
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:11, 2012

1516

Abstract—Avionic software architecture has transit from a

federated avionics architecture to an integrated modular avionics
(IMA) .ARINC 653 (Avionics Application Standard Software
Interface) is a software specification for space and time partitioning in
Safety-critical avionics Real-time operating systems. Methods to
transform the abstract avionics application logic function to the
executable model have been brought up, however with less
consideration about the code generating input and output model
specific for ARINC 653 platform and inner-task synchronous dynamic
interaction order sequence. In this paper, we proposed an
AADL-based model-driven design methodology to fulfill the purpose
to automatically generating C++ executable model on ARINC 653
platform from the ARINC653 architecture which defined as
AADL653 in order to facilitate the development of the avionics
software constructed on ARINC653 OS. This paper presents the
mapping rules between the AADL653 elements and the elements in
C++ language, and define the code generating rules , designs an
automatic C ++ code generator .Then, we use a case to illustrate our
approach. Finally, we give the related work and future research
directions.

Keywords—IMA, ARINC653, AADL653, code generation.

I. INTRODUCTION
N order to reduce Avionic software cost which is rapidly
raising nowadays, integrated modular avionics (IMA)

architecture has been proposed and broadly accepted. IMA
architectures employ a high-integrity, partitioned environment
that hosts multiple avionics functions of different criticalities
on a shared computing platform.[1]A specificity of Integrated
modular avionics in the certification process of avionics
systems is that standards such as ARINC 653 , allow each
software building block of the overall Integrated modular
avionics to be tested, validated, and qualified independently by
its supplier.[2]ARINC 653 (Avionics Application Standard
Software Interface) is a software specification for space and
time partitioning in Safety-critical avionics Real-time operating
systems. It allows hosting multiple applications of different
software levels on the same hardware in the context of a

Lu. Zou is with National Lab of Software Development Environment,
School of Computer Science and Engineering, Beihang University, Beijing,
China (e-mail: zoulu@act.buaa.edu.cn,).

DianFu MA is with National Lab of Software Development Environment,
School of Computer Science and Engineering, Beihang University, Beijing,
China (e-mail: dfma@ buaa.edu.cn,).

Ying.Wang is with National Lab of Software Development Environment,
School of Computer Science and Engineering, Beihang University, Beijing,
China (e-mail: wangying@ act.buaa.edu.cn,).

Xianqi Zhao is with National Lab of Software Development Environment,
School of Computer Science and Engineering, Beihang University, Beijing,
China (e-mail: zhaoxq@act.buaa.edu.cn).

Integrated Modular Avionics architecture [3]. It allows to host
multiple applications of different software levels on the same
hardware in the context of a Integrated Modular Avionics
architecture [4].

On the other hand, an embedded system is a computer
system designed for specific control functions often with
real-time computing constraints [5]. It is very important for the
engineer to analyze the system properties and choose among all
the design alternatives in the design cycle. Currently,
model-driven (MDA) correct-by-construct methodology has
become a major development method in designing
safety-critical embedded system [6]. AADL (Architecture
Analysis and Design Language) [7] is a standard for
architectural modeling of embedded systems widely applied to
avionic software modeling and approved in November 2004 as
the SAE standard AS5506 [8] including precise semantics to
model its components. We have defined an AADL653 model
with both the AADL standard and the AADL behavior annex
[9] in order to provide a precise model representation for
ARINC653-based avionics software.

So far, there have been several tools for code generation of
AADL models. There are Ocarina developed by Telecom
ParisTech which generates C and Ada codes targeting on
PolyORB, PolyORB-HI and the POK [10], STOOD developed
by Ellidis which can generate C codes targeting on no-partition
platform [11], UCaG [12] developed by University of
Electronic Science and Technology of China which generates C
codes targeting on Delta OS which is not a portioned platform.

Several platform-independent code generation or mapping
methods as listed above have been proposed, the code
generator in this paper is different from three points: 1. The
input AADL model is different, which is AADL653 model a
kind of platform specific model with many additional
properties specified by the including project of the project this
paper describes; 2. The targeting platform is ARINC653-based
platform which has been targeted on by very few code
generator 3. Besides, this code generation method considers the
inner-task synchronous dynamic interaction order sequence
which is very important to describe the situation of multi-task
communication. In view of the above, we proposed an
AADL-based model-driven design methodology to fulfill the
purpose to automatically generating C++ executable model
from the AADL653 describing the ARINC653 architecture
facilitating the development of the avionics software
constructed on ARINC653 OS.

In this paper, we present mapping rules between a subset of
AADL653 models which we have define as AADL653

A Mapping Approach of Code Generation for
Arinc653-Based Avionics Software

Lu Zou, Dianfu MA, Ying Wang, and Xianqi Zhao

I

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:11, 2012

1517

including two parts: AADL653 application model and
AADL653 runtime model to elements in C/C++ language
based upon the hard-time operating system Vxworks653, and
C/C++ application code generation algorithm from the
AADL653 multi-task application model; Partition runtime
configuration code generation algorithm based on the
AADL653 runtime model ,and design an automatic C/C++
code generator named AADL653.

II. AN OVERVIEW OF THE AADL653 MODEL
AADL (Architecture Analysis and Design Language) [6], is

a standard for architectural modeling of embedded systems
.AADL provides an industry-standard, textual and graphic
notation with precise semantics to model three predefined
component categories: composite component (system),
software components (process, thread group, thread,
subprogram, and data) and execution platforms .components
(processor, virtual processor, memory, bus, virtual bus and
device) [8].The AADL model can just describes the tasks with
function interface and inter-task static interaction with no
dynamic connection with other task. In order to describe the
inter-task dynamic interaction sequence among these tasks
which is not included in AADL, we introduce AADL behavior
annex to combine with AADL to make it more thorough and
complete. We defined AADL 653 which is a more enriched
AADL-based model for Arinc653 execution architecture
combining with both the AADL standard [8] and the AADL
behavior annex [9].

AADL653 model is used to describe the Arinc653 IMA
which is mainly divided into two levels-- an AADL653
Multi-Task Application Model in application software layer
and an AADL653 Runtime Model in core software layer. Table
I presents a brief illustration of AADL653 model.

TABLE I
 AADL653 MODEL CONTENT

AADL 653 Model Contents

AADL653
Multi-Task

Application Model

AADL653 Task
Communication

Model

sampling or queuing ports in
different partitions

Inner-Partition communicating
with blackboards, buffers,

semaphores or events

Task Behavior Model
Task Behavior Model:
Behavior Automation Machine

Subprogram Call Sequence
AADL653

Runtime Model
AADL653 Inter-Partition Communication Model

AADL653 Two-level Scheduling Model

AADL653 Multi-Task Application Model is an AADL
representation of multiple ARINC653 processes executed
concurrently in application partitions, and the AADL653
Runtime Model is an AADL representation of an ARINC653
core module and partition related runtime configuration
information (such as inter-partition communication, temporal
and spatial partitioning etc.) [13].Firstly, AADL653
Multi-Task Application Model consists of two components
,one is AADL653 Task Communication Model which contains

sampling or queuing ports in different partitions and
Inner-Partition communicating (synchronizing) with
blackboards, buffers, semaphores or events in the same
partition, the other is AADL653 Task Behavior Model
including Behavior Automation Machine and Subprogram Call
Sequence .Secondly, AADL653 Runtime Model consists of
AADL653 Inter-Partition Communication Model, The
AADL653 Two-level Scheduling Model and The Partition
Memory Model. For more precise definition and description of
each model please refer to [13].

III. THE MAPPING RULES FOR AADL 653 MODELS

We present the mapping rules from AADL653 models which
we have defined above including two parts: AADL653
application model and AADL653 runtime model each mapping
to the corresponding elements: configuration files used for
system and C++ executable based upon the hard-time operating
system with the ARINC653 architecture.

Arinc653 platform need both the correct configuration file
which specifies the partition, memory, connection and some
other configuration information necessary for system and C++
executable codes running on each partition. For AADL653
application model there should be a source file for each
partition to start with and the related C++ header files with
communication resource Class and task Class defined in; and
for AADL653 runtime model there should be a configuration
file and a package generated.

A. Mapping Rules for AADL653 Application Model

1) Mapping Rules for Task Communication Model
The AADL653 Task Communication Model mainly

describes two kinds of communication situation respectively
the Inter-Partition Task Communication situation and the
Intra-Partition Task Communication situation .Inter-Partition
Task Communication describes the situation that

ARINC653 processes located in different partition
communicating with sampling or queuing ports and the
Intra-Partition Task Communication describes process located
in the same partition communicating (synchronizing) with
blackboards, buffers, semaphores or events. So the
Communication resource models such as: sampling or queuing
ports and blackboards, buffers, semaphores or events should be
mapped to the corresponding C++ executable model. For more
detailed information about the Communication model in
AADL653, please refer to [13].

RULE1 (1.1, 1.2, 1.3, 1.4) describes inner-Partition Task
Communication model mapping and RULE 2(2.1, 2.2, 2.3, 2.4)
describes the intra-Partition Task Communication model
mapping.

RULE1: Each port type in AADL653 is mapping to a
specific C++ Class with functions defined in that providing the
services mentioned in the Arinc653 standard. Each of
properties in AADL port is mapped to a typed parameter of the
class constructor

RULE1.1: Source sampling port in AADL653 is mapping to

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:11, 2012

1518

a specific C++ Class ArincSrcSamPort, each of properties in
AADL port is mapped to a typed parameter of the class
ArincSrcSamPort constructor

AADL653 Inter-Partition Task Communication resource
used by processes in different partitions while communicating
consists of these port type: Source Sampling port, Destination
Sampling port, Source queuing port, Destination queuing port .

Take the Source Sampling port (Rule1.1) as an example,
Source Sampling port corresponds to ArincSrcSamPort class as
shown in Listing 1 with the function:
WRITE_SAMPLING_MESSAGE function providing the
service writing a message in the specified sampling port and
GET_SAMPLING_PORT_ID function allowing to obtain a
sampling port identifier also with the constructor used to create
a sampling port, as what is shown in the List below. The
Destination Sampling port similarly corresponds to the
ArincDestSamPort, The RefreshTime property (with its AADL
Time property type) defined in AADL in data port represents
required refresh rate attribute of destination sampling port in
ARINC653 ,which is mapped to a C++ parameter refreshTime
with SYSTEM_TIME_TYPE type. Source queuing port and
Destination queuing port are also mapped to the corresponding
Class.

Listing 1 the ArincSrcSamPort class declaration
 public class ArincSrcSamPort {
private:
 SAMPLING_PORT_NAME_TYPE samplingName;

Public:
 ArincSrcSamPort(SAMPLING_PORT_NAME_TYPE
samplingName, MESSAGE_SIZE_TYPE MaxMessageSize,
PORT_DIRECTION_TYPE portDirection,
SYSTEM_TIME_TYPE refreshTime);
 void WRITE_SAMPLING_MESSAGE
(MESSAGE_ADDR_TYPE MESSAGE_ADDR,
MESSAGE_SIZE_TYPE LENGTH);
 MESSAGE_SIZE_TYPE getMaxMesSize()
}

RULE1.2: Destination Sampling port in AADL653 is

mapping to a specific C++ Class ArincDestSamPort, each of
properties in AADL port is mapped to a typed parameter of the
class ArincDestSamPort constructor

RULE1.3: Source queuing port in AADL653 is mapping to a
specific C++ Class ArincSrcSamPort, each of properties in
AADL port is mapped to a typed parameter of the class
ArincSrcSamPort constructor

RULE1.4: Destination queuing port in AADL653 is mapping
to a specific C++ Class ArincDestSamPort, each of properties
in AADL port is mapped to a typed parameter of the class
ArincDestSamPort constructor

The detailed mapping principles for rule1.2, rule 1.3, rule1.4
is similar as those which have be demonstrated above for
rule1.1.

RULE2: Each data type and implementation maps to a
specific C++ Class with functions defined in that providing the
services mentioned in the Arinc653 standard ,Each port type in
AADL653 is mapping to a specific C++ Class with functions
defined in that providing the services mentioned in the

Arinc653 standard. Each of properties in AADL data
implementation is mapped to a typed parameter of class
constructor. Each of subprogram features in AADL data type is
mapped to corresponding public method.

RULE2.1: Each Blackboard data type and implementation
maps to a specific C++ Class ArincBlackboardDef with
functions defined in that providing the services mentioned in
the Arinc653 standard

AADL653 Intra-Partition Task Communication resource
used by processes in the same partition while communicating
synchronously consists of four data type: Blackboards, Buffers,
Semaphores, Events. for example Blackboards with its
subprogram features SEND_BUFFER and
RECEIVE_BUFFER and etc corresponds to the
ArincBlackboardDef Class in Arinc653 architecture as shown
in Listing 2 with the function: DISPLAY_BLACKBOARD
used to display a message in the specified blackboard;
READ_BLACKBOARD used to read a message in the
specified blackboard; CLEAR_BLACKBOARD used to clear
the message of the specified Blackboard;
GET_BLACKBOARD_ID provide the service to get the
identifier of a blackboard, also with the constructor to create a
blackboard.Other data types such as Buffers, Semaphores,
Events correspond to the specific Classes. The
MaxMessageSize property (with its AADL aadlinteger
property type) defined in AADL653 data Blackboard
implementation represents the maximum message number the
Blackboard can hold, which is mapped to a RT-Java parameter
msgSize with MESSAGE_SIZE_TYPE type.

Listing 2 C++653 ArincBlackboardDef Class declaration
 public class ArincBlackboardDef{
 private:
 BLACKBOARD_NAME_TYPE name;
 … …
 public:
 ArincBlackboardDef(BLACKBOARD_NAME_TYPE
name, MESSAGE_SIZE_TYPE msgSize);
 Void DISPLAY_BLACKBOARD (MESSAGE_ADDR_TYPE
MESSAGE_ADDR, MESSAGE_SIZE_TYPE LENGTH) ;
 MESSAGE_SIZE_TYPE READ_BLACKBOARD
(SYSTEM_TIME_TYPE INFINITE_TIME_VALUE,
MESSAGE_ADDR_TYPE MESSAGE_ADDR);
 … …
}

RULE2.2: Each Buffer data type and implementation maps

to a specific C++ Class ArincBufferDef with functions defined
in that providing the services mentioned in the Arinc653
standard

RULE2.3: Each Semaphore data type and implementation
maps to a specific C++ Class ArincSemaphoreDef with
functions defined in that providing the services mentioned in
the Arinc653 standard

RULE2.4: Each Events data type and implementation maps
to a specific C++ Class ArincEventDef with functions defined
in that providing the services mentioned in the Arinc653
standard

The detailed mapping principles for rule2.2, rule 2.3, rule2.4

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:11, 2012

1519

is similar as those which have be demonstrated above for rule
2.1.

2) Mapping Rules for Task Behavior Model

TABLE II
PERIODIC PROCESS CLASS DECLARATION AND RUN FUNCTION

IMPLEMENTATION
public class Periodicprocess{
 private:
 PROCESS_ATTRIBUTE_TYPE processTable;
 PROCESS_ID_TYPE procId;
 RETURN_CODE_TYPE retCode;
 PROCESS_ATTRIBUTE_TYPE processTable;
 APEX_TYPES.SYSTEM_ADDRESS_TYPE m_pRunnable;

public:
 Periodicporcess(PROCESS_NAME_TYPE
name,APEX_TYPES.SYSTEM_ADDRESS_TYPE entry,
STACK_SIZE_TYPE stack,PRIORITY_TYPE prio,
APEX_TYPES.SYSTEM_TIME_TYPE period,
APEX_TYPES.SYSTEM_TIME_TYPE timecap, DEADLINE_TYPE
deadline);
 void create();
 void* runGlobal(void *args);
 void run();
 void startprocess(PROCESS_ID_TYPE procId);

void Periodicprocess::run(){
 while (true){
 //execute behavior code in this scoped memory...}
 PERIODIC_WAIT (&retCode);
 If (!checkretCode(&retCode){
 // handle overrun or deadline miss here }
)
}

RULE3: Each Thread in AADL653 is mapped to a specific

(PeriodProcess/ AperiodProcess/ SporadicProcess) Class
according to the Dispatch Protocol .Each application
subprogram in subprogram calls of the AADL thread
implementation is mapped to a method with the same name in
the class. The in and out parameter (with AADL property type)
of the subprogram is mapped to corresponding C++ typed input
and output parameter of the method.

RULE3.1: Period Thread (Dispatch_Protocol is Periodic) in
AADL653 is mapped to a Class Periodicprocess according to
the Dispatch Protocol, with subprogram calls and parameter
mapping to the specific method and corresponding C++ typed
parameter respectively.

Task Behavior Model consists of three kinds of Thread:
Periodic Thread, Aperiodic Thread and Sporadic Thread
according to Dispatch Protocol type
(Periodic,Aperiodic,Sporadic)which defined as a property in
AADL653 Thread model. These three kinds of threads in
AADL653 each corresponds to PeriodProcess Class as shown
in Table III, AperiodProcess Class and SporadicProcess Class
encapsulated from Process in Arinc653 architecture with the
function providing the process management services defined in
Arinc653 standard.

Each property defined in AADL thread implementation is
mapped to the corresponding parameter of the class
constructor. For example, the property Priority which is of

integer type to represent thread’s execution eligibility, property
Period describing the time for one dispatching and property and
property Dispatch_Off representing the time at which the first
period begins are all mapping to the member of the Arinc653
structure of the type PROCESS_ATTRIBUTE_TYPE which is
the input parameter of the Class constructor.

Moreover, need to add run () function body to the Arinc653
thread implementation. Take the periodic Protocol Thread as an
example, the corresponding C++ Class is as below in Table III.
In the body of the corresponding Period Process
Implementation, the run () method contains the sub function
logic. In order to represent the periodic dispatch behavior, there
is a loop structure with subprograms located in and a method
PERIODIC_WAIT () in the end blocking until the start of the
next period which is a service that Arinc653 provides for time
management. The method will return error return code if the
thread is in an overrun or deadline miss condition.

B. Document Modification Mapping Rules for AADL653
Runtime Model

Each AADL653 runtime model component is mapping to the
configuration component to compose the whole XML-based
Arinc653 configuration file. Table III is the mapping rules
between AADL653 model components and ARINC653
configuration element.

TABLE III

 MAPPING RULES FOR CONFIGURATION TABLE
AADL653 model components ARINC653 Configuration element

System ARINC 653 Module
Process Partition Table

Processor Module_Schedule Table
Memory Partition_Memory Table

Port Connections Connection_Table Table

According to the ARINC653 standard, this part discuss how

to generate XML-based ARINC653 configuration file which
will be used by ARINC653-compatible OS. The configuration
file generation rules are as below:

RULE4: For each AADL system implementation which
represents an ARINC653 core module, first to generate a
<ARINC_653_Module> top-level element.

RULE5: For each Process subcomponent in each System
implementation, generate a <Partition> element inside with
attribute/port configuration in it.

RULE6: For each Actual_Processor_Binding presenting
two-level scheduling model of this system implementation
properties in System implementation, generate a
<Partition_Schedule> element in the
<Module_Schedule>element describing scheduling windows
configuration.

RULE7: For each Actual_Memory_Binding properties in
System implementation generate a <Partition_Memory>
Element describing partition memory requirement
configuration.

RULE8: For each element of connections in System

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:11, 2012

1520

implementation, generate <Channel> element in the
<Connection_Table> element presenting the inter-partition
communication channels configuration.

IV. CODE GENERATION FROM THE AADL653 MULTI-TASK
APPLICATION MODEL

This section represent the code generation with two steps.
Firstly, generate the element mapping from AADL653 Task
Communication Model initialization code for each partition;
Secondly, generate behavior logic function code mapping from
AADL653 Task Behavior Model running in each ARINC653
process located in each run() method body.

Algorithm 1 depicts partition initialization code generation
from the AADL653 Task Communication Model instance of
each partition.

Algorithm 1: Partition Initialization Code Generation

1: Input: AADL653 Task Communication Model Instance of Each
Partition
2: Output: Initialization C++ Code of Each Partition
3: begin
4: for all pImpl ∈ ProcessImplSet do
5: for all tImpl ∈ ThreadSet(pImpl) do
6: begin // Algorithm 1.1: create ARINC653 processes
7: if (getPropertyValue(tImpl, “Dispatch_Protocol”) =
“Periodic”)then
8: instantiate a PeriodicArincProcessImpl object with
getPropertyValue(tImpl, “Priority”),
getPropertyValue(tImpl, “Dispath_Off”),
getPropertyValue(tImpl, “Period”),
getPropertyValue(tImpl, “Compute_Execution_Time”),
getPropertyValue(tImpl, “Deadline”);
9: if (getPropertyValue(tImpl,
“Dispatch_Protocol”)=“Aperiodic”)

10: for all (tImpl,scon) or (tImpl,rcon)∈ InterParTCM(pImpl) do
11: begin // Algorithm 1.2: create InterPar CR
12: if (src(scon) ∈ OutDataPortSet(tImpl) && dest(scon) ∈
OutDataPortSet(pImpl)) then
13: instantiate an ArincSrcSamPort object with
 getPropertyValue(dest(scon), “MaxMessageSize”);
14: tImpl.srcSamPortMap ←ArincSrcSamPort;
15: if (src(rcon) ∈ InDataPortSet(pImpl) && dest(rcon) ∈
InDataPortSet(tImpl)) then
16: instantiate an ArincDestSamPort object with
getPropertyValue(src(rcon),“MaxMessageSize”),
getPropertyValue(src(rcon), “Refresh_Time”);
17: tImpl.destSamPortMap ←ArincDestSamPort;
.
18: for all (tImpl,tImpl’,data,scon,rcon) ∈ IntraParTCM(pImpl) do
19: // Algorithm 1.3:create IntraPar CR
20: Call OS API: SET_PARTITION_MODE(“NORMAL”)
21: for all tImpl ∈ ThreadSet(pImpl) do
22: Start the ArincProceeImpl object representing tImpl;
23:end

Line 4 means that for each AADL process implementation

which represents a partition instance: first create and instantiate
each ARINC653 process of this partition (line 5-9) according to
the value of property Dispatch Protocol in the AADL thread
implementation (Algorithm 1.1); second, for each
inter-partition task communication model instance in this
partition, create and instantiate corresponding inter-partition
communication resource instance (line 10-17) according to

specific port feature in the AADL thread type (Algorithm 1.2);
similarly, line 18-19 means create and instantiate each
intra-partition communication resource instance in this
partition. Line 20 calls OS API to set partition current mode to
“NORMAL”. In this mode, the process scheduler is active. All
processes have been created and those that are in the ready state
are able to be started to run (line21-22).

Algorithm 2 shows generate behavior logic function code
mapping from AADL653 Task Behavior Model running in
each ARINC653 process located in each run() method body.
Line 4 indicates that In each AADL thread implementation
which represents an ARINC653 process instance, For each
transition(line 5) in the annex behavior specification located in
each AADL653 thread implementation, there are two
parts—guard and action. Firstly ,generate the behavior code
from the guard, line 8 indicates that if there exists sampling data
in the input sampling port of this ARINC653 process, then to
read it from this port, so generated code is as shown in line
9-10,first to get this ArincDestSamPort object representing this
port, and then call its READ_SAMPLING_MESSAGE()
method. Secondly, generate the inter-partition communication
behavior code (sending message) and intra-partition
communication behavior code from the action. Finally, for each
parameter connection instance in the Value Passing Model of
this thread implementation (line 12), generate assigning
expression (line 13) to assign the output parameter value of a
method to the input parameter of a method as shown in
Algorithm 2.3.

Algorithm 2: Task Behavior Code Generation

1: Input: AADL653 Task Behavior Model Instance of Each
ARINC653 Process
2: Output: RT-Java Code of Each ARINC653 Process Behavior
3: begin
4: for all tImpl∈ ThreadImplSet do
5: for all transition ∈ BAM(tImpl) do
6: begin // Algorithm 2.1:match transition guards
7: for all guard ∈ GuardSet(transition)
8: if (guard==idp? && idp ∈ InDataPortSet(tImpl)) then
9: ArincDestSamPort ←tImpl.destSamPortMap.get(idp.name)
10: Call
ArincDestSamPort.READ_SAMPLING_MESSAGE();
11: // Algorithm 2.2: match transition actions

12： for all paraCon ∈ ValuePM(tImpl) do
13: begin // Algorithm 2.3:parameter passing
14: for all (para,para’) ∈ paraConnSet(tImpl) do
15: if (para ∈OutParameterSet(subi) && para’ ∈
InParameterSet(subi+1)) then
16: Generate Assigning Expression: para’= para;
17: Insert it between para = methodi () and method i+1
(para’);

18:end

V. CASE STUDY

The multi-task flight application example [14] is a scenario
concerned with a flight system of computing the current position
and the fuel level of an aircraft during its flight through
collaboration among three periodic tasks Position Indicator,

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:11, 2012

1521

Fuel Indicator, and Parameter Refresher. Detailed explanation
of this application example can refer to [14].

Fig. 1 An AADL653 Task Communication Model of Multi-Task

Flight Application

We first build the AADL653 Task Communication Model of
this application to describe inter-task static interaction
dependency. As shown in Fig. 1, the intra-partition inter-task
communication is modeled by the AADL data and the data
access connections (e.g. an AADL data implementation named
buff2 which is a instance of the data Buffer, and a data access
connection from buff2 to the requires data access feature
named buff2_access); the inter-partition inter-task
communication is modeled by the AADL data/event data port
and port connections (e.g. an AADL data port named sam_port
which represents a sampling port, as well as a data port
connection from sam_port to a sampling channel’s source port
named src_port).

TABLE IV
AADL653 TASK BEHAVIOR MODEL SLICE OF THE TASK POSITION INDICATOR

thread implementation PositionIndicator.Impl
calls
sub_sequence:{
getDate: subprogram getDate;
SEND_BUFFER: subprogram SEND_BUFFER;
WAIT_EVENT: subprogram WAIT_EVENT;
......
}
connections
ParaCon: parameter getDate.date->SEND_BUFFER.message;
BufferAccessCon: data access buff2_access->
SEND_BUFFER.buffer_access;
......
annex behavior_specification {**
states
s0:initial return state;
s1,s2,s3...: state;
transitions
so-[]-s1{ getDate!;};
s1-[]-s2{SEND_BUFFER!(this, message);};
s2-[]-s3{WAIT_EVENT!(this);};
......
**}
end PositionIndicator.Impl;

However, the global collaboration interaction sequence is not

determined only by building the above model, so we need to
build the next refined model that is AADL653 Task Behavior

Model for each task respectively so as to determine global
synchronous relation and interaction sequence. For example,
Table IV shows the AADL653 task behavior model of the task
Position Indicator.

Finally, we integrate this AADL653 multi-task flight
application model into a specified AADL653 runtime model
which is a core module with Flight Management and Flight
Control partitions respectively allocated 40ms and 20ms
scheduling window in a 60ms major frame.

Taking the partition Flight Management for example, the
initialization code excerpt of this partition is shown in Listing 3.

Listing 3 initialization code excerpt of the partition
Flight Management

void main(){
 Periodicprocess pos = new
PeriodicArincProcessImpl (PROCESS_NAME_TYPE
name,STACK_SIZE_TYPE stack, PRIORITY_TYPE
prio,APEX_TYPES.SYSTEM_TIME_TYPE
period,APEX_TYPES.SYSTEM_TIME_TYPE
timecap,DEADLINE_TYPE deadline); //Arinc Process
Instantiation

 //Inter-Partition Communication Resource Instantiation
 SrcSamPort sport = new ArincSrcSamPort(“ssp1”, 30);
//Intra-Partition Communication Resource Instantiation
 Buffer buff1 = new ArincBuffer(“buffer1”, 20, 30);
 Blackboard Bla1= new ArincBlackboard(“board1”, 20);

 pos.start(); // start tasks

 Set_Partition_Mode(“NORMAL”); //call native API
}

Taking the behavior model of the task Position Indicator in

Table IV for example, the generated behavior code of this task is
shown in Listing 4. The global synchronous interaction
sequence can be determined by generating each task’s behavior
code, thus suitable for complex multi-task collaboration
interaction situation.

Listing 4 run () method of the task Position Indicator
public void run(){
 while (true) {
 //Generated task behavior code here
 DateMessage dm = new DateMessage(); // temporary objec
 Date current_date =dm.getDate(); //business logic
 Date message = current_date; // parameter passing
 ArincBuffer buff2 = getBuffer(“buffer2”);
 buff2.SEND_BUFFER(message); //buffer comm
 ArincEvent evt1 = getEvent(“event1”);
 evt1.WAIT_EVENT(); // event sync
 ArincBlackboard board1 = getBlackboard(“board1”);
 Object pos_mes = board1.READ_BLACKBOARD();

}
});
 PERIODIC_WAIT (&retCode);
 If (!checkretCode(&retCode){
 // handle overrun or deadline miss here }
}
}

The generated XML configuration code excerpt of the

multi-task flight application example in Fig. 3 is shown in
Listing.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:11, 2012

1522

Listing 5 XML configuration code excerpt of the flight example
<ARINC_653_Module>
<Partition PartitionName=" Flight_Management "
Criticality="LEVEL_B">
<Sampling_Port PortName="ssp1"
MaxMessageSize="30" Direction="SOURCE"/>
</Partition> //partition attribute and port
.......
<Module_Schedule MajorFrameSeconds="0.060">
 <Partition_Schedule PartitionName="Flight_Management"
PeriodSeconds="0.060" PeriodDurationSeconds="0.040">
<Window_Schedule WindowIdentifier="101"
WindowStartSeconds="0.0"WindowDurationSeconds="0.040"/>
</Partition_Schedule>
 ……
</Module_Schedule>
<Channel ChannelName="channel1 ">
 <Source>
 <Partition PartitionName=" Flight_Management”
PortName=" ssp1 " />
 </Source>
 ……
 </Channel>
</ARINC_653_Module >

Take the multi-task flight application in Fig. 3 for example,

running the code of each partition (partly has been shown in
previous section) generated automatically by the code generator
on the VxWorks 653 Platform. The running results and
debugging information of the partition Flight Management are
partly presented in Listing 6.

Listing 6 run () method of the task Position Indicator

1[test output]: creating the task PositionIndicator in Partition FM;
2[test output]: creating the task FuelIndicator in Partition FM;

4[test output]: creating the source sampling port ssp1;
5[test output]: creating the buffer buffer2;

11[test output]: the Partition FM enters into NORMAL mode;
12[test output]: the task PositionIndicator is started;
13[test output]: SEND_BUFFER of buffer2 by PositionIndicator
14[test output]: the task FuelIndicator is started;
15[test output]: the task ParameterRefresher is started;
16[test output]: RECEIVE_BUFFER of buffer2
byParameterRefresher
17[test output]: WAIT_SEMAPHORE of sem1 by
ParameterRefresher
18[test output]: SIGNAL_SEMAPHORE of sem1 by
ParameterRefresher
19[test output]: SET_EVENT of evt1 by ParameterRefresher
20[test output]: WAIT_EVENT of evt1 by PositionIndicator
21[test output]: DISPLAY_BLACKBOARD of board1 by
ParameterRefresher

VI. CONCLUSION

In this paper we present an automatic C++ code generation
technology from the AADL653 model. A mapping from
AADL653 model to high-integrity C++ programming model is
proposed and implemented as a basis class library for
ARINC653-compatible C++ code generation. Then, we discuss
an AADL653-based C++ code generation algorithm in detail.
In order to illustrate our approach, a simplified multi-task flight
application as a case study is given. In future, we will do real
experiment on the VxWorks653 OS to test performance of the

generated code.

ACKNOWLEDGMENT
This work is partially supported by Project

(No.SKLSDE-2010ZX-05) of the State Key Laboratory of
Software Development Environment and National Natural
Science Foundation of China (NSFC) under Grant
No.61003017.

REFERENCES
[1] C.B.Watkins and R.Walter, “Transitioning from federated avionics

architectures to Integrated Modular Avionics,” In Proceedings of the
IEEE/AIAA 26th Digital Avionics Systems Conference (DASC ’07),
October 2007.

[2] Airlines electronic engineering committee (AEEC), avionics application
software standard interface - ARINC specification 653- part 1
(REQUIRED SERVICES), December 2005, ARINC, Inc.

[3] ARINC 653 - An Avionics Standard for Safe, Partitioned Systems". Wind
River Systems / IEEE Seminar. August 2008.
http://www.computersociety.it/wp-content/uploads/2008/08/ieee-cc-arin
c653_final.pdf. Retrieved 2009-05-30.

[4] "ARINC 653 - An Avionics Standard for Safe, Partitioned Systems" .
Wind River Systems / IEEE Seminar. August 2008. Retrieved
2009-05-30.

[5] Heath, Steve (2003). Embedded systems design. EDN series for design
engineers (2 ed.). Newnes. p. 2. ISBN 978-0-7506-5546-0.

[6] Sandeep K. Shukla, “Model-Driven Engineering and Safety-Critical
Embedded Software,” Computer, vol. 42, no. 9, pp. 93-95,Sept. 2009,
doi:10.1109/MC.2009.294

[7] P. Feiler, B. Lewis, and S. Vestal. The SAE AADL standard: A basis for
model-based architecture-driven embedded systems engineering. In
Proceedings of the RTAS 2003, Workshop on Model-Driven Embedded
Systems, IEEE CS, 2003.

[8] SAE Aerospace. SAE AS5506: Architecture Analysis and Design
Language (AADL), Version 2.0, 2009.

[9] SAE AS5506/2: Behavior Annex, January 17, 2011.
[10] Telecom ParisTech AADL corner, Code generation , Ocarina AADL

toolsuite, http://penelope.enst.fr/aadl
[11] Pierre Dissaux, Ellidiss Technologies,STOOD5.2 AADL tutorial,May

2007.
[12] Shenglin Gui, Liang Ma, Lei Luo, Limeng Yin ,Yun Li, UCaG: An

Automatic C Code Generator for AADL Based Upon DeltaOS,
978-0-7695-3489-3/08, 2008 IEEE.

[13] Wang, Ying Ma, Dianfu Zhao, Yongwang Zou, Lu Zhao, Xianqi, “An
AADL-based modeling method for ARINC653-based avionics software”
, 2011 IEEE 35th Annual Computer Software and Applications
Conference - COMPSAC 2011 ,pp. 224 - 229, July 2011.

[14] A. Gamatié, T. Gautier, “Synchronous modeling of avionics applications
using the Signal language,” In Proceedings of the IEEE 9th Real-Time
and Embedded Technology and Applications Symposium (RTAS’03),
May 2003.

