
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

3321

Combinatorial Optimisation of Worm Propagation
on an Unknown Network

Éric Filiol, Edouard Franc, Alessandro Gubbioli, Benoit Moquet, Guillaume Roblot

Abstract— Worm propagation profiles have significantly changed
since 2003-2004: sudden world outbreaks like Blaster or Slammer
have progressively disappeared and slower but stealthier worms
appeared since, most of them for botnets dissemination. Decreased
worm virulence results in more difficult detection.

In this paper, we describe a stealth worm propagation model
which has been extensively simulated and analysed on a huge virtual
network. The main features of this model is its ability to infect any
Internet-like network in a few seconds, whatever may be its size while
greatly limiting the reinfection attempt overhead of already infected
hosts. The main simulation results shows that the combinatorial
topology of routing may have a huge impact on the worm propagation
and thus some servers play a more essential and significant role than
others. The real-time capability to identify them may be essential to
greatly hinder worm propagation.

Keywords— Combinatorial worm, worm spreading, worm viru-
lence, stealth worm, spreading simulation, vertex cover, network
topology, WAST simulator, SuWAST simulator.

I. INTRODUCTION

A number of recent studies [11], [12], [13] have addressed
the problem of fast spreading worms on Internet-like networks.
Among others, Staniford and al. [11] have presented and
evaluated several highly worm virulent possible techniques
such as hit-list scanning, permutation scanning, Internet-sized
hit-lists... Their study was based on spreading data of former
worms like Code Red I, Code Red II and Nimda. Moreover
they considered worms that could spread more slowly (sur-
reptitious worms) but in a much harder to detect contagion
fashion. Their hypothesis is that such new worm technologies
could theoritically subvert upwards of 10,000,000 Internet
hosts. Finally they present a few robust mechanisms that would
enable an attacker to control and update already deployed
worms.

Other studies [12], [13] have later on confirmed Staniford
and al.’s analysis. However all these studies and models are
generally derived from known worms spread and most of the
potential scenarii for superworms – Currious yellow worm,
Warhol worm, Flash worm –,are up to now of theoretical
intererest only. Based on probabilistic extrapolation, none of
them have been of course tested on a real network or even in

E. Filiol is with the Lab. of Virology and Cryptology, ESAT, B.P. 18, 35998
Rennes Armées (France), Email: eric.filiol@esat.terre.defense.gouv.fr. He is
also Full Professor at ESIEA - Laval filiol@esiea.fr

Edouard Franc, Benoit Moquet and Guillaume Roblot are with the Lab. of
Virology and Cryptology, ESAT, B.P. 18, 35998 Rennes Armées (France) and
with the French Navy, ESCANSIC, Saint Mandrier, France.

Alessandro Gubbioli is with the Polytecnico di Milano, Milan, Italy and
was on stay at the Lab. of Virology and Cryptology, ESAT for this research
work.

a simulation environment close enough to real networks – up
to the authors’ knowledge.

This paper presents a new worm two-step propagation
strategy on a totally unknown network. The related worm has
been called Combinatorial worm. In the first step, the worm
first “learns” the network configuration both at micro (local)
and macro levels. From that knowledge, the worm then set up a
two-level malicious network by means of Dynamic Host Tables
(DHT) and graphs. In a second step, some particular optimal
structures of the built graph – cover vertex set – are identified
by the attacker and used to efficiently and surreptitiously
manage, update and control the malicious network. The main
features of the strategy presented here is two-fold: first the
worm does not need any a priori knowledge about the net-
work, second the level of connection overhead (wrong, useless
worm connections) is optimally lowered. Our spreading model
describes very well how web-based malware [10], among other
possible examples, could optimally propagate.

The essential interest of our study lies on the fact that
this propagation strategy has been experimentally tested on
two dedicated, powerful simulation environment, specially
designed in our laboratory for our study: WAST (Worm
Analysis and Simulation Tool) [4] and SuWAST (Super Worm
Analysis and Simulation Tool) [5]. The paper is organised as
follows. Section II presents our working propagation scenario.
Section III focuses on the malicious network optimal man-
agement by means of the vertex cover set. Section IV then
presents the two simulation environments we have designed
and the implemtation issues with respect to our propagation
scenario. Section V gives detailed results of our simulation
while Section VI concludes and addresses some future work.

II. DESCRIPTION OF THE OVERALL STRATEGY

The aim is to design a worm initial infection strategy of an
unknown network with the following constraints:

• the network is totally unknown. That means that except
the IP address of the (first infected) local machine, the
attacker does not know any other IP address;

• the aim is to reduce as much as possible the number
of connections. Contrary to a classical worm which
randomly scans for IP addresses to infect, our worm tries
to infect only machines at existing IP addresses (collected
whithin the local machine). In the first case, many infec-
tion attempts fail and connections were useless.

The worm in fact organizes the whole target network into a
two-level hierarchy. Each time a machine is newly infected,
one or two DHT (Kademlia-like [7], [8]) structures are set up

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

3322

Fig. 1. Network partition according to the two-level propagation strategy. The worm lower networks are contained into the different ellipses (green links
maneged by local DHT1 structures) while the worm upper network is composed of static addresses (generally servers; red links managed by local DHT0

structures)

and updated by the worm with the data related to its spreading
activity according to the following scheme:

• locally, a DHT1 structure is set up and use a malicious
P2P network. This network will be called worm lower
network or worm P2P network. It is dedicated to the local
maganement of dynamic address hosts;

• if the newly infected IP address is dynamic, the worm
adds it to the worm P2P network. The latter however
additionally manage a single static (fixed) IP adress (a
server) and any machine in the corresponding subnet
whose IP address is dynamic;

• if the newly infected IP address is a static one, a DHT0

structure is set up and used to manage the worm at a
macro level. This higher level of the network will be
denoted worm upper network. This means that static hosts
will manage two DHT structures DHT0 and DHT1;

• globally, a graph structure G. This structure will manage
fixed IP addresses (typically those of servers) only. It is
maintained at the attacker’s side.

These two structures are connected at the fixed IP ad-
dresses’level. Moreover, the attacker has a monitoring machine
which collects data sent by every infected machine. The
overall, upper level topology of the malicious network is then
managed at the attacker’s level through the graph structure
G. The two-level organisation of the malicious network is
summarized in Figure 1.

The choice of a two-level structure aims at making the
worm spread as invisible as possible. From one given node,
the worm spreads only to nodes that used to communicate

with it: existing previous connection (leaving some IP traces
whithin local machines) between them can be considered as a
“trust” relation.

Once the initial spread to the network has occured, a second
step, denoted worm management occurs (see Section III).

A. Worm Spread

This step aims at finding IP addresses to infect.

1) With a probability p0, the worm generates a random IP
adress from the local IP address. The four IPv4 fields of
the address are modified. Then the worm tries to infect
this random (remote) IP address.

2) The worm then locally looks for existing addresses to
infect:

• ARP table. It contains addresses of machines which
recently were connected to the local machine (this
table is refreshed every five minutes). In the case
of a server, the ARP table contains a lot of IP
addresses.

• Folders of given software applications: Internet
browser, antivirus, firewall...

• Use dedicated commands to identify machines al-
ready connected to the local machine: NETSTAT,
NBTSTAT, NSLOOKUP, TRACERT...

• ...

3) The worm then tries to spread to these addresses.
4) The worm adds spreading information to the relevant

structure (see Section II-B).

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

3323

5) The worm sends information back to the attacker’s
monitoring machine (see Section II-C).

The value of parameter p0 is freely customized but it should
not excess 0.1 as confirmed by our simulation results presented
in Section V. The worm must be able to determine whether
a given target is already infected or not. This point will be
developped further in Section IV.

B. Updating Spreading Information

Each time a worm copy succeeds in infecting a new
machine, it first initializes a (local) DHT0 structure and then
checks whether the local address is a static or a dynamic one.

• If the IP address is dynamic, the worm then updates
DHT0. This structure contains only one static address
(see next item).

• If the IP address is static, the worm additionally sets
up a DHT1 structure dedicated to manage only static
addresses at the upper level. This new static IP address
is also included in the new local DHT0 structure. Con-
sequently, the different local DHT0 structures are all
connected by a single point to the DHT0 structures. It
is worth mentioning that the choice of the static address
“connecting” DHT0 and DHT1 structures, is free. As
an example, it may be the last static IP address that has
been infected by the worm and every time a new static
address is found and infected, a new DHT1 structure is
locally used.

C. Sending Data Back to the Attacker

In order to monitor the worm activity and to evaluate its
efficiency, the attacker needs to define and use some indicators.
In order to define the topography of the worm upper network,
we need to know which addresses have been infected, from
which machine and at what time. Thus the corresponding
graph structure G which describes the worm upper network is
defined as follows:

• each fixed IP address is a graph node,
• node i is connected to node j if machine j has been

infected by machine i.
By definition (particularly when considering the fact that
a machine cannot infect an already infected machine), the
resulting graph structure is a simple directed graph. In order to
settle thing down, let us suppose that machine i successfully
managed to infect machine j at time t. Then every new copy
of the worm (e.g. on machine j) sends the following data
structure back to the attacker’s monitoring machine:

struct infection_fixed {
/* IP address of machine i */
unsigned long int add_from;
/* IP address of machine j */
unsigned long int add_to ;
/* time of infection */
time_t inf_atime ;

};

At the worm lower network level, any newly infected machine
(e.g. with a dynamic address) will then send the following data
to the single fixed IP address present in the DHT0 structure:

struct infection_fixed {

/* IP address of machine i */
unsigned long int add_from;
/* IP address of machine j */
unsigned long int add_to ;
/* Single fixed IP address */
/* in the DHT_0 */
unsigned long int add_fix ;

/* time of infection */
time_t inf_atime ;
};

These data are sent to the attacker’s monitoring machine
according to the following rules:

• any machine in the local DHT0 structure send data only
to the single machine in this structure which has a static
address;

• only machines which have a fixed IP address can send
directly data to the attacker’s monitoring machine.

The purpose of these first data is to help to build the model
and to measure how quickly the whole (simulated) network
is infected (worm propagation speed and efficiency). In other
words, if we start with N machines, how many time does it
take to infected the whole network?

A second indicator is used in order to evaluate the ratio
of useless connections during the spread. In other words, we
want primarily determine the number of attempts of infecting
already infected machine. Thus at every infection attempt, a
given machine sends back the following data:

struct infection_fixed {
/* IP address of machine i */
unsigned long int add_from;
/* IP address of machine j */
unsigned long int add_to ;
/* Machine j was already */
/* infected (value 1 or 2) */
unsigned int mark_flag ;

/* time of attempt */
time_t inf_atime ;
};

Every data sent by any copy of the worm will be protected
against eavesdropping. Thus the data may be either encrypted
or protected by steganography (or vovert channel). This part
has been only partly implemented during our final experimen-
tation.

III. THE NEXT STEP: MANAGING THE INFECTED

NETWORK

A. The Basic Principle

Once the initial step has been performed (the worm has
infected any possible machine), the attacker must be able to
control, set up or modify the worm behavior. For that purpose,
he must be able to connect to the network, to “talk” with one
(or more) worm copy. Then the worm copy will spread the
new setup to the other worm copies.

To connect to the worm network, the attacker may either use
a dedicated tool looking for some infected machine or exploit
the data sent back to his monitoring machine during the initial
infection step.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

3324

Locally at the local machine level, the DHT structures
(both DHT0 and DHT1) must be managed in order to
avoid a too much increase of their size. Consequently, a time
aspect has been introduced. Systematically, the single fixed IP
address is included in the DHTs of a given machine i while
this structure dynamically manages and keeps only the α IP
addresses corresponding to machines that recently established
a connection and that are susceptible to infection with
respect to the worm. As in Kademlia [8], we use a node
identification system based on node ID built from the local IP
address essentially and the XOR metrics.

Additionally, we used a weighted measure for every IP
address in the DHTs tables. Without loss of generality, let
us consider DHT i

1 of machine i. For every other IP address
j in DHT i

1, let us denote dij the (XOR) distance between
machines i and j and tij the last connection time (in seconds)
between machine i and j. Thus, we attribute the following
weight to each of them:

wij = dij × tij .

So, DHT i
1 permanently self-updates in order to keep only the

α IP addresses with lowest weight wij .

B. Using the Collected Data

Once a sufficient amount of data has been collected, the
main approach is to use them in order to efficiently manage
the upper network. Indeed, we just have to limit ourselves
to the fixed addresses of the whole malicious network since
each of them will then locally cooperate/communicate with
the other worm instances at the lower network level.

The main objective is to limit the overhead during the man-
agement and thus reduce the number of connections and data
sent. We will use the fact that there exists a natural “connection
hierarchy” between servers. As an example, Server A generally
connects to Server B which then connect itself to Server C.
This implies that generally Server A does not connect to Server
C. Once again, the aim is to make the worm spread according
to the “natural” or “ad hoc” connections between servers. If
Server A does generally not connect to Server C, an alert
may be raised in case of such a connection is initiated by a
worm. This context being considered, our aim is to model the
connections between fixed addresses by means of a directed
graph G which is progressively built/updated by the attacker
on its monitoring machine:

• nodes of G, denoted (ni)1≤i≤N are representing fixed IP
addresses (generally a server) ;

• entries of the incidence matrix of G are defined by:

ai,j =

⎧⎨
⎩

1 computer j has been
infected by computer i

0 otherwise

It is essential to consider a directed graph since connection
may be one-way. Moreover, we may consider a weighted di-
rected graph as well by introducing a time aspect as previously.
Let us recall that aside the overall graph G, the different
DHT0 structure are locally managed in the same way as
DHT1 structures are. The difference lies in the nature of the
IP addresses (static or dynamic).

When the attacker wants to automatically (or not) manage
every worm copy (e.g. to update or upgrade the worm with
new exploits dedicated to newly found software flaw), the aim
is to limit as much as possible the communication overhead.
The aim is thus to identify a few “privileged” nodes that enable
to optimally or at least efficiently communicate with all other
nodes.

These conditions being fixed, one possible solution is to
consider the vertex cover problem for a graph. Let us recall
its definition.

Definition 1: Let G a undirected graph (V, E). The vertex
cover is a subset V ′ of the vertices of the graph which contains
at least one of the two endpoints of each edge:

V ′ ⊂ V : ∀{a, b} ∈ E, a ∈ V ′ or b ∈ V ′.

On the graph of Figure 2, the subset {2, 4, 5} is a vertex cover
of G. Moreover, it is the smallest possible one. Thus, from the

Fig. 2. Exemple of Graph with Vertex Cover of Size 3

data collected during the initial spreading phase, the attacker
will first try to identify a vertex cover (let us recall however
that it is a NP-complete problem). Then, if the attacker wants
to manage the upper network, he will proceed as follows:

1) The attacker tries to find a vertex cover V ′ =
{ni1 , ni2 , . . . , nik

}. Of course, he may consider a partial
subgraph to minimize the complexity of the search
algorithm.

2) The information that intends to adapt the worm be-
haviour is sent to nodes nij

∈ V ′ with 1 ≤ j ≤ k,
only.

3) Each of the nodes nij
∈ V ′ will then spread locally to

other nodes of the graph according to a suitable ordering
limiting the probability for a node to be updated by two
nodes nij

in the vertex cover (for exemple, in Figure 2,
node 3 can be updated either by node 2 or node 4, but
only node 2 will).

The use of a vertex cover set – hence our naming of Combina-
torial worm – thus minimizes the number of communications
between nodes while covering all the nodes quite simulta-
neously. Whenever a static node of the cover set receives a
new information/command, the spread switches at the lower
network level.

The attacker has to find the smallest possible vertex cover
set for this graph. Since this problem is an NP-complete
optimisation problem, this is the most critical issue and most
of the time we are bound to search for near optimal vertex
cover set only. Different approximation algorithms have been
used in our experiments:

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

3325

• looking for vertex cover set that is at most twice the size
of on optimal cover. The APPROX-VERTEX-COVER [2]
is a polynomial-time algorithm that enable to efficiently
find such approximate solution. The overall complexity
is in O(|V | + |E|);

• Dharwadker’s approximation algorithm [3] which effi-
ciently outputs optimal vertex cover sets for many graphs
classes.

IV. SIMULATION AND IMPLEMENTATION ISSUES

Two simulation environment have been designed to test,
evaluate and validate worm propagation scenarii on large-scale
networks.

A. The WAST Environment

The first one is WAST (Worm Analysis and Simulation
Tool) [4]. He has been developped in our laboratory by
Alessandro Gubbioli, from the Politecnico di Milano, Italy. He
was designed to simulate limited-scale networks (up to a few
tens of hosts) and thus validate in a exploratory, preliminary
step, some particular propagation strategies.

The purpose was to develop a system that allows simulations
of network’s attack, in a controlled environment, at application
level, instead of packet level. This approach is profitable
mainly because:

• it allows very precise model of attackers’ behaviour,
• it’s possible to reconstruct a specific LAN with all of its

components.
The simulation’s result could be useful to validate the cor-
rectness of these models and to compare the effectiveness
of different attack strategies. Moreover, WAST can be used
to stress protection tools in order to verify their reaction
capabilities in front of unknown threat. It offers two macro-
functionalities:

1) the simulation of a network with customized topology,
using both TCP and UDP protocols, routers and hosts.
For each host, we can define a profile of its configura-
tion, like the operating system and the network services
offered...;

2) a set of modules that support the infection mechanism
of a worm. It’s possible to interact with each module
following its own communication protocol .

The first one has been realized through a honeypot’s network,
described later. The second functionality consists of a set of
scripts that offer specific services and extend the honeypot’s
capabilities.

The core of WAST is build around honeyd, an open source
project to create an instrument for managing virtual low-
interaction honeypot [9]. Honeyd is a framework for virtual
honeypots that simulates computer systems at the network
level. Honeyd supports the IP protocol suites and responds
to network requests for its virtual honeypots according to
the services that are configured for each virtual honeypot.
The simulated computer systems appear to run on unallocated
network addresses.

Due to lack of space, we will neither present WAST in detail
nor describe its use for a particular worm strategy. The reader
may refer to [4] for a complete description of both issues.

B. The SuWAST Environment

The SuWAST (Super Worm Analysis and Simulation Tool)
environment has been built from scratch using the two stan-
dalone tools FakeNetbiosDGM et FakeNetbiosNS written in C
language by Patrick Chambet [1]. These programs are based
on the Netbios transfer protocol, developped by IBM and Sytec
in the early 80’s.

FakeNetbiosDGM is a program which allows periodic emis-
sion on the port 138 of several broadcasts which all seems
to come from a number of Windows hosts. It mimicks the
network Netbios datagram service. This service enables to send
a message either to a group name (multicast or broadcast) or to
a unique name (unicast) in a non-connected. As for FakeNet-
biosNS, it operates on the port 137. When listening this port it
answers to name resolution requests, among others things. It
mimicks the “Netbios Name Service” which associates a host
name to an IP address.

The ability to generate and to send UDP packets on a
given port (FakeNetbiosDGM) and the ability to listen a given
port and to forge an answer (FakeNetbiosNS) make these two
utilities very insteresting to build SuWAST.

Thus, we have a powerful simulation environment of com-
plex, heterogenous networks (clients, servers, routers...), al-
lowing simulations of network attacks, in a controlled envi-
ronment at packet level. If SuWAST is more complex to set up
and manage than WAST, on the contrary it enables large-scale
simulations. As an example, we have been able to simulate
up to a 60,000-host heterogeneous network on a single 2 GB
machine (Pentium 4 3Ghz). It is also possible to interconnect
such machines to simulate heterogeneous networks of millions
of hosts.

SuWAST simulates a network as follows:

1) IP addresses are randomly generated according to the
network topology we have chosen. The neighborhood
parameter alpha as well as the probability p0 are set
up;

2) a NS process is allocated to every such IP address in
order to initialize virtual machines;

3) all virtual machines are communicating through the
same network card by means of IP aliasing;

4) the ISO transfer layer protocol we use is UDP.

The network initialisation step is performed by a single script,
which is automatically generated.

The complete SuWAST technical documentation is available
in [5].

C. Implementation Issues

In order to ease the implementation of our strategy, each
simulated node (clients and servers) embeds a data structure
containing various (random) fields:

• IP address,
• status of the IP address (static or dynamic),
• status of the machine (server or not),
• a flag INF MARK corresponding to the infection status:

– 0 (not already infected);
– 1 (already infected; P2P network level);

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

3326

– 2 (already infected; upper level).

From a practical point of view, the worm may use a
given infection marker (e.g. a mutex denoted A) for any
dynamic address (P2P level) and use a different one to
identify infected machine with fixed address (e.g. a mutex
denoted B).

• a list of IP addresses that represents IP addresses that the
worm has collected (see Section II-A). These IP addresses
correspond to existing (fake) nodes with a probability of
p1, close to 1;

• any other customizable data (e.g. time delay to simulate
trafic load).

Whenever the worm infects a node, it just reads these informa-
tions instead of really collecting them and eventually updates
them (in particular the INF MARK field). Then the code is far
easier to develop for our simulation purposes.

To launch the propagation a first host is randomly selected
and infected. It then spreads according to our scheme. We
call a propagation instance a triplet (N, α, p0) where N is
the number of simulated hosts in the network and α the
neighborhood parameter.

V. SIMULATION RESULTS

Numerous scenarii have been extensively simulated and
analysed on either WAST or SuWAST. Due to lack of space,
we will present one of the most interesting one, only. All the
other ones are described in [6]. The topology of the network
is the following:

• every server “manages” α other servers and different
client hosts (randomly ranging from 16 to 32). The server
neighborhood parameter with respect to other servers
has been proved to be far more essential that the other
possible neighborhood parameters. We have tested α ∈
[1, 5];

• every client machine “knows” a single server only, and
some other hosts (server or client) with a probability 0 ≤
p0 ≤ 0.10.

The simulated network contains 100 servers and a grand total
of 3000 hosts in average. Simulations have been conducted 20
times. The results are summarized in Figure 3.

Two metrics have been used:

• the Network Infection Rate (NIR). It is defined as

NIR =
of Infected Hosts

N
,

• the Overinfection Rate (OR). It is defined as

OR =

of infection attempts
of already infected hosts

of infected hosts
.

As a first general result, the whole network is infected quite
instantly. Of course all hosts are simulated on the same
machine and thus it is not obvious at all that the simulated
propagation time would be of the same order of the propaga-
tion time on a real, Internet-like network. However, in the
simulation hosts are sequentially executing while in a real
network hosts are working in parallel. Further developments

on our simulator will take parallel computing and network
load into account. But, mathematical extrapolations clearly
show that our propagation scenario would indeed require a few
seconds to infect a Internet-like network with a quite excellent
network infection rate.

Three essential results are noticeable (see also Figure 3):

• the parameter p0 has a significant impact on both the
Network Infection Rate (NIR) and the Overinfection Rate
(OR). The case p0 = 0.04 is optimal, provided that the
server neighborhood parameter α is not to large (see
hereafter);

• the Network Infection Rate is systematically greater to
90 % if 3 ≤ α (server neighborhood parameter), most
of the results being closer to 99 %. Whenever α ≥ 3,
the probability to have hosts or subnetworks without any
connection with infected hosts, decreases very fast;

• the server neighborhood parameter α has a more signif-
icant impact on the Overinfection Rate (OR). The latter
greatly increases with α while surprisingly being quite
independent from the number of hosts. Optimally, we
have α ∈ [3, 6].

As far as the infection overheard (OR) is concerned, the anal-
ysis has clearly shown that is has a local impact only. In other
words, useless infection attempts (the host is already infected)
originated only from close hosts in terms of the DHT metrics
used. A traffic analysis is likely to see these connections as
normal since all these hosts use to communicate.

In conclusion, the best parameter values for this propagation
strategy are p0 = 0.04 and α ∈ [3, 6].

VI. CONCLUSION, EVOLUTION AND FUTURE WORK

In this paper, we have designed, tested and analysed the
behaviour of a so-called combinatorial worm. Two main
features make this worm very efficient:

• the overinfection rate is limited and kept at a local level.
By definition of the worm’s propagation mode, these
undue connections look like normal connections;

• managing the worm in subsequent steps is optimally
performed by considering the infectious network at a
higher level only. A reduced number of static addresses
is enough to control the whole network. This approach
enables to suppress any overhead in this phase.

As a consequence, the main conclusion is that a number of
servers – those which are in the vertex cover set – are more
important than the other ones. From the defender’s side, the
issue of identifying those particular (server) hosts may help
to more efficiently and more quickly prevent such worms
to operate and finally eradicate them from the network. On
a more general level, for any kind of worm, modeling the
malicious network as graph and searching for particular graph
structures (e.g. vertex cover set) could help to increase defense
against worms and botnets propagation.

Future work will consider new indicators to test the reac-
tiveness of our worm once the network has been infected.
The purpose will be to evaluate how the worm copies can
communicate the one with the another, what is the effect on
server crashes on the worm activity... Networks disturbances

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

3327

Fig. 3. Network Infection Rate (NIR) and Overinfection Rate (IR) for α ∈ [0, 5] and 0 ≤ p0 ≤ 0.10

have also to be simulated to test the worm’s robustness.
Parallel computing should also enable to improve simulation
realism.

Future work will also consider the development of a worm
intelligence and study worm program cooperation within a
network. We may consider two or more different worms,
one acting at the upper network level and cooperating with
the second one at the lower network level. One step farther
couls be to consider a different worm code for every different
lower networks (polymorphic/metamorphic generation of a
child worm – lower network level – by the parent worm at the
upper level). Then, this would make suitable settings in order
to determine what are the most optimal ways of cooperation
between a parent worm and its children.

REFERENCES

[1] Chambet P. (2005), FakeNetBIOS, French Honeynet Projet Homepage,
http://honeynet.rstack.org/tools.php

[2] Cormen T., Leiserson C. and Rivest R. (1990), Introduction to Algo-
rithms, MIT Press.

[3] Dharwadker A. (2006), The Vertex Cover Algorithm, http://www.
geocities.com/dharwadker/vertex_cover

[4] Gubiolli A. (2007), Un simulatore della diffusione di worm in un sistema
informatico, Master’s Thesis, Politecnico di Milano. A technical report
in English will be available soon.

[5] Filiol E., Franc E., Moquet B. and Roblot G. (2007), SUWAST: a
large-scale simulation environment for worm network attacks. Technical
Report ESAT 2007 11.

[6] Filiol E., Franc E., Gubbioli A., Moquet B. and Roblot G. (2007),
Combinatorial Optimisation of Worm Propagation on an Unknown
Network. The extended version of the present paper. To appear.

[7] Li J., Leong B. and Sollins K. (2005), Implementing Aggrega-
tion/Broadcast over Distributed Hash Tables, ACM Computer Commu-
nication Review, 35 (1), http://krs.lcs.mit.edu/regions/
docs/broadcast.pdf

[8] Maymounkov and Nazières (2002), Kademlia: A Peer-to-Peer Informa-
tion System Based on the XOR Metrics. Proceedings of IPTPS02, http:
//www.cs.rice.edu/Conferences/IPTPS02/109.pdf

[9] Provos, N. (2003), A Virtual Honeypot Framework, http://niels.
xtdnet.nl/papers/honeyd.pdf.

[10] Provos, N., McNamee D., Mavrommatis P., Wang K. and Modadugu
(2007), The Ghost in the Browser - Analysis of Web-malware. In
HotBots’07 Confererence, http://www.usenix.org/events/
hotbots07/tech/full_papers/provos/provos.pdf

[11] Staniford S., Paxson V. and Weaver N. (2002), How to 0wn the
Internet in Your Spare Time, Proceedings of the 11th USENIX Security
Symposium, San Francisco, CA.

[12] Weaver N. (2002), Potential Strategies for High Speed Active Worms:
A Worst Case Analysis, http://www.cgisecurity.com/lib/
worms.pdf

[13] Wiley B. (2002), Curious Yellow: The first Coordinated Worm Design,
http://blanu.net/curious_yellow.html

