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Abstract—The focus in this work is to assess which method 

allows a better forecasting of malaria cases in Bujumbura ( Burundi) 
when taking into account association between climatic factors and 
the disease. For the period 1996-2007, real monthly data on both 
malaria epidemiology and climate in Bujumbura are described and 
analyzed. We propose a hierarchical approach to achieve our 
objective. We first fit a Generalized Additive Model to malaria cases 
to obtain an accurate predictor, which is then used to predict future 
observations. Various well-known forecasting methods are compared 
leading to different results. Based on in-sample mean average 
percentage error (MAPE), the multiplicative exponential smoothing 
state space model with multiplicative error and seasonality performed 
better. 
 

Keywords—Burundi, Forecasting, Malaria, Regression   
model, State space model.   

I. INTRODUCTION 

N Burundi, malaria is still a major public health problem in 
terms of both morbidity and mortality with around 2.5 

millions clinical cases and more than 15.000 deaths each year. 
In 2001, Burundi was the world’s most affected country by 
malaria [1]. Malaria is the single main cause of mortality 
among pregnant women and children below the age of five, 
accounting for more than 50 % of all cases. It continues to 
ravage millions of rural Burundians, despite concerted efforts 
to reduce malaria mortality [2],[ 3]. This is often attributed to 
a number of factors such as the limited access to basic health 
care due to poverty, limited specialized health facilities, the 
cost-sharing system, and underfunding of the health sector by 
the government. Currently the government only allocates 2%-
4% of its national budget towards supporting the health sector. 
The direct economic costs of malaria that result from 
treatment and from time away from work or school are 
enormous, but the overall economic impact of malaria is likely 
to be much more substantial than suggested by estimates of 
direct costs alone [4]. 

   Healthcare managers in Burundi need simple, accurate 
and reliable methods for forecasting malaria so that more 
effective control measures can be undertaken. Decisions on 
drugs purchases and health plans require predictions of future 
observations. Stakeholders can gain useful information trough 
models which are capable of predicting malaria. Very few 
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research works have been proposed in this regard. The authors 
in [1] proposed the ARIMA model to forecast malaria 
incidence in Karuzi (a province in central-eastern of Burundi), 
but they were not able to motivate their choice. In this paper 
we compare various methods and we base our choice on one 
of the most reliable criteria, namely the mean average 
percentage error (MAPE), to choose the most accurate 
forecasting method. 

 
II. METHODS 

1. Study Area 
 
  Bujumbura, the capital and largest city of Burundi is 

located in the western part of the country; bordering 
Tanganyika Lake. The city of Bujumbura has now an area of 
11,000 hectares with an average altitude of 820 meters. 
Bujumbura has a tropical climate and has a dominant sunshine 
all the year, with an average temperature of 23°c, peaking at 
28°c-30°c during the hottest periods (July - September). The 
population of Bujumbura was estimated at 500,000 inhabitants 
in 2005. Malaria is the main health threat in Bujumbura [5]. 
The majority of the Health workers in Burundi are 
concentrated in Bujumbura. 

 
2. Data description 
 
 The goal in this study is to propose a more accurate method 

for forecasting malaria in Bujumbura, the capital of Burundi, 
when taking into account the influence of climatic factors. 
Data on monthly malaria cases in Burundi were obtained from 
EPISTAT (Epidemiology and Statistics) [6], a department of 
the Burundi Ministry of health, collecting and storing data on 
epidemiology all over the country. We collected malaria 
morbidity data from 1996 to 2007. This is the period where 
complete data were available from EPISTAT.                       

 Data on monthly cumulative precipitation, for 1996-2007 
were obtained from the geographic institute of Burundi 
(IGEBU) [7]. Data on monthly averages of maximum 
temperature, minimum temperature, maximum humidity and 
minimum humidity were also obtained from the same institute. 
The record of these variables from 1996 to 2007 has remained 
uniform, with the same measurement instruments, the same 
calibration and the same precision [1]. 
 

3. Forecasting malaria in Bujumbura 
 

     The choice of Bujumbura for our study is dictated by the 
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following reasons. The capital of Burundi, Bujumbura, 
presents more reliable data as it comprises more than 80% of 
the health workers [8], and most of those who suffer from 
malaria seek for a medical service. Health facilities (hospitals, 
clinics and test material) are of better quality than in other 
provinces. The decomposition of malaria cases time series 
(Fig.1) in level, trend and seasonal components suggests a 
seasonal behavior and an increase of malaria cases, with a 
peak in 2001 followed by a decrease. 
                  

 
   Fig. 1 Time series decomposition of Malaria cases in Bujumbura 

 
 The seasonality in the malaria time series might be 

explained by the seasonality in climatic variables (not shown 
here). Using only malaria series’ own history for forecasting 
might lose some valuable information contained in the 
influencing factors [1]. Incorporating covariates might lead to 
a more accurate forecast compared to considering only the 
series’ past values. The work in [9] shows the limitations of 
forecasting malaria incidence from historical morbidity 
patterns alone and indicates the need for improved epidemic 
forecasting by incorporating external predictors such as 
meteorological factors. Hence, we propose a hierarchical 
approach as follows: First we fit a generalized additive 
(regression) model (GAM) to malaria data to find the “best” 
predictor. Hereafter, forecasts are made on the basis of this 
predictor using different methods with the aim to choose the 
best one.  

 For our GAM, we have time series data ),( tt XY , 

Tt ,,1= , where tY  is the response variable (malaria 

cases) and tX  is a vector of covariates (rainfall, maximum 
and minimum temperature, maximum and minimum humidity 
). The evolution of tY  is assumed to be driven by its own past 

as well as by the covariates tX  [10]. The conditional 

expectation of tY  is modelled in the form )( th η , where h  is 

an appropriate response function and tη  is a regression term 
containing the actual covariates as well as the previous 
observations of the response. We wish to forecast future 
observations pTTT YYY +++ ,,, 21  if the process has been 

observed up to timeT . 
 Taking into account the life cycle of the parasite and the 

incubation period [11], we assume that the number of malaria 
cases in a given month is associated with that of the previous 
month as well as climatic conditions of the same and previous 
months. Most of those who become sick in a given month 
were bitten by mosquitoes in the previous month. Let 

( )11 ,, −−= tttt YXXD , { } 5,,1, == iXX itt  where 

itX  are the five covariates for month t . 1−tY  is a variable 
representing the number of malaria cases of the previous 
month. 

We assume that the distribution of tY  given tD  belongs to 
an exponential family, i.e. 

 ),()(exp),,/( φ
φ
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Here θ(.),(.), cb  and φ  determine the specific response 

distribution [12-14]. The mean ( )γμ ,/ ttt DYE=  is linked 

to an additive predictor tη by )( tt h ημ = . Here h  is a 
known response function, γ  are unknown regression 

parameters, and tη  is given by: 
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Here, as mentioned above, tη  is the predictor of malaria 

cases in month t , 1−tY  representing malaria cases of the 

previous month, itX  and )1( −tiX  are the five covariates 

(rainfall, maximum temperature, minimum temperature, 
maximum humidity and minimum humidity) for months t  and 

)1( −t , respectively. Further, tα  represents the effect of 

unobserved variables and if   are unknown smooth functions 
of the covariates. We divide the data set into two parts, the 
first 10 years’ data are used as test data (1996-2005) and those 
of the two remaining years as validation data (2006-2007). A 
common choice for count data is a Poisson distribution. We 
also assume that malaria cases are Poisson distributed i.e. 

!
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y
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λλλ −

=
  
                         (3)            

Here λ  is the expected number of cases. The equation (3) is 
equivalent to (1) when setting 



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:4, No:1, 2010

175

 

 

λμθ log)( = , λθ =)(b , 1=φ    ( see [15] for more 
details). We then obtain  

tttY εη +=                              (4)                                        

where tη  is the predictor of tY  and tε  represents the 
residuals. We checked  the goodness of fit as follows: 

(a) Fig.2 displays  the Q-Q plot , the plot of the residuals 
and the plot of the response against fitted values. 

 
                       

 
                      Fig. 2  Model checking plots 

 
The upper left normal QQ-plot is very close to a straight 

line, suggesting that the distribution assumption in our 
modelling is realistic. The upper right plot suggests that the 
variance is almost constant as the mean increases. The 
histogram of residuals in the lower left plot is almost 
consistent with normality. The lower right plot of the response 
against fitted values suggests a positive linear relationship. 

(b) In Fig.3, we plot the autocorrelation and the partial 
autocorrelation functions (ACF and PACF) of the residuals. 

 
      

 

 

 

 
              Fig. 3 ACF and PACF of residuals from the GAM 

 

 The plot of ACF and PACF of the residuals shows that the 
residuals are not correlated. 

These two plots indicate that tη in (2) is an accurate 
predictor. 

 The decomposition of tη  into mean level, trend and 
seasonality produces the same behavior as that shown in 
Fig.1. Since tη  predicts tY  fairly well, we apply various 

forecasting methods to tη , to assess which method is more 
accurate to forecast malaria cases in Bujumbura. In Table 1 
we present values of various in-sample error measures [2],[16] 
as well as the AIC and BIC for various forecasting methods. 
In Table 1, 

ME is the mean error , ∑
=
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m

t
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1
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RMSE is the root mean squared error,  
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MAE is the mean absolute error  

∑
=

+=
m

t
tne

m
MAE

1

1
                                           (5.3)                   

MPE is the mean percent error 
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MAPE is the Mean Average Percentage Error, 
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MASE is the mean averaged scaled error , 
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Here  1
ˆ

−−= ttt YYe  is the one-step ahead forecasting 

error, T  is the forecasting horizon, tY  is the observed value 

and 1
ˆ

−tY  is the one-step ahead forecasting from 1−tY  (see 
[16], [3] for more details). AIC is the Akaike Information 

Criterion )ln(22 LkAIC −=  where k  is the number of 
parameters in the model and L is the maximum value of the 
likelihood function for the estimated model. BIC is the 

Bayesian Information Criterion )ln(ln2 nkLBIC +−= , 
where n  is the number of observations. ARIMA is the 
Autoregressive integrated moving average model, ETS stands 
for Error, Trend, Seasonality or ExponenTial Smoothing in 
some literature. In its argument, the first letter denotes the 
error type (A=Additive, M=Multiplicative ), the second letter 
denotes the trend type (N=None, A=Additive, 
M=multiplicative), and the third letter denotes the season type 
(N=None, A=Additive, M=Multiplicative). SE is the Simple 
Exponential, HWA is the HoltWinters model with additive 
seasonality . HWM is the HoltWinters model with 
multiplicative seasonality  [2-4],[16],[17]. Our model 
selection is based on the accuracy measured by MAPE. Many 
authors have suggested the model selection method based on 
AIC [16],[17]. This method penalizes a model with too many 
parameters. However, with the current computer’s speed, the 
number of parameters should not be a subject of much 
concern nowadays. In the forecasting process, a method that 
minimizes the errors is more valuable. Our choice of MAPE is 
due to the following reasons: 

(a) its simplicity (the test is easy to understand); 
(b) MAPE is scale-independent [17]; 
(c)it quantifies clearly the deviation, in terms of percentage, 
     from the true value (when all the 
     observations are not zero) [16-18];  
 (d) it is unit free [16];  
 (e) Hyndman [19] recommends that if the data are positive 

and much greater than zero, then MAPE is to be preferred.  
In our study, amongst all the attempted forecasting 

methods, the multiplicative exponential smoothing state space 
with multiplicative error, referred to as (M,N,M) in the 
literature [17] , has produced small MAPE ( see Table 1). This 

method can be summarized as follows. 
 
II.4. State Space model 
 
The general form of state space model assumes a state 

vector ( ))1(1 ,,,,, −−−= mtttttt sssblx  containing 

unobserved components that describe the level )( tl , trend 

)( tb  and seasonality )( ts  and state equations of the form 

tttt xkxhY ε)()( 11 −− +=                                  (6)                   

tttt xgxfx ε)()( 11 −− +=                                  (7)                   

 Here tY  denotes the observation at time t , { }tε  is a 
Gaussian white noise process with mean zero and variance 

2σ , m  is the number of seasons per year. In our study, 
12=m  as we are dealing with monthly data. Defining 

( ) ttt xke ε1−=  and )( 1−= tt xhμ  leads to ttt eY += μ . 
The model with multiplicative error is written as  

    )1( tttY εμ +=                                                        (8)                  
Thus ttxk μ=− )( 1  for this model and 

tttttt Ye μμμε /)(/ −==  . Hence tε  is a relative error 
for the multiplicative model [2-4]. Equations for the (M,N,M) 
model are given by : 

 )1(1 ttt ll αε+= −                                          (9)                 

)1( tmtt ss γε+= −                                       (10)                  

)1(1 tmttt slY ε+= −−                                    (11)                  
Here α  andγ  are parameters controlling the smoothness, 

tl  represents the mean level, and ts  represents the seasonal 
component. Further, it is assumed that there is only one source 
of error, i.e. all the observation and state variables are driven 
by one single error sequence tε  [2-4],[17],[18].  

 
III. RESULTS 

The aim in this study is to propose a more accurate method 
for forecasting malaria in Bujumbura, the capital of Burundi. 
Table 1 presents the values of various in-sample error 
measures as well as the AIC and BIC for various forecasting 
methods.  
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TABLE I  IN-SAMPLE ERROR MEASURES WITH AIC AND BIC

 Model ME RMSE MAE MPE MAPE MASE AIC BIC 

ARIMA(1,0,1) 133 2242 1657.9 -7.3 24.65 0.98 2201 2212 

ARIMA(1,1,1) 86.7 2172.7 1569.1 -5 22.57 0.93 2173 2182 

ARIMA(1,0,0) 50 2297.3 1660.5 -9.7 25.24 0.99 2204 2213 

ARIMA(0,1,0) 32.2 2423.2 1660.9 -4.1 23.21 0.99 2195 2198 

ARIMA(0,1,1) 77.2 2251.3 1647.9 -5.6 23.83 0.98 2180 2185 

ARIMA(1,1,0) 38.6 2385.9 1658.8 -4.7 37.33 1.31 2193.7 2199 

ARIMA(0,0,1) 12.2 2728.2 2205.8 -19.1 37.33 1.31 2245.8 2254 

ETS(M,M,M) -169 1953.8 1431.7 -7.56 20.81 0.85 2406.7 2454 

ETS(M,N,A) 86.3 1999.5 1500.3 -1.78 22.5 0.89 2540.2 2579 

ETS(M,N,M) 84.2 1928.7 1459.7 -2.76 20.38 0.8 2405 2444 

ETS(A,A,A) -61 1884.2 1415.2 -5.08 21.70 0.84 2418.4 2465.9 

ETS(A,N,A) 88.9 1898.1 1419.1 -1.86 21.23 0.84 2414.1 2453.2 

SE 77.1 2251.2 1650.2 -5.74 23.91 0.98 2431.1 2436.6 

HWA -501 1989.3 1529.3 -11.69 24.06 0.91 2470.2 2514.8 

HWM -318 1928.9 1414.1 -9.89 21.18 0.84 2403.5 2448.1 
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Based on the Mean Average Percentage Error (MAPE), the 
multiplicative exponential smoothing state space with  
multiplicative error produced the smallest value. Fig.4 
represents the malaria time series (dotted-line), predicted 
values  and two years ahead forecast (solid-line) with 50%  
and 95% credible interval. 
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Fig. 4 True and forecasted malaria cases in Bujumbura 

 
 The large forecast interval suggests a very high 

stochasticity in the data. Our method was applied to all 
provinces of Burundi, leading to the same conclusions. The 
multiplicative exponential smoothing state space with 
multiplicative error produced the smallest value in each 
province.  

IV. CONCLUSION 
 

The goal of this work was to assess which forecasting 
method is more accurate to predict future observations of 
malaria cases in Bujumbura from data collected over 12 years. 
We adopted a hierarchical approach to achieve our objective. 
We first fitted a Generalized Additive Model to find an 
accurate predictor of malaria cases. We then applied various 
well-known forecast methods to this predictor. The model 
selection was based on the mean average percentage error 
(MAPE). Amongst all the models, the multiplicative 
exponential smoothing state space with multiplicative error 
produced the smallest error and hence is the most appropriate 
to forecast malaria in Bujumbura. 
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