
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:2, 2013

261

Abstract—In this paper, we propose a Connect6 solver which

adopts a hybrid approach based on a tree-search algorithm and image
processing techniques. The solver must deal with the complicated
computation and provide high performance in order to make real-time
decisions. The proposed approach enables the solver to be
implemented on a single Spartan-6 XC6SLX45 FPGA produced by
XILINX without using any external devices. The compact
implementation is achieved through image processing techniques to
optimize a tree-search algorithm of the Connect6 game. The tree
search is widely used in computer games and the optimal search brings
the best move in every turn of a computer game. Thus, many
tree-search algorithms such as Minimax algorithm and artificial
intelligence approaches have been widely proposed in this field.
However, there is one fundamental problem in this area; the
computation time increases rapidly in response to the growth of the
game tree. It means the larger the game tree is, the bigger the circuit
size is because of their highly parallel computation characteristics.
Here, this paper aims to reduce the size of a Connect6 game tree using
image processing techniques and its position symmetric property. The
proposed solver is composed of four computational modules: a
two-dimensional checkmate strategy checker, a template matching
module, a skilful-line predictor, and a next-move selector. These
modules work well together in selecting next moves from some
candidates and the total amount of their circuits is small. The details of
the hardware design for an FPGA implementation are described and
the performance of this design is also shown in this paper.

Keywords—Connect6, pattern matching, game-tree reduction,
hardware direct computation

I. INTRODUCTION
HE game of GO, Chess, Reversi and Connect6 are
categorized as the kind of two-player, zero-sum, and

logical-perfection-information games. The player who has a
deeper insight wins the games and the fortuity has absolutely no
influence on them. Thus, many earlier studies have proposed
computational approaches to find the optimal strategy. Deep
Blue [1] and Logistello [2] are representative examples in this
field. Deep Blue was a Chess-playing computer developed by
IBM, and it won against the Chess world champion in 1997.
Logistello was a Reversi-playing computer developed by
Michael Buro, and it also won against the Reversi world
champion in 1997. In these studies, tree-search algorithms are

S. Ochiai and T. Yabuki are with the Graduate School of Systems and

Information Engineering at University of Tsukuba. 1-1-1 Ten-ou-dai Tsukuba
Ibaraki, 3058573, Japan

Y. Yamaguchi and Y. Kodama are with the Faculty of Engineering,
Information and Systems at University of Tsukuba, 1-1-1 Ten-ou-dai Tsukuba
Ibaraki, 305-8573, Japan (corresponding author to provide e-mail: yoshiki@
cs.tsukuba.ac.jp, and see http://www.cs.tsukuba.ac.jp/~yoshiki/).

used for finding the game strategy. Fig. 1 shows the game tree
in the case of a 2-by-2 board game.

Fig. 1 This is an example of arrangements of GO stones on a

2-by-2-grid board. The initial state is empty and it is represented by a
capital (I). In the game tree, the 24 leaf nodes are found. But, the

number of arrangement is six and it can be found as used patterns in
the double frame

As shown in Fig. 1, the computational complexity with full

search is O(n!) based on the number of leaf nodes. The
leaf-node check is the same as full-search, which is the best
approach when the game tree is small. But the other complexity
is O(n2) when the number of stone arrangements is chosen. This
enables us to treat the large game trees; however, it is difficult
to use simple game-tree searches in this case as evidenced in
Fig. 1. For example, the game complexity of the GO becomes
O(10360) and it is impossible to compute even if we use the best
supercomputer in the world.

For these reasons, tree-reduction algorithms have been
discussed. Stochastic approaches such as Monte Carlo
technique [3] and meta-heuristic approaches such as neural
network approach [4] garner attention from the field of
computational games. These approaches are very powerful and

Game-Tree Simplification by Pattern Matching
and Its Acceleration Approach using an FPGA

Suguru Ochiai, Toru Yabuki, Yoshiki Yamaguchi, and Yuetsu Kodama

T

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:2, 2013

262

can dramatically reduce the computational cost. But, there are
many parameters in the evaluation function. It is sometimes
difficult for us to optimize these parameters from our intuition
though games are just games we play. Here, this paper does not
treat these parameters directly but it indirectly optimizes them
through the image processing. It can reduce the game
complexity from O(10360) to O(10108) when the game of the GO
is chosen.

Fig. 2 This graph shows the comparison of game-tree search space.

The number of grids means the size of a game board; the square root of
them shows the length of the board. The gray-colored line represents
the complexity of a simple game-tree search (the number of leaf nodes

of a game tree) and the black-colored line is for that of
image-processing approaches (the number of arrangements)

In this paper, to verify the proposed approach, the Connect6

is chosen for the target application. The Connect6 is a
well-known k-in-a-row games and its impartiality is proven
theoretically compared with other k-in-a-row games. The
search domain of the Connect6 (10140) is bigger than that of the
Chess (10123) and therefore hardware acceleration is required
for constructing Connect6 solvers. This paper proposes an
approach which differs from a common practice based on
tree-search algorithm, and aims to achieve a highly efficient
approach for hardware acceleration.

In related studies, we can find many efficient tree-search
algorithms. They are a powerful method to treat this type of
applications and some pruning algorithms may bring additional
positive results [5]. However, from the viewpoint of hardware
resources, it unfits for hardware acceleration. The amount of
the circuits is too large to implement on medium-sized FPGAs
[6]. The cooperative computing of hardware and software may
be one of the solutions but it also requires large circuit
utilizations [7]. Other papers discuss different implementations
but it is based on a concept of a software implementation [8][9].
It is difficult to achieve a dramatic speedup unless we lay out
the direction for functional change as the game progresses.

The basic concept of our proposed approach adopts image
processing. It mimics a Chess player, which adopts different
computation as a game phase changes. Thus, the proposed
solver is composed of four modules: a two-dimensional

checkmate strategy checker, a template matching module, a
skilful-line predictor, and a next-move selector. Each module
except for the next-move selector suggests a candidate for the
next move, and the next-move selector chooses the optimal
candidate of a stage at the moment. The advantage of this
approach is easy to enhance module optimization because a
single module does not need to handle the entire game stage. In
addition, the approach goes well with hardware direct
implementation. All modules can be implemented on a
XILINX Spartan-6 XC6SLX45 FPGA which is middle-size
FPGA at present. Any external devices are never used and the
circuit utilization was about 6,866 LUTs (25.2%) and 16
BRAMs (4.6%).

The rest of this paper is organized as follows: Section II
explains the Connect6 and what is the difficulty point for the
implementation on an FPGA. Section III shows the
implementation design and our proposed architecture. It
includes three main circuits and one decision making function.
Complex arrangement can be judged by this combination.
Section IV and Section V show the performance of propose
implementation and our conclusions, respectively. The future
work is also included in the Section V.

II. RULE OF THE CONNECT6
Connect6 is a two-player game classified into a member of

k-in-a-row games. A summary of Connect6 is the following.
 Connect6 is played on the GO board whose size is from

19-by-19 grids to 59-by-59 grids.
 Each stone can be placed on an unoccupied grid on the

board.
 The player B can get the first move and put one black

stone.
 The player W can put two white stones after B.
 B and W alternate to place two black stones and two white

stones.
 If a player places six or more consecutive stones in the row,

the player is a winner.
Connect6 ensures fairness between B and W though the

game is very simple like the above [10][11]. On the other hand,
the space complexity is at least 10171 even if the 19-by-19-grid
board is used. It is impossible to store all situations in the
memory. A game tree structure may reduce the size because the
average length of game records is 30 but the complexity is still
large, approximately 10140. Thus, various acceleration
approaches have been discussed for Connect6.

III. DESIGN PRINCIPLE

A. Overview of the Proposed Approach
Fig. 3 shows a resign diagram of Connect6 and its record. In

the Connect6, six-consecutive stones decide a winner and it is
expected from a game record. For example, two
four-consecutive stones decide victory and defeat in Fig. 3.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:2, 2013

263

Fig. 3 A Connect6 resign diagram and its game record

A Connect6 solver detects the best move and places a stone

on the board if it is able to expect the entire game records.
However, it is too hard to detect the best move since all of them
cannot be simply implemented on a solver as explained in
Section II. Tree-search algorithm and pruning algorithm are the
powerful approach used for this type of two-player games in
general. If a Connect6 solver alters its computation in response
to the game progress, it has the possibility to achieve highly
efficient acceleration. Thus, the concept of our system is
inspired by chess solvers, whose computation is changed to fit
the game stages: opening, middle-game, and end-game stage. It
is composed of three main computational modules: a
checkmate strategy checker, a template matching module, and a
skilful-line predictor. Fig. 4 shows the top design of our
proposed Connect6 solver.

Fig. 4 Top-level Design for Connect6 computation

The following section describes the details of these modules.

B. Checkmate Strategy Checker
In Connect6, the degree of interdependence among stones

falls in inverse proportion to the distance of them. For example,
the spatial implication of a stone is limited and the maximum
number is five. If an 11-by-11-grid Connect6 space is
computed in parallel, the solver fulfils desirable features. This
paper breaks the space down into a 5-by-5-grid space as shown
in Fig. 5 since the trade-off among computational efficiency
and circuit resource is considered.

Fig. 5 Region-dividing technique for template search

Here, the entire board was also divided into nine areas based

on a 5-by-5-grid space as shown in the top of Fig. 6. The new
strategy can be considered on the basis of these subspaces. For
example, in the opening stage, the relationship of a long
distance between two stones does not have to be considered
because the number of stones is few. The difficulty of a tactics
increases when the game shifts to the middle stage. However,
the computational space can be limited aside from a couple of
exceptions because the average length of Connect6 game
records implies a sufficient size. The exceptions will be
computed by the skilful-line predictor. The spatial influence
decreases drastically in the end-game stage since the most of
stones interrupts each other's candidates.

To achieve the further reduction of circuit resources, a
triangular search region is considered in a 5-by-5-grid subspace
as shown in the bottom of Fig. 6. If the four same-color stones
are placed in a single region, victory and defeat are decided at
that time with high probability. At least two stones should be
put on the subspace for the viewpoint of the defense player
when the offence player places some stones in the triangular
region. By limiting the search space into the triangular region,
the number of how to put the other stones can be reduced up to
105 (=15C2). The small number enables a solver to store the
tactics in on-chip memories of an FPGA. The triangular region
should be rotated as shown in the bottom of Fig. 6 because of
further optimization. In this paper, the next-move candidate of
offensive and defensive tactics is generated by the same circuits
and the same procedure.

C. Template Matching Module
The number of cases where only the same stones exist in a

subspace decreases as the hand advances. As the game
advances, it is necessary to judge which shape of W or B is

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:2, 2013

264

superior in the subspace and to generate the next two moves. It
means, it is necessary to think about the case where the
checkmate strategy checker cannot be applied. Here, the next
moves are also decided by the pattern matching technique using
the template of 3-by-2 grids or less at this time. The template
used is shown in Fig. 7.

Fig. 4 Nine 5-by-5-grid subspaces and its triangle folding search

Fig. 7 Template generation for pattern matching

In this template matching, each grid has a priority point
which accumulates a severity index inherent to a template.
These points indicate next-move candidates and therefore they
are used in the next-move selector. Then, a scan window is
introduced to the process. The scan window where the
opponent's stone is placed at centre is a 5-by-5-grid space, and
it is clipped from the color 15-by-15-grid region shown in the
top of Fig. 6. The 5-by-5-grid window is shifted when it
protrudes from the end of the 15-by-15-grid region, and the
distance at that time is minimized. The template matching is
also done by rotating the template by 45 degrees, and therefore
it corresponds to the point symmetry. This paper selected 12
templates from the limitation of the circuit size though it was
preferable to use more templates.

D. Skilful-Line Predictor
The Connect6 game which is composed of B, W, and the

unoccupied state requires the triplet search tree for the decision
of the strategy. Although the average length of the game record
is empirically-deduced to 30, the complexity is still too large
(approximately 10140). To achieve the further reduction, an
image processing technique of 11-by-11 pixels was thought.
There was impossibility in the use of the loss-less compression
technique and the processing because of the limitation of the
circuit resource. Thus, the search for two dimensions uses the
template matching in Section III-C. One-dimensional search is
used for a long-distant search as shown in Fig. 8.

In this computation, the distance was extended from 11 to 13
as a result by considering the tradeoffs between
distance-extension and circuit difficulty. The reason is that
there are some difficult-checkmating situations; an example is
shown in the bottom of Fig. 8. It is difficult for the simple
circuits to predict a defeat and/or to find out the optimal place to
avoid being a loser. In this circuit, the scanning of eight
directions can be completed by repeating the rotation of 45
degrees three times.

E. Next-Move Selector and I/O Interface
First of all, the coordinates of two moves of the opponent are

received via the RS232C interface, and it stores in the
game-record manager. Secondly, each move is transformed to
an address of memories, and the surrounding game record is
sent to each module as shown in Fig. 4. All the circuits are
made double because the number of moves is always two in
these modules.

In each discriminate function in three computational
modules, relative coordinates are converted into the absolute
coordinate, and
 when the both is independent, it keeps the processing.
 when the both is dependent, both next moves are adjusted

based on the absolute coordinate.
The output of each circuit has priority. The next moves are

decided based on the priority in the next-move selector. Here,
the "random" move in Fig. 4 means processing where the stone
is put at random when the next moves cannot decide in the
next-move selector. In "random" mode, the two stones will be
placed in a 5-by-5-grid region, as shown in the top of Fig. 6, in

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:2, 2013

265

which it becomes empty most. It is important that the circuits
where the next move is generated are efficiently designed
compact.

Fig. 8 The eight directions and an difficult checkmate problem

IV. PERFORMANCE EVALUATION

A. Hardware Resources
All circuits in Fig. 4 are implemented on one single XILINX

Spartan-6 XC6SLX45 FPGA1 and any external devices such as
DDR-SDRAM modules are never used. The FPGA is
embedded on a Atlys FPGA board produced by Memec Design
Inc [12]. Fig. 9 shows the overview of this FPGA board.

Table I shows the resource usage. All modules can be
implemented on one single small FPGA.

TABLE I
CIRCUIT USAGE OF THE PROPOSED CONNECT6 SOLVER

 Used Usage Ratio

 Logic Element 6,866 25.2%(=6,966/27,288)

 Flip Flop 2,877 5.3%(=2,877/54,576)

 Block RAM 16 4.6%(=16/348)

1 The same circuit can be implemented on one 10-years-old FPGA, XILINX

Virtex-II XC2V1000 device. The compact design enables it to be implemented
on most kinds of FPGAs.

Fig. 9 AtlysTM board (Spartan-6 XC6SLX45) connected to a laptop PC

B. Strategic effectiveness
The strategic effectiveness should be statistically valid to

proof the proposed solver. It was evaluated using a software
program provided by the FPGA design contest committee in
conjunction with the International Conference of
Field-Programmable Technology 2011 (ICFPT'11) 2 [13]. In
this trial experiment, 100 matches of the Connect6 game are
tested. The result is shown in Figs. 10 and 11.

Fig. 10 Winning Percentage of Our Trial Experiment

The results show that our proposed solver has 91 victories

and 8 defeats. The solver achieves a tolerable strategy since the
winning percentage is 92.0%.

Fig. 11 Detail analysis of our trial experiment

2 The FPGA Design Competition whose theme was the Connect6 was held

also in ICFPT12 [14].

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:2, 2013

266

In Fig. 11, we can find defeats after 45 moves. It comes from
our over-reduction of the computational efforts. As shown in
Fig. 4, our solver omits the edge region of the board because of
the reduction of computation. At the early stage, it is apparent
that both players do not put their stones on the edge region. But,
when the stone is filled on the board, this influence could not be
disregarded. A few errors were seen in matches and they also
cause in an edge region.

Well, we gave priority to the miniaturization of the circuit
and it was achieved. It is possible to correspond by adding as an
exceptional computation because the circuit resources remain
on the FPGA. The exceptional circuit will be realized by 2,000
LUTs or less; the total amount of the circuit use will be less
than 10,000 LUTs derived from Table I. This achievement is
significant experiment to find the tradeoff of its hardware usage
and high performance. The idea will be effective in a similar
tree search algorithm.

V. CONCLUSION
The three combination functions work well and seem to be

efficient methods for generating Connect6 moves. However,
there is room for improvement about the enumerated point.
 Template matching: we could not implement larger

number of templates. Especially they only take care of the
opponent's move. It is important to put both moves in the
templates.

 Skilful-line predictor (1-D pattern-guessing tree): we are
satisfied with this approach as one method. On the other
hand, we would like to reuse the template matching circuit,
and implement a bit complicated functions.

 Move generation from the viewpoint of offensive side: we
use nine subspaces for generating the next moves, but that
is still random moves. The more efficient moves should be
generated by using the result of the template matching.

We would like to keep examining the improvement of this
implementation though the circuit is limited.

VI. ACKNOWLEDGMENT
This work was partially supported by the Program for

Enhancing Systematic Education in Graduate Schools,
“Program for Development of ICT Solution Architects”, from
the Ministry of Education, Culture, Sports, Science, and
Technology (MEXT), Japan.

REFERENCES
[1] Murray Campbell, A. Joseph Hoane Jr., and Feng hsiung Hsu. Deep Blue.

Artificial Intelligence, 134:57–83, 2002.
[2] Michael Buro. Entertainment Computing - Technology and Applications,

volume 112 of IFIP Advances in Information and Communication
Technology, chapter The Evolution Of Strong Othello Programs, pages
81–88. Springer, 2002.

[3] Remi Coulom, Computing Elo Ratings of Move Patterns in the Game of
GO, in Proceedings of the Computer Games Workshop, pp1-11, 2007.

[4] Helmut A. Mayer and Peter Maier. Coevolution of neural go players in a
cultural environment. In The 2005 IEEE Congress on Evolutionary
Computation, volume 2, pages 1017–1024, 2005.

[5] I-Chen Wu and Ping-Hung Lin. Relevance-Zone-Oriented Proof Search
for Connect6. IEEE Transactions on Computational Intelligence and AI in
Games, 2(3):191–207, 2010.

[6] Takahiro Watanabe, Retsu Moriwaki, Yuichiro Yamaji, Yuki Kamikubo,
Yuki Torigai, Yuki Nihira, Takashi Yoza, Yumiko Ueno, Yuji Aoyama,
and Minoru Watanabe. An FPGA Connect6 Solver with a Two-Stage
Pipelined Evaluation. In Proceedings of the International Conference on
Field-Programmable Technology, pages 1-4, 2011.

[7] Kentaro Sano. SW and HW Co-design of Connect6 Accelerator with
Scalable Streaming Cores. In Proceedings of the International Conference
on Field-Programmable Technology, pages 1-4, 2011.

[8] Kizheppatt Vipin and Suhaib A. Fahmy. A Threat-based Connect6
Implementation on FPGA. In Proceedings of the International Conference
on Field-Programmable Technology, pages 1-4, 2011.

[9] Tobias Ziermann, Bernhard Schmidt, Moritz Muhlenthaler, Daniel
Ziener, Josef Angermeier, and Jurgen Teich. An FPGA Implementation
of a Threat-based Strategy for Connect6. In Proceedings of the
International Conference on Field-Programmable Technology, pages 1–4,
2011.

[10] I-Chen Wu and Dei-Yen Huang. A New Family of k-in-a-row Games. In
Proceedings of the International Conference on Advances in Computer
Games, pages 180–194, 2006.

[11] I-Chen Wu, Dei-Yen Huang, and Hsiu-Chen Chang. Connect6. ICGA
Journal (SCI), 28(4):234–241, 2005.

[12] AtlysTM Board Reference Manual, Dec 2012. Rev. C.
[13] The 2011 International Conference on Field-Programmable Technology,

2011. http://www.cse.iitd.ac.in/ icfpt11/.
[14] The 2012 International Conference on Field-Programmable Technology,

2012. http://icfpt2012.blogspot.jp/.

