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Generating Speq Rules based on Automatic Proof
of Logical Equivalence
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Abstract— In the Equivalent Transformation (ET) computation
model, a program is constructed by the successive accumulation of
ET rules. A method by meta-computation by which a correct ET
rule is generated has been proposed. Although the method covers a
broad range in the generation of ET rules, all important ET rules
are not necessarily generated. Generation of more ET rules can be
achieved by supplementing generation methods which are specialized
for important ET rules. A Specialization-by-Equation (Speq) rule is
one of those important rules. A Speq rule describes a procedure in
which two variables included in an atom conjunction are equalized
due to predicate constraints. In this paper, we propose an algorithm
that systematically and recursively generate Speq rules and discuss
its effectiveness in the synthesis of ET programs. A Speq rule is
generated based on proof of a logical formula consisting of given
atom set and dis-equality. The proof is carried out by utilizing some
ET rules and the ultimately obtained rules in generating Speq rules.

Keywords— Equivalent transformation, ET rule, Equation of two
variables, Rule generation, Specialization-by-Equation rule

I. Introduction

GENERATING efficient programs which are correct with
respect to their specifications is very important. Many

studies generate a low-level language program from a spec-
ification (Refer to Fig. 1). In their studies, a specification is
strictly defined by a formal description approach to efficiently
generate a program. An algebraic specification [4] is one of
formal description approaches, where a specification is defined
by an equality. A method for generating C or Java programs
from algebraic specifications is proposed in [7], [11]. A
method [3] for generating C++ programs from specifications
defined by UML is also proposed.

A theory of program generation based on the Equivalent
Transformation (ET) computation model [1] has also been
proposed by our research group, where a specification is
defined by a set of definite clauses, and a low-level language
program is generated from their specification (Refer to Fig. 1).
A crucial difference between our approach and others is that
we have a space of ET rules for searching algorithms that is
correct with respect to the given specification, and generate a
program from a set of ET rules that is found by the search. A
framework for generating C programs from ET rule sets has
been proposed in [18].

An ET rule is a rewriting rule that describes a procedure
to replace a clause set with another clause set preserving
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the equivalent declarative meaning. ET rules have abundant
expressive powers that can describe various procedures, and
each ET rule is completely independent of other ET rules.
An algorithm is constructed by successively accumulating ET
rules, and it is guaranteed that an algorithm constructed by
correct ET rules is correct with respect to their specifications.
ET rules have such good features for constructing algorithms.
Generation of ET rules is the most important task in making
programs.

A general method for generating correct ET rules has been
proposed in [9]. In this method, an ET rule is generated by a
finite synthesis of basic equivalent transformations using meta-
computation. Since a method using meta-computation covers
a broad range in the generation of ET rules, a system [14]
based on this method can generate various ET rules. However,
in the method using meta-computation, 1. it is not necessarily
the case that all ET rules are generated, and 2. there are ET
rules which cannot be generated in a short period of time.

In this paper, we consider that ET rule generation focusing
on the following items is important.

1) Even if a generation range of ET rules is narrowed, ET
rules derived in the range are important.

2) ET rules cannot be generated by a finite synthesis of
basic equivalent transformations.

3) An algorithm which efficiently generate ET rules can be
found.

One of the rules that satisfy the items mentioned above is a
Specialization-by-Equation (Speq) rule. A Speq rule describes
a procedure in which two variables included in an atom con-
junction are equalized due to predicate constraints. Generating
a Speq rule is essential because the rule solves problems
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Fig. 1. Generating low-level language programs from their specification
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more efficiently and is absolutely necessary to solve a certain
problem within a finite period of time. When a conjunction
of atoms is given as an input, the algorithm proposed in this
paper outputs all Speq rules obtained from the input. An ET
rule set is called a program in the rest of this paper.

This paper describes the syntax of ET rules, specifications,
programs and computation on the ET computation model in
Section 2 and discusses the importance of Speq rules in Section
3. It also proposes an algorithm that generates a Speq rule
in Section 4 and presents the process of generating the rules
by the proposed algorithm in Section 5. Furthermore, the
effectiveness of the algorithm is discussed in Section 6.

The following notations will be used. Taking A as an atom,
let Var(A) be the set of variables on A. Since an atom
conjunction is treated as an atom set in this paper, it is called
an atom set in the rest of this paper.

II. Program construction in the ET computation model

A. Definition of ET rules

In the ET computation model, a procedure is described by
a set of declarative meaning-preserving rewriting rules, each
of which is called an ET rule. An ET rule replaces a clause
set Cls with another clause set Cls′ which has an equivalent
declarative meaning as Cls.

[Syntax of ET rules]
An ET rule is composed of a head part (Hs), a condition

part (C), an execution part (En) and a replacement part (Bsn);
where n is a nonnegative integer.

Hs, {C} ⇒ {E1}, Bs1 ;
⇒ {E2}, Bs2 ;

...
⇒ {En}, Bsn .

A head part consists of one or more atoms while all other parts
consist of zero or more atoms. When a head is transformed into
two or more bodies as shown above, “;” is used for dividing
those bodies. If a head is transformed to only one body, such an
ET rule is described as (Hs, {C} ⇒ {E1}, Bs1.). The proposed
algorithm in this paper generates ET rules in which the number
of bodies is one. However, ET rules with multiple bodies are
used when generating ET rules by the proposed algorithm (See
Section V).

B. Program and specification in the ET computation model

In the theory of program construction based on the ET
computation model, a program is a set of ET rules. The
computation of the program is represented as a finite or
infinite sequence com = [s0, s1, s2, · · · ]. For any two successive
problems si and si+1 in com, the program transforms si into
si+1 by one step. The transformation is carried out as long as
there exists an ET rule that can be applied to a problem in
com.

In the ET computation model, a specification is strictly
defined by a set of definite clauses. Such a method where
a set of definite clauses is taken as a specification is an
essential paradigm used in Logic Programming (LP) [10], [15]

and Constraint Logic Programming (CLP) [8], [17]. Strictly,
a specification is a pair 〈D, Q〉, where D is background
knowledge (predicate definition) and Q is a set of queries.
Since ET rules have partial correctness with respect to D,
it is guaranteed that a program consisting of only correct ET
rules has partial correctness with respect to its specification.

C. Importance of ET rules

Since ET rules have complete independence with regard to
partial correctness, adding new ET rules to an existing ET
rule set does not impair the correctness of the existing ET
rule set. This enables the function of a program to be flexibly
expanded through modification of each ET rule or addition of
new ET rules. In addition, the squeeze method [2] where a
program is created by successively accumulating ET rules has
been proposed.

Furthermore, since software systems become larger and
more complex, the need for the development of cost-effective
and reliable software in a short period of time increases
accordingly. As a result, there has been increasing attention
to component-wise program generation [5], [6], [16]. This
programming method generates a program by accumulating
program components one by one, each of which has passable
independence. Since ET rules can be considered as compo-
nents constituting a program, also when viewed from the
perspective of component-wise program generation, they can
confer considerable advantage [12].

III. Approaches for generating ET rules

A. Generating ET rules based on the meta-computation
method

A general method for generating ET rules has been proposed
in [9]. The method replaces an atom set with another atom
set using a basic equivalent transformation and generates ET
rules by a finite synthesis of replacements. This replacement is
carried out using meta-computation, which replaces an atom
set with another atom set using general ET rules (unfolding
rules and build-in rules) that are obtained from the definition
of predicates. Since the method using meta-computation can
generate various ET rules, a system for constructing programs
based on this method has achieved many successful results
[14].

In the meta-computation method, paths for replacing an
atom set are important. There exist many paths because of
the following two items (Refer to Fig. 2).

1) There exist various ET rules applied to an atom set.
2) Number of rule applications

An ET rule is generated based on a certain evaluation from
among the derived paths. Because there is a possibility that a
search area may increase tremendously, the meta-computation
method uses the following controls.

1) Limit the number of rule applications
2) Specify an application rule

In the meta-computation method, if the number of unfolding
rule applications increases, then a search area grows corre-
spondingly, increasing the cost of ET rule generation.
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Fig. 2. Conventional rule generation method and the proposed method

B. Proposing a new method focusing on specialized rule
classes

In this paper, we consider that ET rule generation focusing
on the following items is important.

1) Even if a search area of ET rules is narrowed, ET rules
derived in the area are important (Refer to Fig. 2).

2) ET rules cannot be generated by a finite synthesis of
basic equivalent transformations.

3) An algorithm which efficiently generate ET rules can be
found.

We are not dismissing the meta-computation method but,
instead, taking an approach where several generation methods
are combined as shown in Fig. 3. In this paper, we propose
an algorithm that generates ET rules with respect to a meshed
area of Fig. 3. (The area includes ET rules which cannot be
generated by meta-computation method.)

A set of ET rules

Area of ET rules generated by
the meta-computation method

Area of ET rules generated by goal-oriented algorithm
which can efficiently generate a target rule

A set of ET rules

Area of ET rules generated by
the meta-computation method
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which can efficiently generate a target rule

Fig. 3. Adding a new rule generation method to meta-computation method

C. The target ET rules

A Specialization-by-Equation (Speq) rule is one of ET
rules, each of which describes a procedure in which two

variables included in an atom set are equalized due to predicate
constraints. For example, we will now consider a Speq rule for
an atom set {copy(Vx, Vy), copy(Vx, Vy)}. A predicate copy
is defined by the following two clauses.

cl1 : copy([ ], [ ])←
cl2 : copy([A | B], [A |C])← copy(B, C)

Since variables Vy and Vz are copies of a variable Vx, it is
not difficult to deduce that Vy = Vz. This equation is defined
by a Speq rule, and the following formula is a Speq rule with
respect to {copy(Vx, Vy), copy(Vx, Vy)}. eq(Arg1, Arg2)
means that Arg1 is equal to Arg2.

rcopy : copy(Vx, Vy), copy(Vx, Vz)
⇒ eq(Vy, Vz), copy(Vx, Vy), copy(Vx, Vz).

[Importance of Speq rules]
A Speq rule has the following features:
1) an ET rule with single body, i.e., a Speq rule replaces a

head with one body,

2) an ET rule where a eq atom is included in the body part.
In the ET program, primarily applying the following makes
the computation efficient: 1. ET rules with single body and 2.
ET rules which are useful for specializing clauses. A eq atom
in the body part of a Speq rule promotes the transformation of
clauses by specializing a clause efficiently. Many Speq rules
cannot be generated by meta-computation method; therefore,
an algorithm for generating Speq rules is essential.

[Example of computation using Speq rule]
Speq rules promote the transformation of definite clauses.

Therefore, by using a Speq rule, a set of unit clauses can be ob-
tained from a query Q with fewer transformations than without
the use of the Speq rule. We now show an example of replacing
a clause using rcopy mentioned above. Let a definite clause set
{ans(Vc, Vd)← copy([Va, Vb], Vc), copy([Va, Vb], Vd)}
be a query Q. When rcopy is applied to Q, Q is replaced as
follows:

{ans(Vc, Vd)← eq(Vc, Vd), copy([Va, Vb], Vc),
copy([Va, Vb], Vd)}

When the eq atom is executed, the above clause set is replaced
to {ans(Vc, Vc)← copy([Va, Vb], Vc),copy([Va, Vb], Vc)}.
Since two atoms in the body part of the above clause are
the same, the above clause is replaced to {ans(Vc, Vc) ←
copy([Va, Vb], Vc)}. Finally, when a unfolding rule is applied
to copy([Va, Vb], Vc), {ans([Va, Vb], [Va, Vb]) ←} is
obtained from {ans(Vc, Vc)← copy([Va, Vb], Vc)}.

When the above computation is carried out without using
Speq rules, unfolding rules are generally used. Because un-
folding rules are applied separately to copy([Va, Vb], Vc)
and copy([Va, Vb], Vd), they, as a result, require more
transformations than Speq rules use.

IV. Algorithm for generating Speq rules

A. Syntax of Speq rules

A Speq rule describes a procedure in which two variables
included in an atom set are equalized due to predicate con-
straints (Refer to Section III-C). In this section, we show the
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syntax of Speq rules. Let A be a set of atoms. Let a ∈ A. Then,
arguments of A take a variable or a constant. Let X ∈ Var(A)
and Y ∈ Var(A), where X � Y . A Speq rule is composed of an
atom set A and an atom eq(X, Y). The syntax of Speq rules
is defined by the following formula.

A⇒ eq(X, Y), A.

{app(Vx, [ ], Vy)} is one of examples including variables
and a constant in an atom a. A Speq rule for {app(Vx, [ ], Vy)}
has a procedure Vx = Vy as follows:

rapp : app(Vx, [ ], Vy)⇒ eq(Vx, Vy), app(Vx, [ ], Vy).

B. Outline of the proposed algorithm and its input and output

1) Outline of the algorithm: The proposed algorithm gener-
ates ET rules consisting of a head part and a replacement part.
Let A be an atom set. Let X and Y be variables on Var(A),
where X � Y . The head part consists of an atom set A and the
replacement part an atom set A∪{eq(X, Y)}. That an ET rule
contains eq(X, Y) in its body part is important in embodying
variables. If a logical formula ∀(A→ eq(X, Y)) is true, the
following logical equivalence between atom sets is guaranteed.

∀(A↔ eq(X, Y), A)

Therefore, the following rewriting rule derived by the proposed
algorithm is an ET rule [13].

A⇒ eq(X, Y), A.

Given A, the proposed algorithm proves X = Y , and conse-
quently an ET rule is generated. The algorithm then derives
the empty set by successively transforming a clause set {yes←
A, noteq(X, Y)} using a rule set.

2) Input and output : We show the definition of an input
and an output of the proposed algorithm. An input is A, and
an output is S , which is a set of all Speq rules obtained from
the input. A Speq rule is composed of A and eq(X, Y) and is
defined as follows:

S = {(A⇒ eq(X, Y), A) | (X ∈ Var(A)) & (Y ∈ Var(A)) &
(Y � X) & (∀(A→ eq(X, Y)))}

If all conditions for S are not satisfied, then S is the empty
set.

C. The proposed algorithm

When A is given, the proposed algorithm outputs S obtained
by from A (Refer to Fig. 4). The algorithm is composed of
the following eight processes.

[Algorithm for generating Speq rules]
1) derive A as an input (See Section IV-B.2).
2) Select variables X and Y , where X ∈ Var(A), Y ∈ Var(A)

and X � Y .
3) Create a clause set cls as an initial state. cls is composed

of A and noteq(X, Y).
noteq(Arg1, Arg2) means that Arg1 is not equal to
Arg2.

cls = {yes← A, noteq(X, Y)}

4) Replace cls using a rule r in a rule set Rt.
Rt consists of some ET rules and one Inductively-used
rule (Refer to Section IV-D). Typical ET rules used
by the proposed algorithm are general unfolding rules
and specialization rules. Only ET rules can be applied
to cls while Inductively-used rules can be applied to
atoms obtained through replacement by unfolding rules.
trans(cls, r ∈Rt) used in Fig. 4 is defined as follows:

trans(cls, r ∈Rt) = A∪B

A = {cla | (cl ∈ cls) & (cl is applicable to r) &
(cla is obtained from cl applied to r)}

B = {clb | (clb ∈ cls) & (clb is not applicable to r)}
5) Add a Speq rule rule to a Speq rule set S .

If cls is an empty set, then add rule to S and go to 7,
else go to 6.

6) Select a rule r ∈Rt.
If there exist rules applicable to a body atom set of a
clause cl(∈ cls), then select one of them and go to 4.
Otherwise, generate a new ET rule r, and then add it to
Rt. select r and go to 4.

7) Select other variables X and Y .
If X and Y are selected, then go to 3, else go to 8.

8) Output S .

D. Rule set Rt used in generation process

Rt consists of some ET rules and one Inductively-used rule.
While ET rules can be applied to any atoms, Inductively-
used rules can be applied to only atoms that satisfy a certain
condition. The atoms to which Inductively-used rules can be
applied are a set of atoms obtained following the application
of general unfolding rules. The control of rule application in
the proposed algorithm is shown below.

1) Inductively-used rules should primarily be applied to
a set of atoms to which general unfolding rules were
applied previously.

2) For the other atoms, ET rules are applied.
1) ET rules : Typical ET rules used by the proposed

algorithm are general unfolding rules and specialization rules.
A general unfolding rule can be created by simple transfor-
mation of a clause which is the definition of a predicate. For
example, we will show a general unfolding rule with respect
to app predicate. app predicate is defined by the following
two clauses.

app([ ], A, A)←
app([A | B], C, [A | D])← app(B, C, D)

The following general unfolding rule is created based on the
definition of app predicate.

app(Vx, Vy, Vz)⇒ {Vx = [ ], Vy = Vz};
⇒ {Vx = [V p | Vq], Vz = [V p | Vw]},

app(Vq, Vy, Vw).

This rule replaces a clause to which this rule can be applied
with two clauses, one of which executes the computation of
Vx = [ ] and Vy = Vz, and the other replaces app(Vx, Vy, Vz)
with app(Vq, Vy, Vw) after executing Vx = [V p | Vq] and
Vz = [Vq | Vw].
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Fig. 4. Algorithm for generating Speq rules

A specialization rule describes a unification of arguments
or the definition of a false condition. For example, basic ET
rules on eq which describes a unification of arguments are as
follows:

eq(Vx, [ ])⇒ {Vx = [ ]}.
eq([Vx | Vy], [Vz | Vw])⇒ eq(Vx, Vz), eq(Vy, Vw).

noteq(Vx, Vx)⇒ { f alse}.
noteq([Vx | Vy], [Vx | Vz])⇒ noteq(Vy, Vz).

f alse is a special built-in atom with the meaning that “a head
atom of a rule does not satisfy a predicate constraint”.

2) Inductively-used rules : An Inductively-used rule is cre-
ated based on Speq rules generated by the proposed algorithm.
By using the proposed algorithm, the following Speq rule is
created.

A⇒ eq(X, Y), A.

Since only the logical equivalence of this rule is guaranteed,
using it as it is at this stage may cause an infinite loop. To
avoid such a risk, a transformation of the rule based on the
following terms is employed.

1) When a variable X is not equal to a variable Y , this ET
rule is applicable to an atom set (not(X == Y)).

2) Move eq atom to the execution part, and define eq atom
using a built-in description (X = Y).

A rule derived by such a transformation is Inductively-used
rule, which is defined as follows.

A, {not(X == Y)} ⇒ {X = Y}, A.

Let app(Vx, [ ], Vy) be an input atom set. Let
X(∈ Var(app(Vx, [ ], Vy))) be a variable Vx and Y(∈
Var(app(Vx, [ ], Vy))) a variable Vy. Then, the following
Inductively-used rule is created.

app(Vx, [ ], Vy) {not(Vx == Vy)}
⇒ {Vx = Vy}, app(Vx, [ ], Vy).

V. Examples for generating Speq rules by the proposed
algorithm

A. Generation of Speq rule on {app(Vx, [ ], Vy)}
Based on the algorithm shown in Fig. 4, let us generate

Speq rules for an atom set app(Vx, [ ], Vy). An input is
{app(Vx, [ ], Vy)}. app(Arg1, Arg2, Arg3) means that the
concatenation of a list Arg1 and a list Arg2 is a list Arg3.
Since the second argument of app(Vx, [ ], Vy) is an empty
list, it is not difficult to deduce that Vx is equivalent to Vy.
In this example, we will present the process in which a set S ,
taking the following Speq rule rapp as its element, is output.

rapp : app(Vx, [ ], Vy)⇒ eq(Vx, Vy), app(Vx, [ ], Vy).

[Selection of X and Y and creation of initial clause set cls]
First, select X(∈ Var(app(Vx, [ ], Vy))) and Y(∈

Var(app(Vx, [ ], Vy))), and then the initial clause set cls
using A and noteq(X, Y). Let X and Y be X = Vx and Y = Vy,
respectively. cls is created based on app(Vx, [ ], Vy) and
noteq(Vx, Vy).

cls = {yes← app(Vx, [ ], Vy), noteq(Vx, Vy)}
If an empty set is obtained by replacing cls using a rule set
Rt, then ∀(app(Vx, [ ], Vy)→ eq(Vx, Vy)) can be proven.

[Initial rule set Rt]
Rt consists of four rules, which are r1, r2 and r3 representing

ET rules and r4 representing an Inductively-used rule, shown
in Table II.

The meaning of each rule is as follows. r1 replaces a
clause with two clauses. These are a clause that executes
Vx = [ ] and Vy = Vz and one that replaces app(Vx, Vy, Vz)
with app(Vq, Vy,Vw) by executing Vx = [V p | Vq] and
Vz = [V p | Vw]. r2 means that noteq(Vx, Vx) does not satisfy
the constraints of noteq predicate. r3 means that noteq([Vx |
Vy], [Vx | Vz]) is replaced with not(Vy, Vz). r4 means that if



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

3248

TABLE I

Transformation sequence of definite clauses for the rule on {app(Vx, [ ], Vy)}
Name Definite clauses representation Rule applied

s0 {yes← app(Va, [ ], Vb), noteq(Va, Vb)} r1

s1 {yes← noteq([ ], [ ]) r2

yes← noteq([Va | Vb], [Va | Vc]), app(Vb, [ ], Vc)}
s2 {yes← noteq([Va | Vb], [Va | Vc]), app(Vb, [ ], Vc)} r4

s3 {yes← noteq([Va | Vb], [Va | Vb]), app(Vb, [ ], Vb)} r2

s4 { } –

TABLE II

Rt for generating Speq rule for {app(Vx, [ ], Vy)}

r1 : app(Vx, Vy, Vz)⇒ {Vx = [ ], Vy = Vz};
⇒ {Vx = [V p | Vq], Vz = [V p | Vw]},

app(Vq, Vy, Vw).

r2 : noteq(Vx, Vx)⇒ { f alse}.
r3 : noteq([Vx | Vy], [Vx | Vz])⇒ noteq(Vy, Vz).

r4 : app(Vx, [ ], Vy) {not(Vx == Vy)} ⇒ {Vx = Vy}, app(Vx, [ ], Vy).

Vx is not equal to Vy, then app(Vx, [ ], Vy) is replaced with
app(Vx, [ ], Vy) by executing Vx = Vy.

[Presentation of Speq rule rapp generation process]
Table I shows the transformation process in which a set

of definite clauses is successively transformed through an
application of qualified rules in Rt. The underlined atoms in
each step are the ones to which a rule has been applied. An
initial clause set (s0) is finally transformed to an empty set
(s4). An empty set signifies that no answer which satisfies the
initial clause set exists. Let us see the transformation process
of a definite clause set. By applying an ET rule, an initial
clause set cls is replaced with a singleton s2 with one definite
clause.

s2 = {yes← noteq([Va | Vb], [Va | Vc]), app(Vb, [ ], Vc)}
An Inductively-used rule r4 is applied to app(Vb, [ ], Vc) in
s2. Since a definite clause set s3 is obtained as a result, an
ET rule r2 is applied to noteq([Va | Vb], [Va | Vb]) and con-
sequently an empty set is obtained. An empty set is obtained
from cls, therefore, ∀(app(Vx, [ ], Vy)→ eq(Vx, Vy)) can
be proven. Therefore, the following Speq rule is generated.

app(Vx, [ ], Vy)⇒ eq(Vx, Vy), app(Vx, [ ], Vy).

Because differing variables substituted for X and Y other
than X = Vx and Y = Vy, respectively, do not exist, the
following set S is obtained as an output, where X ∈
Var(app(Vx, [ ], Vy)) and Y ∈ Var(app(Vx, [ ], Vy)).

S = {app(Vx, [ ], Vy)⇒ eq(Vx, Vy), app(Vx, [ ], Vy).}

B. Generation of Speq rule on {rev(Vx, Vy), rev(Vy, Vz)}
In Section V-A, S was obtained without requiring generation

of new ET rules. In this section, we will present an example
where generation of new ET rules using the proposed method
or meta-computation method (“select ET rule generation-
method” in Fig. 4) is needed. An input is an atom set

{rev(Vx, Vy), rev(Vy, Vz)}. rev(Arg1, Arg2) means that a
list Arg2 is elements of a list Arg1 in reverse order. It is not
difficult, therefore, to deduce that a variable Vx is equivalent
to a variable Vz. In this example, we will present the process
in which a set S , taking the following Speq rule rrev as its
element, is output.

rrev : rev(Vx, Vy), rev(Vy, Vz)
⇒ eq(Vx, Vz), rev(Vx, Vy), rev(Vy, Vz).

[Selection of X and Y , Creation of initial clause set cls]
Let X = Vx and Y = Vz, where X(∈ (Var(rev(Vx, Vy))∪

Var(rev(Vy, Vz)))) and Y(∈ (Var(rev(Vx, Vy)) ∪
Var(rev(Vy, Vz)))). Let cls be the following formula. cls is
composed of rev(Vx, Vy), rev(Vy, Vz) and noteq(Vx, Vz).

cls = {yes← rev(Vx, Vy), rev(Vy, Vz), noteq(Vx, Vz)}
If an empty set is obtained by replacing cls using Rt, then
∀(rev(Vx, Vy), rev(Vy, Vz)→ eq(Vx, Vz)) is proven.

[Initial rule set Rt]
Rt consists of five rules, which are r1, r2, r3 and r4

representing ET rules and r5 representing an Inductively-used
rule, shown in Table IV.

TABLE IV

Rt for generating Speq rule for {rev(Vx, Vy), rev(Vy, Vz)}

r1 : rev(Vx, Vy)⇒ {Vx = [ ], Vy = [ ]};
⇒ {Vx = [V p | Vq]}, rev(Vq, Vw), app(Vw, [V p], Vy).

r2 : app(Vx, Vy, Vz)⇒ {Vx = [ ], Vy = Vz};
⇒ {Vx = [V p | Vq], Vz = [V p | Vw]},

app(Vq, Vy, Vw).

r3 : noteq([Vx | Vy], [Vx | Vz])⇒ noteq(Vy, Vz).

r4 : noteq(Vx, Vx)⇒ { f alse}.
r5 : rev(Vx, Vy), rev(Vy, Vz), {not(Vx == Vz)}

⇒ {Vx = Vz}, rev(Vx, Vy), rev(Vy, Vz).

The meaning of each rule is as follows. r1 replaces a
clause with two clauses. These are a clause that executes
Vx = [ ] and Vy = [ ] and a clause that replaces rev(Vx, Vy)
with rev(Vq, Vw) and app(Vw, [V p], Vy) by executing
Vx = [V p | Vq]. The meaning of r2, r3 and r4 is the same
as that of respective ET rules described in Section V-A. r5

means that if Vx is not equal to Vz, then a set of rev(Vx, Vy)
and rev(Vy, Vz) is replaced with a set of rev(Vx, Vy) and
rev(Vy, Vz) by executing Vx = Vz.
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TABLE III

Transformation sequence of definite clauses for the rule on {rev(Vx, Vy), rev(Vy, Vz)}
Name Definite clauses representation Rule applied

s0 {yes← rev(Va, Vb), rev(Vb, Vc), noteq(Va, Vc)} r1

s1 {yes← rev([ ], Va), noteq([ ], Va) r1

yes← rev(Vc, Vd), noteq([Va | Vb], Vd), rev(Vb, Ve), app(Ve, [Va], Vc)}
s2 {yes← noteq([ ], [ ]) r4

yes← rev(Vc, Vd), noteq([Va | Vb], Vd), rev(Vb, Ve), app(Ve, [Va], Vc)}
s3 {yes← rev(Vc, Vd), noteq([Va | Vb], Vd), rev(Vb, Ve), app(Ve, [Va], Vc)} r1

s4 {yes← noteq([Va | Vb], [ ]), rev(Vb, Vc), app(Vc, [Va], [ ]) r2

yes← noteq([Va | Vb], Ve), rev(Vb, V f ), app(V f , [Va], [Vc | Vd]), rev(Vd, Vg), app(Vg, [Vc], Ve)}
s5 {yes← noteq([Va | Vb], Ve), rev(Vb, V f ), app(V f , [Va], [Vc | Vd]), rev(Vd, Vg), app(Vg, [Vc], Ve)} r2

s6 {yes← noteq([Va | Vb], Vc), rev(Vb, [ ]), rev([ ], Vd), app(Vd, [Va], Vc) r6

yes← noteq([Va | Vb], Ve), rev(Vb, [Vc | V f ]), rev(Vd, Vg), app(Vg, [Vc], Ve), app(V f , [Va], Vd)}
s7 {yes← noteq([Va], Vb), rev([ ], Vc), app(Vc, [Va], Vb) r1

yes← noteq([Va | Vb], Ve), rev(Vb, [Vc | V f ]), rev(Vd, Vg), app(Vg, [Vc], Ve), app(V f , [Va], Vd)}
s8 {yes← noteq([Va], Vb), app([ ], [Va], Vb) r2

yes← noteq([Va | Vb], Ve), rev(Vb, [Vc | V f ]), rev(Vd, Vg), app(Vg, [Vc], Ve), app(V f , [Va], Vd)}
s9 {yes← noteq([Va], [Va]) r4

yes← noteq([Va | Vb], Ve), rev(Vb, [Vc | V f ]), rev(Vd, Vg), app(Vg, [Vc], Ve), app(V f , [Va], Vd)}
s10 {yes← noteq([Va | Vb], Ve), rev(Vb, [Vc | V f ]), rev(Vd, Vg), app(Vg, [Vc], Ve), app(V f , [Va], Vd)} r2

s11 {yes← noteq([Va | Vb], [Vc]), rev(Vb [Vc | Ve]), rev(Vd, [ ]), app(Ve, [Va], Vd) r6

yes← noteq([Va | Vb], [Ve | V f ]), rev(Vb, [Vc | Vg]), rev(Vd, [Ve | Vh]), app(Vg, [Va], Vd), app(Vh, [Vc], V f )}
s12 {yes← noteq([Va | Vb], [Vc]), rev(Vb, [Vc | Vd]), app(Vd, [Va], [ ]) r2

yes← noteq([Va | Vb], [Ve | V f ]), rev(Vb, [Vc | Vg]), rev(Vd, [Ve | Vh]), app(Vg, [Va], Vd), app(Vh, [Vc], V f )}
s13 {yes← noteq([Va | Vb], [Ve | V f ]), rev(Vb, [Vc | Vg]), rev(Vd, [Ve | Vh]), app(Vg, [Va], Vd), app(Vh, [Vc], V f )} r7

s14 {yes← noteq([Va | Vb], [Ve | V f ]), rev(Vb, [Vc | Vg]), app(Vh, [Vc], V f ), rev(Vg, Vi), rev([Va], V j), r1

app(V j, Vi, [Ve | Vh])}
s15 {yes← noteq([Va | Vb], [Ve | V f ]), rev(Vb, [Vc | Vg]), app(Vh, [Vc], V f ), rev(Vg, Vi), app(V j, Vi, [Ve | Vh]), r6

rev([ ], Vk), app(Vk, [Va], V j)}
s16 {yes← noteq([Va | Vb], [Ve | V f ]), rev(Vb, [Vc | Vg]), app(Vh, [Vc], V f ), rev(Vg, Vi), app(V j, Vi, [Ve | Vh]), r2

app([ ], [Va], V j)}
s17 {yes← noteq([Va | Vb], [Ve | V f ]), rev(Vb, [Vc | Vg]), app(Vh, [Vc], V f ), rev(Vg, Vi), app([Va], Vi, [Ve | Vh])} r8

s18 {yes← noteq([Va | Vb], [Va | Ve]), rev(Vb, [Vc | V f ]), rev([Vc | V f ], Ve)} r3

s19 {yes← noteq(Vb, Ve), rev(Vb, [Vc | V f ]), rev([Vc | V f ], Ve)} r5

s20 {yes← noteq(Vb, Vb), rev(Vb, [Vc | Ve]), rev([Vc | Ve], Vb)} r4

s21 { } –

[Presentation of Speq rule rrev generation process]
Table III shows the transformation process in which a set of

definite clauses is successively transformed through an appli-
cation of qualified rules in Rt. Let us see the transformation
process. By repeatedly applying ET rules one by one, cls is
replaced by a singleton s6 with two definite clauses.

s6 = {yes← noteq([Va | Vb], Vc), rev(Vb, [ ]),
rev([ ], Vd), app(Vd, [Va], Vc)

yes← noteq([Va | Vb], Ve), rev(Vb, [Vc | V f ]),
rev(Vd, Vg), app(Vg, [Vc], Ve),
app(V f , [Va], Vd)}

Next, the following ET rule which can be applied to
rev(Vb, [ ]) is generated by meta-computation method.

r6 : rev(Vx, [ ])⇒ {Vx = [ ]}.
Since r6 is added to a rule set Rt, r6 can be applied to
rev(Vb, [ ]) in s6. Consequently, a definite clause set s7 is
obtained. By repeatedly applying ET rules one by one, s7 is
replaced by a singleton s13 with one definite clause.

s13 = {yes← noteq([Va | Vb], [Ve | V f ]), rev(Vb, [Vc | Vg]),
rev(Vd, [Ve | Vh]), app(Vg, [Va], Vd),
app(Vh, [Vc], V f )}

The following ET rule which can be applied to the set of
rev(Vd, [Ve | Vh]) and app(Vg, [Va], Vd) is generated using
the third Logical Equivalence (LE)-based method (Refer to
Fig. 4).

r7 : app(Vx, Vy, Vz), rev(Vz, Vw)
⇒ rev(Vx, V p), rev(Vy, Vq), app(Vq, V p, Vw).

Since r7 is added to Rt, r7 can be applied to the set of
rev(Vd, [Ve |Vh]) and app(Vg, [Va], Vd) in a definite clause
set s13. Consequently, a definite clause set s14 is obtained. By
repeatedly applying ET rules one by one, s14 is replaced by a
singleton s17 with one clause.

s17 = {yes← noteq([Va | Vb], [Ve | V f ]), rev(Vb, [Vc | Vg]),
app(Vh, [Vc], V f ), rev(Vg, Vi),
app([Va], Vi, [Ve | Vh])}

The following folding rule for rev predicate which can be
applied to the set of rev(Vg, Vi) and app([Va], Vi, [Ve |Vh])
is generated by meta-computation method.

r8 : rev(Vx, Vy), app(Vy, [Vz], Vw)
⇒ rev([Vz | Vx], Vw).

Since r8 is added to Rt, r8 can be applied to the conjunction of
rev(Vg, Vi) and app([Va], Vi, [Ve | Vh]) in a definite clause
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set s17. Consequently, a definite clause set s18 is obtained.
An Inductively-used rule r5 is applied to the conjunction of
rev(Vb, [Vc | V f ]) and rev([Vc | V f ], Ve) in a definite clause
set s19. Consequently, a definite clause set s20 is obtained.
Finally, r4 is applied to noteq(Vb, Vb) in a definite clause set
s20, and consequently an empty set is obtained.

Since an empty set is obtained from cls, ∀(rev(Vx,Vy),
rev(Vy,Vz)→ eq(Vx,Vz)) can be proven. Consequently, the
following Speq rule is generated.

rev(Vx, Vy), rev(Vy, Vz)
⇒ eq(Vx, Vz), rev(Vx, Vy), rev(Vy, Vz).

Since a Speq rule cannot be obtained from a pair of X and Y
other than a pair of X = Vx and Y = Vz, the following set S
is obtained as an output.

S = {rev(Vx, Vy), rev(Vy, Vz)
⇒ eq(Vx, Vz), rev(Vx, Vy), rev(Vy, Vz)}

VI. Discussions

A. Comparison of the proposed algorithm and current meta-
computation method

This section discusses the following two topics based on
the comparison of the proposed algorithm and a current meta-
computation method. 1. The proposed algorithm can generate
more Speq rules than a meta-computation method can do. 2.
When a Speq rule with respect to a certain input is generated
by the proposed algorithm, it is important that the form of the
Speq rule is understood before rule generation.

The proposed algorithm is a special method for generating
Speq rules. By specializing Speq rules, the proposed algorithm
can generate more Speq rules than a meta-computation method
can do. For example, we show the following four Speq rules
(r1, r2, r3 and r4). The proposed algorithm can generate all
the Speq rules, but a meta-computation method can generate
only r2 and r4.

r1 : rev(Vx, Vy), rev(Vy, Vz)
⇒ eq(Vx, Vz), rev(Vx, Vy), rev(Vy, Vz).

r2 : rev([Vx, Vy], Vz), rev([Vx, Vy], Vw)
⇒ eq(Vz, Vw), rev([Vx, Vy], Vz),

rev([Vx, Vy], Vw).
r3 : app(Vx, [ ], Vy)⇒ eq(Vx, Vy), app(Vx, [ ], Vy).
r4 : app([Va | Vx], Vy, [Vb | Vz])

⇒ eq(Va, Vb), app([Va | Vx], Vy, [Vb | Vz]).

The head of r1 and r2 is the conjunction of two rev atoms.
r2 can be generated by a meta-computation method, but r1
cannot be generated by it. We explain the reason why the
proposed method can generate more Speq rules than a meta-
computation method can do. When Speq rules are generated
by the proposed algorithm, a form of the Speq rules obtained
ultimately is understood before Speq rule generation; a meta-
computation, however, does not provide such projection. This
gives the proposed algorithm a big advantage in generating
Speq rules, i.e., a Speq rule obtained ultimately can be induc-
tively used during the process of Speq rule generation in the
proposed algorithm.

We will show the effectiveness where rules to be inductively
derived can be used. If r1 is generated by a meta-computation
method, then an atom set {rev(Vx, Vy), rev(Vy, Vz)} is
replaced to another one by a basic equivalent transformation
and r1 is generated by a finite synthesis of the transformations.
The length of lists applicable to Vx and Vy, respectively,
is arbitrary. If the number of lists is fixed, the number of
basic equivalent transformations is finite. However, since lists
lengthen infinitely when generating r1, r1 cannot be generated
by a finite basic equivalent transformation. Since rules to be
finally derived are inductively used in the proposed algorithm,
computation that needs an infinite transformation can be
replaced with one that needs a finite transformation. Therefore,
the proposed algorithm can generate Speq rules which need an
infinite transformation.

B. Importance of Speq rules for generating other ET rules

In this section, we discuss the proposed algorithm in detail
that it not only generates Speq rules efficiently but also expands
its capability of generating other ET rules.

Although our interest is in the generation of Speq rules, we
are also intrigued by the generation of other ET rules and,
therefore, studying those as well. Also in the generation of
other ET rules, a logical formula is proven using a rule set
in order to guarantee the correctness of a logical equivalence.
When an ET rule is generated, a Speq rule plays an important
role. Therefore, the generation of Speq rules is essential.

For example, a Speq rule is necessary when generating the
following ET rule.

app(Vx, Vy, Vz), rev(Vz, Vw)
⇒ rev(Vx, V p), rev(Vy, Vq), app(Vq, V p, Vw).

This ET rule is used when generating a Speq rule with respect
to an atom set {rev(Vx, Vy), rev(Vy, Vz)} (Refer to Section
V-B). The above ET rule can be generated from the following
logical equivalence.

∀(∃{Vz}({app(Vx, Vy, Vz), rev(Vz, Vw)})
↔∃{V p, Vq}({rev(Vx, V p), rev(Vy, Vq),

app(Vq, V p, Vw)}))
A Speq rule required in the above rule generation is one with
respect to an atom set {app(Vx, [ ], Vy)} (Refer to Section V-
A). This Speq rule cannot be generated by a meta-computation
method as shown in the previous section.

Therefore, it can be suggested that we have expanded
the capability of generating other ET rules by proposing an
algorithm by which Speq rules are generated.

VII. Conclusions

We focused on goal-oriented rule generation where the
rule to be eventually obtained is designated, and proposed an
algorithm for generating Speq rules. The proposed algorithm
made it possible to efficiently generate Speq rules difficult to
generate with the conventional rule-generation method. When
an atom set is given as an input, the proposed algorithm
outputs all Speq rules relating to the input atom set based on
proof of a logical formula. By changing the logical formula, a
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variety of ET rules can be generated. A distinctive feature of
this algorithm is that it includes a rule obtained ultimately in a
rule set used for proving a logical formula. When generating
a Speq rule, all ET rules necessary for generating the Speq
rule are found and successively generated by recursively using
the proposed algorithm. Future works include development of
new methods for efficiently generating other ET rules that are
important for solving many problems.
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