is as follows:

• Batch Gradient Descent without momentum
• Batch Gradient Descent with momentum
• Variable Learning Rate without momentum
• Variable Learning Rate training with momentum
• Resilient Backpropagation
• Fletcher-Reeves version of the conjugate gradient

algorithm
• Polak-Ribiére Update version of the conjugate gradient

algorithm
• Powell-Beale Restarts version of the conjugate gradient

algorithm
• Scaled Conjugate Gradient
• Quasi-Newton BFGS Algorithm
• Quasi-Newton One Step Secant Algorithm
• Levenberg-Marquardt Algorithm
• Generalized Regression Neural Networks

• Self Organizing Network
The generalized structure of the Neural Network is shown

in Fig. 1.

Fig. 1 Generalized structure of the Neural Network with Inputs

and Outputs depicted

In each of the above mentioned technique first the network

is created and training of the network is performed with the
training dataset. There after the network is tested and the
results are shown in Table I.

TABLE I

PERFORMANCE STATISTICS OF VARIOUS NEURAL NETWORK ALGORITHMS
Projects

CM1 Algorithm

Accuracy MAE RMSE

BGD 94.2529 0.2799 0.3282

BGDWM 97.7011 0.1561 0.1966

VLR 96.5517 0.1277 0.1798

VLRM 98.8506 0.1033 0.134

RB 100 0.0779 0.1001

FRCG 100 0.074 0.1003

PRUCG 100 0.0649 0.0899

PBRCG 100 0.0592 0.0806

SCG 100 0.0638 0.0818

QNBFGS 100 0.0589 0.0767

QNOSS 100 0.0786 0.1037

LM 100 0.0443 0.0605

GRNN 100 0.2391 0.27

SON 3.4483 2.6324 3.0021

() () ()
n

nn cacaca −−− +++
222

...2211
(5)

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:8, 2009

2135

As evidenced from Table I, Levenberg–Marquardt (LM)
algorithm is the best among other different neural network
algorithms under study with least MAE and RMSE values i.e.
0.0443 and 0.0605 respectively. The algorithm shows the
highest Accuracy with 100% value. Training Performance of
Levenberg–Marquardt (LM) algorithm for reusability
evaluation is shown in Fig. 2 below:

Fig. 2 Training Performance of Levenberg–Marquardt (LM)

Algorithm for Reusability Evaluation

IV. CONCLUSION AND FUTURE SCOPE
The metric based approach is used successfully in designing

the framework for evaluation of reusability of object oriented
systems and Levenberg – Marguardt algorithm is proved to be
best as compared to the other algorithms considered in this
work. The performance of this neural network is better than
the results of the Neuro-Fuzzy Technique as used in the
literature. The Quasi-Newton BFGS Algorithm come out to be
the second best algorithm for modeling of reusability data and
the Self Organizing Network are showing the worst results
among fourteen neural network algorithms under study.
Hence, it is concluded that for non linear and complex
engineering applications involving control, inference and
analysis by and large Neural Network is an efficient
technique.

The proposed approach is applied on the C++ based
software modules/components and it can further be extended
to the Artificial Intelligence (AI) based software components
e.g. Prolog Language based software components.

REFERENCES
[1] E. Smith, A. Al-Yasiri, and M. Merabti, A Multi-Tiered Classification

Scheme For Component Retrieval, Proc. Euromicro Conference,
24(Vol. 2) (1998) 882 – 889.

[2] V.R. Basili, Software Development: A Paradigm for the Future, Proc.
COMPAC ‘89, (Los Alamitos, Calif.: IEEE CS Press, 1989) 471-485.

[3] B.W. Boehm and R. Ross, Theory-W Software Project Management:
Principles and Examples, IEEE Trans. Software Eng., 15(7), 1989, p.
902.

[4] W. Lim, Effects of Reuse on Quality, Productivity, and Economics,
IEEE Software, 11(5, Oct. 1994), 23-30.

[5] H. Mili, F. Mili and A. Mili, Reusing Software: Issues And Research
Directions, IEEE Trans. Software Eng., 21(6, June 1995) 528 - 562.

[6] G. Caldiera and V. R. Basili, Identifying and Qualifying Reusable
Software Components, IEEE Computer, (1991) 61-70.

[7] W. Tracz, A Conceptual Model for Mega programming, SIGSOFT
Software Engineering Notes, 16(3, July 1991) 36-45.

[8] Stephen R. Schach and X. Yang, Metrics for targeting candidates for
reuse: an experimental approach, ACM, (SAC 1995) 379-383.

[9] J. S. Poulin, Measuring Software Reuse–Principles, Practices and
Economic Models (Addison-Wesley, 1997).

[10] W. Humphrey, Managing the Software Process, SEI Series in Software
Engineering (Addison-Wesley, 1989).

[11] L. Sommerville, Software Engineering, 4th edn. (Addison-Wesley,
1992).

[12] R. S. Pressman, Software Engineering: A Practitioner’s Approach, 5th
edn. (McGraw-Hill, 2005).

[13] G. Boetticher and D. Eichmann, A Neural Network Paradigm for
Characterizing Reusable Software, Proc. of the 1st Australian
Conference on Software Metrics (18-19 November 1993).

[14] S. V. Kartalopoulos, Understanding Neural Networks and Fuzzy Logic-
Basic Concepts and Applications (IEEE Press, 1996)153-160.

[15] Parvinder Singh Sandhu and Hardeep Singh, “Software Reusability
Model for Procedure Based Domain-Specific Software Components”,
International Journal of Software Engineering & Knowledge
Engineering (IJSEKE), Vol. 18, No. 7, 2008, pp. 1–19.

[16] Parvinder Singh Sandhu and Hardeep Singh, "Automatic Quality
Appraisal of Domain-Specific Reusable Software Components", Journal
of Electronics & Computer Science, vol. 8, no. 1, June 2006, pp. 1-8.

[17] Parvinder Singh Sandhu and Hardeep Singh, "A Reusability Evaluation
Model for OO-Based Software Components", International Journal of
Computer Science, vol. 1, no. 4, 2006, pp. 259-264.

[18] Parvinder Singh Sandhu and Hardeep Singh , “Automatic Reusability
Appraisal of Software Components using Neuro-Fuzzy Approach,
International Journal Of Information Technology, vol. 3, no. 3, 2006,
pp. 209-214.

[19] Parvinder S. Sandhu and Hardeep Singh, “A Fuzzy Based Approach for
the Prediction of Quality of Reusable Software Components”, IEEE 14th
International Conference on Advanced Computing & Communications
(ADCOM 2006), NIT Suratkal, Dec. 20 – 23, 2006, pp. 761-764.

[20] Parvinder S. Sandhu and Hardeep Singh, “A Neuro-Fuzzy Based
Software Reusability Evaluation System with Optimized Rule
Selection”, IEEE 2nd International Conference on Emerging
Technologies (IEEE ICET 2006), Peshawar, Pakistan, Nov. 13-14, 2006,
pp. 664-669.

[21] Parvinder Singh and Hardeep Singh, “A Neuro-fuzzy Based Approach
for the Prediction of Quality of Reusable Software Components”, 4th
International Conference on Software Methodologies, Tools and
Techniques (SoMeT 2005), Tokyo, Japan, Sept. 28-30, 2005, pp. 156-
169. (http://www.booksonline.iospress.nl/)

[22] Parvinder S. Sandhu, P. P.Singh, H. Singh,, "Reusability Evaluation with
Machine Learning Techniques", WSEAS TRANSACTIONS on
COMPUTERS, issue 9, Volume 6, September 2007, pp. 1065-1076

[23] Chidamber, S.R. and Kemerer, C.F., “A Metric Suite for Object Oriented
Design”, IEEE Trans. Software Eng., vol. 20, 1994, pp. 476-493.

[24] Chidamber, S.R. and Kemerer, C.F., “Towards a Metrics Suite for
Object Oriented Design”, Proceedings Conference Object Oriented
Programming Systems, Languages, and Applications (OOPSLA’91),
vol. 26, no. 11, 1991, pp. 197-211.

[25] Boehm, B.W. and Ross, R., “Theory-W Software Project Management:
Principles and Examples”, IEEE Trans. Software Eng., vol. 15, no. 7,
1989, pp. 902.

[26] Ebru Ardil, Erdem Ucar, Parvinder S. Sandhu, “Software Maintenance
Severity Prediction with Soft Computing Approach”, International
Conference on Computer, Electrical, and Systems Science, and
Engineering, Feb. 25-27, 2009, Penang, Malaysia; vol. 50, ISSN: 2070-
3724, pp. 139-144.

