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Computing SAGB-Gröbner Basis of Ideals of
Invariant Rings

by Using Gaussian Elimination
Sajjad Rahmany, Abdolali Basiri

Abstract—The link between Gröbner basis and linear algebra was
described by Lazard [4,5] where he realized the Gröbner basis
computation could be archived by applying Gaussian elimination over
Macaulay’s matrix .

In this paper, we indicate how same technique may be used to
SAGBI- Gröbner basis computations in invariant rings.

. Keywords— Gröbner basis, SAGBI- Gröbner basis, reduction,
Invariant ring, permutation groups.

I. INTRODUCTION

THE concept of SAGBI- Gröbner bases( a generalisation
of Gröbner bases to ideals of sub algebras of polynomial

ring) has been developed by Miller [9,10]. In fact, it is a
method to compute bases of ideals of sub algebras in a similar
way to computing Gröbner bases for ideals [1,2]. SAGBI-
Gröbner bases and Gröbner bases have analogous reduction
properties. The main difference is that SAGBI- Gröbner bases
need not be finitely generated. Therefore, we restrict our study
to partial SAGBI- Gröbner bases up to given degree D.

The main goal of this note is to establishes the relation
between linear algebra and SAGBI- Gröbner bases (SG- bases)
and present an algorithm for computing SG-basis(up to degree
D) for ideals of invariant rings of permutation groups. For this,
we first describe link between SG- bases and linear algebra
and then provide an algorithm like Lazard’s algorithm for
construction of SG- basis. The advantage of our method lies
in this fact that it be compute SG-bases (up to degree D) by
applying Gaussian elimination on special matrix.

The paper is organized as follows. Section 2 has been di-
vided into two parts:subsection (2.a), we review the necessary
mathematical notations and in (2.b) we will give some basic
definitions of invariants rings. In section 3, we recall the
definition of SG-basis. Also we will present basic properties
of SG-basis in invariant rings. In Section 4, we concentrate on
our main goal. We will establishes the relation between linear
algebra and SG- basis for ideals in invariant rings. In Section
5, We will give an algorithm for computing SG-basis.
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II. INVARIANT RINGS

A. Standard notations

In this paper, we suppose that K is a field of characteristic
zero, R = K[x1, . . . , xn] is the ring of polynomials and
monomial order ≺ has been fixed. For a polynomial f ∈ R,
denote the leading monomial, leading term, and leading coef-
ficient of f with respect to ≺ by LM(f), LT (f), and LC(f)
respectively. We use the notation T (f) for the set of terms
of f . We denote by T , the set of all terms of x1, . . . , xn. By
extension, for any set B of polynomials, define LM(B) =
{LM(p) | p ∈ B} and LT (B) = {LT (p) | p ∈ B}.

B. Invariants rings

In this subsection, we will give some basic definitions of
invariants rings and describe the main properties of them. In
the rest of this paper we assume that G be a subgroup of Ŝn

where

Ŝn = {Π.

⎛

⎜⎝
a1 0

. . .
0 an

⎞

⎟⎠ |Π is a permutation matrix}.

Also, we use the notation X , for column vector of the
variables x1, . . . , xn. In other words,

X =

⎛

⎜⎝
x1

...
xn

⎞

⎟⎠ .

Definition 2.1: Let A = (aij) ∈ G and f ∈ K[x1, . . . , xn].
We define f(A.X) ∈ K[x1, . . . , xn] by following:

f(A.X) = f(a11x1 + . . .+a1nxn, . . . , an1x1 + . . .+annxn).

A polynomial f ∈ R is called invariant polynomial if
f(A.X) = f(X) for all A ∈ G. The invariant ring RG of
G is the set of all invariant polynomials.

Example 2.1: Consider the cyclic matrix group G gener-
ated by matrix

A =
(

0 1
−1 0

)
.

Clearly f = x2
1 + x2

2 is invariant while g = x1x2 is not
invariant, because g(A.X) �= g(X).

It is immediately clear than RG is not finite dimensional as
a vector space K. But we have a decomposition of RG into its
homogeneous components, which are finite dimensional. This
decomposition is similar to decomposition of R.
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Let Rd denote the vector space of all homogeneous poly-
nomials of degree d, then we have

R =
⊕

d≥0

Rd

The monomials of degree d are a vector space basis of Rd.
Now, observe that the action G preserves the homogeneous
components. Hence we get a decomposition of the invariant
ring

RG =
⊕

d≥0

RG
d .

A method for calculate a vector space basis of RG is
Reynolds operator, which is defined as follows

Definition 2.2: Let G be a finite group. The Reynolds
operator of G is the map � : R −→ RG defined by the
formula

�(f) =
1
| G |

∑

σ∈G

f(σ.X)

for f ∈ R.
Following properties of the Reynolds operator is easily

verified.
Proposition 2.1: ([3]) Let � be the Reynolds operator of

the finite group G.
(a) � is K-linear in f .
(b) If f ∈ R, then �(f) ∈ RG.
(c) If f ∈ RG, then �(f) = f .
It is easy to prove that, for any monomial m the Reynolds op-
erator gives us a homogeneous invariant �(m). Such invariants
are called orbit sums.

The set orbit sums is a vector space basis of RG, so any
invariant can be uniquely written as a linear combination of
orbit sums. Now, we give a special representation of invariant
polynomials which is used in the next section. For this, we
require the following terminology.

Definition 2.3: A monomial in LM(RG) is called an ini-
tial.
Using 2.1 and definition 2.3 we can simply derive the follow-
ing lemma.

lemma 2.1: Every f ∈ RG can be written uniquely as f =∑
α cα�(m∗

α), where cα ∈ K and m∗
α are initial monomials.

In rest of this paper, we suppose that all representations of
invariant polynomials are in the above form.

III. SG-BASIS IN INVARIANT RINGS

In this section, we recall the definition of SG-basis which
is an analogs of Gröbner basis for ideals in k-sub algebras.
Also, we will present basic properties of SG-basis in invariant
rings.

The following symbol will be needed throughout the paper.
Let f1 . . . , fn be invariant polynomials and I , IG represent the
ideal generates by f1 . . . , fn in R and RG respectively. For
the sake of simplicity, we assume that I is homogeneous. The
extension to the non-homogeneous case raise no difficulty.

Definition 3.1: A subset F ⊆ IG is SG-basis for IG if
LT (F ) generates the initial ideal 〈LT (IG)〉 as an ideal over
algebra 〈LT (RG)〉. It is a partial SG-basis up to degree D of
IG if LT (F ) generates 〈LT (IG)〉 up to the degree D.
Recall that in ordinary Gröbner basis theory every ideal is
assured to have a finite Gröbner bases but SG-basis need not
be finite.We continue by describing an appropriate reduction
for the current context.

Definition 3.2: Let f, g, p ∈ RG with f, p �= 0 and let P
be a subset of RG. Then we say

i) f SG-reduces to g modulo p (written f
p−−→

SG
g), if ∃t ∈

T (f), ∃s ∈ LM(RG) such that s.LT (p) = t and g =
f − ( a

Lc(p).Lc(�(s)) ).�(s).p where a is the coefficient of
t in f and � is Reynolds operator of G.

ii) f SG-reduces to g modulo P (written f
P−−→

SG
g) , if f

SG-reduces to g module p for some p ∈ P .
Finally, the definition of SG-reducible, SG-normalform
are straightforward.

Basic properties of SG-basis presented in [9,10,6]. We will
review some of the standard fact on SG-bases. The proofs
of the following proposition and its corollary proceed in the
standard way.

Proposition 3.1: The following are equivalent for a subset
F of an ideal IG ⊆ RG:
a) F is an SG-basis for IG.
b) For every h ∈ IG, every SG-normalform of h modulo F

is 0.
Corollary 3.1: A SG-basis for IG generates IG as an ideal

of RG.
Corollary 3.2: Suppose that F is an SG-basis for I ⊆ RG.

Then f ∈ RG belongs to I ⇐⇒ f
F−−→

SG
0.

It is easy to show that the proposition above continues to
hold if we restrict our discussion to SG-basis up to degree
D. Hence, if a SG-basis up to degree D of IG has already
been computed, then this is enough to test for membership in
IG for any polynomial f with deg(f) ≤ D.

IV. LINEAR ALGEBRA AND SG-BASIS

The link between Gröbner basis and linear algebra was
described by Lazard[4,5] where he realized the Gröbner
basis computation could be archived by applying Gaussian
elimination over Macaulay’s matrix .

In this section, we indicate how same technique may be used
to SG-Gröbner basis computations. Also , we will establishes
the relation between linear algebra and SG-Gröbner basis . For
this, we assume IG be an ideal generated by a finite set of
invariants polynomials f1, . . . , fn in RG and IG

d denote the
set of polynomials in IG which are of degree less or equal
than d, namely

IG
d = {f ∈ IG|deg(f) ≤ d}.

It is easy to see that the ideal IG itself is a subspace of the
K-vector space RG, and so is IG

d for each d ∈ N.
Following proposition give a link between linear base of IG

d

and SG-Gröbner basis .
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Proposition 4.1: Let F = {g1, . . . , gl} ⊆ IG. Suppose d ∈
N was fixed and for 1 ≤ i ≤ l set

Bi = {�(m)gi|deg((LT (�(m)gi)) ≤ d, LT (gj) �
LT (�(m)gi) for all j < i}.

where � is Reynolds operator of G. Then following condi-
tions are equivalent
(i) F is a SG-Gröbner basis up to degree d of IG w.r.t a

total degree order.
(ii) B =

⋃
i=1 Bi is a basis of the K-vector space IG

d .
Proof 4.1: let F be a SG-Gröbner basis up to degree d of

IG . We have B ⊆ IG
d by choice of the term order. It is clear

that the head terms of elements of Bi are pairwise different
for fixed 1 ≤ i ≤ l.

If there were �(m1)gi , �(m2)gj with i < j and
LT (�(m1)gi) = LT (�(m2)gj) then we would have LT (gi) |
LT (�(m2)gj) contrary to the construction of Bj . To prove the
linear independence of B , let

p =
∑

q∈B

λq.q (λq ∈ K)

where not all λq equal zero. Then max{LT (q) | λq �= 0} =
LT (h) for exactly one h ∈ B , and we see that LT (h) is a
term p. So p �= 0. It remain to show that B is a generating
system of IG

d . Let f ∈ IG
d . Then f

∗F−−→
SG

0 . Among all possible
reduction chains, consider the one where each reduction step
fk

gi−−→
SG

fk+1 is a top reduction and has the property LT (gj) �

LT (fk) for all j < i. So, fk+1 = fk − �(mi)gi such that
�(mi)gi ∈ Bi.

Finally, we can find a representation of f as sum of orbit
sums multiples of elements of B.

Conversely, let B generate IG
d . Then for f ∈ IG

d we have
f =

∑
q∈B λq.q

According to the above observation, there is a q ∈ B such
that LT (q) = LT (f). It is means that there exist a gi ∈ F
(q = �(m)gi) such that LT (gi)|LT (f).

Let us mention one important consequence of the above
proposition.In rest of this section, we assume IG be an
ideal generated by homogeneouspolynomials f1, . . . , fm with
deg(fi) = di and d1 ≤ . . . ≤ dm. Also, let IG

d denote the set
of homogeneouspolynomials in IG which are of degree d.

The characterization of SG-Gröbner basis of the last propo-
sition may be used to make the following.

Corollary 4.1: A set F = {f1, . . . , fk} of homogeneous-
polynomials is a SG-Gröbner basis for degree D of IG if and
only if
{�(m)fi | i ∈ {1, . . . , k}, deg((LT (�(m)fi)) =

d, LT (fj) � LT (�(m)fi) for all j < i} a linear basis for
IG
d .

According to the above corollary, compute a SG-Gröbner basis
in degree d for ideal IG is equivalent to find the linear basis
for IG

d . Then, our goal (i.e.compute a SG-Gröbner basis in
degree d) becomes to compute a linear basis for IG

d .

V. MACAULAY’S MATRIX INVARIANT AND LAZARD’S
ALGORITHM

In this section, we will propose new method for computing
SG-Gröbner basis in degree d for ideals in invariant rings of

finite groups. The advantage of this method lies in the fact that
it be achieve by applying Gaussinan elimination on a special
matrix. Now , we provide the following definition which is an
adaptation of Macaulay’s matrix [7,8] in invariant rings;

Definition 5.1: The Macaulay’s matrix invariant
f1, . . . , fm of degree d is matrix which rows are all
coefficients multiples �(m).fi where m is an initial
monomial of degree d − di and columns indexed by initial
monomials of degree d(stored by ≺).

We use the symbol Md,m to denote Macaulay’s matrix
invariant.

Md,m =

⎛

⎜⎜⎜⎜⎜⎜⎝

�(m̃1) �(m̃2) . . . �(m̃k)
�(m1).f1 . . . . . . . . . . . .
... . . . . . . . . . . . .
�(mi).fj . . . . . . . . . . . .
... . . . . . . . . . . . .
�(mt).fm . . . . . . . . . . . .

⎞

⎟⎟⎟⎟⎟⎟⎠

It is easy to see that , Macaulay’s matrix invariant is a
representation of vector space IG

d by an array of coefficients
and also the following facts are straightforward

(1) The leading terms of a row is the leading term the
corresponding polynomial.

(2) The result of applying a row operation on Md,m gives a
matrix whose rows generate the same ideal.

In fact, above representation is used to describe connection
between SG-Gröbner basis and linear basis of an ideal. To
find this relation , we will state the following definition and
lemma . The proof of the lemma proceed in the standard way.

Definition 5.2: We denote by M̃d,m the result of Gaussian
elimination applied to the matrix Md,m using a sequence of
the elementary rows operations.

lemma 5.1: The set of the all polynomials correspond with
rows of M̃d,m such that leading monomials of these not appear
as leading monomials of polynomials correspond with rows
Md,m is a SG-Gröbner basis of degree d for ideal IG.

Now, suppose Row(M̃d,m) be the set of polynomials
corresponding with all rows of M̃d,m. By using above lemma,
we can introduce a new algorithm for computing SG-Gröbner
basis up to degree D of homogeneousideals which is similar
to lazard’s algorithm.

Algorithm 5.1: Algorithm For computing SG-basis

Input: homogeneous polynomials invariants
(f1, . . . , fm) with degrees d1 ≤ . . . ≤ dm; a
maximal degree D
output:The elements of degree at most D of SG-
bases of (f1, . . . , fm).
G := ∅

for d from d1 to D do
Compute M̃d,m by Gaussian elimination from

Md,m.
Set Ld := {p ∈ Row(M̃d,m)|LT (p) �∈

LT (Md,m)}
G := G ∪ Ld

return G
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VI. CONCLUSION

A first implementation of above algorithm has been made
in maple 12 computer algebra system and have been success-
fully tried on a number of examples. The advantage of this
algorithm lies in this fact that it is very easy to implement
and well suited to complexity analysis.
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