
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:6, 2008

2234

Abstract—On one hand, SNMP (Simple Network Management

Protocol) allows integrating different enterprise elements connected
through Internet into a standardized remote management. On the
other hand, as a consequence of the success of Intelligent Houses
they can be connected through Internet now by means of a residential
gateway according to a common standard called OSGi (Open
Services Gateway initiative). Due to the specifics of OSGi Service
Platforms and their dynamic nature, specific design criterions should
be defined to implement SNMP Agents for OSGi in order to integrate
them into the SNMP remote management. Based on the analysis of
the relation between both standards (SNMP and OSGi), this paper
shows how OSGi Service Platforms can be included into the SNMP
management of a global enterprise, giving implementation details
about an SNMP Agent solution and the definition of a new MIB
(Management Information Base) for managing OSGi platforms that
takes into account the specifics and dynamic nature of OSGi.

Keywords— MIB, OSGi, Remote Management, SNMP.

I. INTRODUCTION
HE management of devices in a corporation was initially
focused in network parameters and statistics. However,

the increasing use of the Internet has connected new devices
and applications, and as a consequence, the necessity of a
dedicated management of applications or/and services has
arised. For example, [1] explains a solution for including
Siemens PLCs (Programmable Logic Controllers) features in
remote management through SNMP (Simple Network
Management Protocol).

Network parameters, applications or services can be
managed through propietary protocols. Each device can set its
own proprietary mechanisms for being managed through
Internet or even through other proprietary networks. These
solutions can be complete in terms of quantity and quality of
managed parameters, but they are not interoperable. In this
case, each device or type of devices needs to be managed

Manuscript received September 29, 2006. This work has been partly
supported by the PlaNetS (Platforms for Networked Service Delivery) project
(MEDEA+ Project A-121), financed by the Spanish Ministry of Industry (FIT
-330220-2005-111).

Pedro J. Muñoz Merino is with the Department of Telematics Engineering,
Universidad Carlos III de Madrid, Avda de la Universidad, 30 E-28911
Leganés (Madrid) Spain. Office: 4.1A08 (corresponding author phone: (+34)
91-624-8801; fax: (+34) 91-624-8749; e-mail: pedmume@it.uc3m.es).

Natividad Martínez Madrid is with the Department of Telematics
Engineering, Universidad Carlos III de Madrid, Avda de la Universidad, 30 E-
28911 Leganés (Madrid) Spain (e-mail: nati@it.uc3m.es).

Ralf E. D. Seepold is with the Department of Telematics Engineering,
Universidad Carlos III de Madrid, Avda de la Universidad, 30 E-28911
Leganés (Madrid) Spain (e-mail: ralf@it.uc3m.es).

.

independently from the others and the corporation cannot have
a global vision of all their devices nor they can use standard
protocols or tools.

The SNMP [2], [3] aims to provide a common protocol for
management to allow interoperability. SNMP is de facto
standard in network management and it is widely used in
Internet. This is the reason why SNMP represents an
advantage with respect to other management solutions such as
those based on CORBA [4] (Common Object Request Broker
Architecture) or RMI [5] (Remote Method Invocation).

On the other hand, as a consequence of the success of
Intelligent Houses [6] they can be connected through Internet
now by means of a residential gateway according to a
common standard called OSGi [7] (Open Services Gateway
initiative) that has been defined running in the residential
gateway. The residential gateway is a platform where all the
devices of an Intelligent House can be connected to. The
residential gateway provides so called bundles that offer a set
of services available for the devices connected to the platform.

These OSGi-based residential gateways can be included in
the general schema of management as a new element,
providing a remote control in terms of features, network
parameters, services, applications, etc. This work provides a
proposal of how to include residential gateways inside the
global SNMP management framework. One of the main
aspects is to define the features to be managed in SNMP
thanks to a MIB (Management Information Base) [8]. OSGi-
based residential gateways have a dynamical nature because
services they provide can change dynamically (hot-plug). This
implies to solve some problems in the definition of the MIB
because MIBs store static information.

The remainder of this paper is organized as follows. The
section “Related Work” describes related work in the area of
remote management for OSGi Service Platforms. The section
“Implementation details for an SNMP Agent for OSGi”
describes some implementation decisions and the Agent
functional block diagram. The second last section describes a
new MIB proposal called OSGI-MIB for managing OSGi
gateways that is according to the OSGi specific features and
solves the dynamic nature problem. Finally, there is a section
with our conclusions.

II. RELATED WORK
There are commercial implementations of the OSGi

gateways available that provide already SNMP solutions such
as Prosyst [9]. The standard MIB that Prosyst provides is very
limited. Nevertheless, it allows expanding the standard MIB

Design of an SNMP Agent for OSGi Service
Platforms

Pedro J. Muñoz Merino, Natividad Martínez Madrid, and Ralf E. D. Seepold

T

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:6, 2008

2235

implementing new objects (scalars and tables) and even for
new services. The Prosyst implementation provides a SNMP
protocol and the user must map new parameters to new MIB
objects. In addition, the user should write the JAVA code for
the retrieval and setting of these new objects. Anyway, the
new nodes of the MIB should be statically predefined and it
does not allow a dynamic load of the new service data.
Therefore, a manager should load the MIB each time there is a
new object added. In this paper, we propose a MIB solution
that is called OSGI-MIB. This OSGI-MIB should be loaded
only once by a manager. If a new object is added, then the
manager can find this new object due to the OSGi-MIB
information, without the necessity of loading a new MIB.
Furthermore, the OSGi-MIB proposed includes more
information about OSGi than the Prosyst commercial solution.

There are other non-commercial OSGi solutions available at
present that support remote management, like the one
proposed with OSCAR using JMX [10]. JMX is a technology
for getting and setting management information. JMX
provides a JAVA oriented-base approach, which is indicated
in dynamic environments such as OSGi platforms. Although
JMX can be integrated with whichever management protocol
such as RMI, CORBA or SNMP, however the commented
solution does not explain the specific integration with SNMP.
In order to use JMX together with SNMP, two adaptations
should be required: 1) Adaptation of the retrieved information
from JMX to a MIB. The description of dynamic information
is easier in JMX than in SNMP due to the static nature of
MIBs 2) Adaptation to translate from JMX to SNMP protocol.

III. AGENT IMPLEMENTATION DETAILS
Different OSGi gateway's aspects can be managed.

Network administrators should decide which aspects are going
to be managed. The proposed solution sets that the SNMP
agent should be divided into sub-agents in which each one is
in charge of a specific part. In a general case, it could be
managed these different aspects: network parameters (for
example with the MIB-2 [11]), services, the common OSGi
framework and the OSGi common bundles. Fig. 1 shows this
division in sub-agents.

Fig. 1 Agent functional block diagram

Fig. 1 shows a possible implementation of an SNMP agent
for OSGi gateways. This SNMP OSGi agent would be a
bundle inside the OSGi gateway. Furthermore, this bundle
should inherit from the OSGi management bundle, because it
has permissions to access to some features that are needed to
manage remotely. First of all, an Access Control Module
checks if a specific manager has permissions in order to
perform a specific action on the MIB. This is important in
OSGi environments because there are different actors that can
manage the OSGi platform and they will have different
permissions. A possible scenario could be an operator that
owns all management permissions and the user of the gateway
with restricted permissions. But other scenarios with different
profiles and permissions of managers can be defined.

In addition, there is a module where all the actions related
to the RFC 1157 are supported. This module is in charge of
receiving the manager’s requests (get or set), interpreting the
messages, parsing the ASN1 data into the required MIB
objects and redirecting each object to the correspondent OSGi
SNMP sub-agent. Next, when the sub-agents retrieve (get) or
establish (set) the information for all objects, the module
composes the response in order to send it to the manager. This
module is also in charge of creating the trap messages that are
sent as notifications to the managers.

Sub-agents are in charge of retrieving, setting and updating
data from the MIB data base. Each sub-agent is dedicated to a
specific task (network, services, common framework or
common bundles). For example, the network sub-agent can
retrieve and set information about network parameters and
statistics (MIB-2 could be implemented here) but it cannot
interpret the services of OSGi. The MIB (it will be presented
in next section) is also divided into different branches for each
task and each sub-agent is related to a specific MIB branch.
Depending on the requested object OID (Object Identifier),
the module in charge of the requests will redirect to the
appropriate sub-agent. Each sub-agent get, updates and sets
the specific information. In this way, it is allowed a common
interface for management. Managers should not know about
the internal sub-agents. In addition, each sub-agent can be
modified independently, without modifying the rest of the
agent implementation. This modular solution provides
extensibility and scalability.

The mentioned scenario, it is valid for SNMPv1, but other
SNMP version can be implemented based on it. SNMPv2 adds
new primitives and heed manager’s hierarchy, and SNMPv3
adds security. For OSGi gateways it is necessary to implement
security aspects as well because it is critical that an attacker
will not be able to control the OSGi gateway.

IV. MIB DEFINITION PROPOSAL FOR OSGI GATEWAYS
Our new MIB creation includes relevant information for

managing the OSGi framework, services and common
bundles. The MIB has been created according to an analysis
of OSGi (release 3) specification, selecting the parameters and
information necessary for OSGi. The MIB does not include

Network sub-agent

Services sub-agent

OSGi framework sub-agent

Common bundles sub-agent

Access Control

Request
interpretation

Response
Generador

Trap Generator

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:6, 2008

2236

information about network management. This information can
be taken into account from other public MIBs as the MIB-2.
Fig. 2 shows the general structure of our OSGi MIB.

The OSGi MIB has to model dynamic situations in two
scenarios: 1) Bundles, registered services, etc. that are
available in a moment in an OSGi gateway. This information
changes during the time. 2) The information related to a
service is not known a priori because whichever service could
be added to an OSGi platform with whichever information.

Fig. 2 General groups for the OSGi MIB

The OSGi MIB is divided into four groups:
• Framework: It provides information about the OSGi

framework.
• Common bundles: This branch provides information

about usual common bundles in OSGi.
• Services: This branch provides information about

specific services in a moment. Each OSGi gateway can have
different services in a concrete moment and new services can
appear with unknown information.

• Traps: This branch contains a table defining the
notifications that the manager configures with respect to other
objects of the OSGI MIB.

A. Framework

Fig. 3 Framework MIB branch

Fig. 3 shows the branches under the Framework node.
Under the Environment node, there are a set of scalar

objects related to the OSGi framework environment. All are
read-only (with the exception of startupFramework and
stopFramework) so the information can not be modified by a
manager. The environment parameters are: SPI (an integer
that is the Service Platform Identifier), envversion (an integer
that is the framework version), envvendor (an octect string
that represents the vendor of the framework implementation),
envlanguage (an octect string that represents the language to
use in the framework), envexecution (an octect string that is a
separated list of Execution Environments), envprocessor (an
octect string that is the processor name), envosversion (an
octect string that represents the version of the Operating
System), envosname (an octect string that represents the name
of the Operating System), startupFramework (this is a read-
write parameter to start the framework), stopFramework
(this is a read-write parameter to start the framework).

Table I shows the BundleTable branch.

TABLE I
BUNDLE TABLE BRANCH

OBJECT OID TYPE ACCESS
BundleEntry BundleTable.1 Aggregate not-accesible

Bidentifier BundleEntry.1 Integer read-only

Bactivator BundleEntry.2 OctectString read-only

Bcategory BundleEntry.3 OctectString read-only
Bclasspath BundleEntry.4 OctectString read-only
Bcontactaddress BundleEntry.5 OctectString read-only

Bcopyright BundleEntry.6 OctectString read-only
Bdescription BundleEntry.7 OctectString read-only

BDocURL BundleEntry.8 OctectString read-only
Bname BundleEntry.9 OctectString read-only
Bnativecode BundleEntry.10 OctectString read-only

BreqEE BundleEntry.11 OctectString read-only

Bupdatelocation BundleEntry.12 OctectString read-only

Bvendor BundleEntry.13 OctectString read-only

Bversion BundleEntry.14 OctectString read-only

Bdynamicinput BundleEntry.15 OctectString read-only

BreqEEexport BundleEntry.16 OctectString read-only

BreqEImport BundleEntry.17 OctectString read-only

Bstate BundleEntry.18 OctectString read-only

The object in bold type is the index for the table. There are

as many row instances as installed bundles (in a concrete
moment). It is a dynamic table in the sense that the installed
bundles number may change at any time. A manager can
visualize the installed bundles that are available thanks to this
table and all the information related to this bundle is available
as well. The BundleTable columns objects are read-only and
they represent information about a specific bundle: Bactivator
(the class name for starting and stopping the bundle),
Bcategory (all the category names), Bclasspath (all the JAR
file names that should be searched), Bcontactaddress (the

Framework

Environment (1)

Bundle (2)

BundleTable (1)

ServicesReg (3)

BundleActions (2)

ServicesTable (1)

ServicesActions (2)

 OSGI_MIB

Framework(1)

Commonbundles(2)

Services(3)

Traps(4)

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:6, 2008

2237

contact address of the vendor of the bundle), Bcopyright
(copyright specification of the bundle), Bdescription
(description of the bundle), BDocURL (the URL where is
located the documentation of the bundle), Bname (name of the
bundle), Bnativecode (a specification of native code contained
in this bundle), BreqEE (all the execution environments that
are required for this bundle), Bupdatelocation (the location to
retrieve the updated JAR file), Bvendor (bundle vendor),
Bversion (bundle version), Bdynamicinput (all packages
names to import dynamically), BreqEEexport (all packages
names that can be exported), BreqEImport (all packages
names that must be imported), Bstate that is the present state
of the OSGi gateway (it can be resolved, started, stopped, or
active).

The BundleActions branch contains the objects to install,
desinstall, start, stop, and update the bundles of an OSGi
gateway and to activate persistent storage for a bundle. There
is one branch under BundleActions for each one of these
actions. Fig. 4 shows the install branch under the
BundleActions node.

Fig. 4 Install bundle action branch

For example, for the Install Action, firstly the

StringLocation object (which is read-write) should be written
with the URL of this bundle location, next the SetInstall
object (which is read-write) should be written with a ‘1’. By
means of this, the bundle with location StringLocation will be
installed in the OSGi gateway. Finally, the errorcode should
be checked. The errorCode (read-only) will be a string which
will contain the id of the last bundle that was tried to be
installed and the error code in case of a not successful
operation. When a successful install operation is done, then
the BundleTable is modified because a new entry is added that
corresponds to the new added bundle.

The desinstall operation is analogous to the install and
when it is successfully applied an entry from the BundleTable
is removed. Start and Stop operations are analogous to the
install but the parameter that must be set before the operation
is the bundle identifier instead of the location. Furthermore, a
start or stop operation affects to the object state of an existing
bundle inside the BundleTable. Moreover, the update
operation updates the data of an entry of the BundleTable but
does not create a new one. Finally, the Persistent Storage
operation enables persistent storage for a bundle, but does not

modify anything of the BundleTable.
On the other hand, the ServiceTable contains information

about all the services that are in an OSGi gateway in a similar
way that the BundleTable contains information about the
bundles. For the ServiceTable, there are as many row
instances as services. The column objects of the ServiceTable
are all read-only and represent information about the services:
Sidentifier (It is the identifier of the service), Sdescription (It
is a short description of the service), Spid (This is the name
registered service name), Sranking (This is the service
ranking), Svendor (It is the service vendor), Sstate (It
represents the service state in a moment. Its possible values
are: modified, registered and unregistered), SOIDbundle (It is
the OID of the owner bundle of this service in the
BundleTable), SOIDMIB (It points to the OID of the root
node where the sub-MIB for the service will be located. Under
this OID will be all the specific information about this
service.).

The ServicesActions branch has two sub-branches
analogous to the BundlesActions, in order to register and
unregister services. When a register or unregister operation is
performed, then Sstate is changed in the ServicesTable.

B. CommonBundles
In this subsection it is analyzed which of the common

bundles that are in the OSGiv3 specification can be managed.
Under the Commonbundles branch, the bundles or packages
that make sense to be managed are located as a subbranch for
each one. These are the ones to be managed:

• Package Admin: It has two sub-branches in the MIB. The
first sub-branch contains a table where all the packages for all
the bundles of the OSGi gateway are shown. This table has a
column called POIDBundle, where it is stored the OID of the
bundle the package is exported from. The second sub-branch
is related to the refresh action and it contains two scalar
objects: BundleOID which is the OID of a bundle, and
setrefresh which is the object to activate the refresh action of
all the exported packages of the specific BundleOID bundle

• Start Level: This is to manage whichever start level for
all the bundles and for the OSGi framework. This implies to
add two new objects: StartLevel (a read-only integer) in the
BundleTable that represents the start level for a specific
bundle and SystemStartLevel (a read-write integer) in the
EnvironmentTable that represents the start level for the entire
system framework. Furthermore, under the StartLevel branch
there are three scalar objects: 1)SLOIDbundle wich is a read-
write parameter that indicates the OID of a bundle in the
BundleTable. 2)SLstartlevelnumber which is a read-write
integer that indicates the startlevel to be established in a
bundle 3)SLsetstartlevel wich is a read-write parameter that
when is set to ‘1’ sets a new start level number
(Slstartlevelnumber) in a bundle (SLOIDbundle).

• Permissions Admin: This is to establish permissions for
all the bundles. It has two sub-branches: 1) A
PermissionsTable which has as many entries as there are
different established permissions. Each permission contains a

BundleActions

Install (1)

StringLocation (1)

SetInstall (2)

ErrorCode (3)

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:6, 2008

2238

name, an action, the OID of the bundle which the permission
references to and the type of permission (default or associated
to a bundle) 2) PermissionsAction which contains all objects
necessary to add, delete and update the permissions that are in
the PermissionsTable.

• LogsTable: This is to retrieve information about the
different logs in the system. This table has as many entries as
logs have been registered. The columns of this table are read-
only: Llevel (level of the log), LOIDbundle (the OID of the
bundle which is associated to the log), Lexception (string that
identifies the exception associated with an error in case there
is an error), LOIDService (string that identifies the service
associated with the log), Lmessage (the specific log message),
Ltime (the time when the event associated to the log
happened)

• Configuration Admin: This is to set configuration
parameters for a specific service when it is registered. There
are two different branches that correspond to two different
configuration objects: 1)SingletonConfigurationTable that
stores the single configurations for services. Each entry is a
configuration property for a particular service. The index of
the table is composed of CAOIDService (a read-write
parameter that is the OID of the pid of the referred service)
and CAorderofproperty (a read-only parameter that is the
order of this property inside the properties configuration for a
specific service). The properties of a specific service which
defines its configuration is the union of all the entries of the
table which have the CAOIDService of the specific service.
Each entry of the table has a set of read-write column
parameters related to the property: CAname (the name),
CAdescription (the description), CAtype (the SNMP type),
CAvalue (the value) 2) FactoryConfigurationsTable that stores
the Factory Configurations for Service.

• User Admin: This is to add users, groups and associated
groups to allowed actions. In our proposal there are three
tables for defining respectively: users, groups and actions.
There are also scalar objects for doing the creation, deletion
and updating of users, groups and actions tables. Furthermore,
there is a mapping table in the MIB that will relate users to
groups. A user could be in several groups. The mapping will
be done thanks to the OID columns related to users and
groups. There is also a table to associate groups to actions.
This table has the mapping between the OIDs of actions and
OIDs of groups. There is a field of the table to indicate if the
relationship is Basic or Required according to the OSGi
specificationNumber equations consecutively with equation
numbers in parentheses flush

C. Services
The previous ServicesTable provides information for

viewing all the services that are in an OSGi gateway in a
concrete moment. But there is not information about the
management of specific parameters of a specific service. For
example, a temperature sensor could be a service where
additional information related to the temperature in a concrete
moment in a house room may be required. This type of

information is difficult to be static because OSGi platforms
are not restricted to a predefined set of services and
parameters to manage. Therefore, each service can have its
own proprietary set of parameters to be managed and new
services can be registered dynamically in OSGi platforms. Our
MIB should take into account this behaviour. Fig. 5 shows
services group when all elements of the commented service
are scalars.

Fig. 5 Services group when all the service parameters are scalars

In a concrete moment, only services can be managed which
are in the ServicesTable. Each of these services has a specific
set of parameters to be managed. The sub-MIB in charge of
taken into account the particular information about one service
is referenced by the SOIDMIB column of the ServicesTable.
The SOIDMIB (this is Services.X) indicates the root OID
where all information is stored. It is not possible for two
different services to have the same SOIDMIB (so two
different services have a different X number). Fig. 5 shows
the services group to take into account the dynamic service
environment. There is a set of read-only objects that provides
all the information about the next parameter of the service:
nextelement (the name of the next parameter of the service. If
no name is supplied then there is no more parameters for the
service), nexttype (the SNMP type of the next parameter),
nextdescription (the description of the next parameter),
nextaccess (the access in the next parameter: read-only, write-
only, read-write or not-accessible).

There are as many parameters associated to a service until
the correspondent nextelement is ‘0’. It should be noted that
with this MIB group, a specific service can change
dynamically in the time, including or remaining some objects.

Services.X

nextelement (1)

nexttype (2)

nextdescription (3)

nextaccess (4)

nextelement (Y)

nexttype (Y +1)

nextdescription (Y+2)

value (Y +4)

.

value (5)

nextaccess (Y+ 3)

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:6, 2008

2239

Furthermore, the number, names, etc. of parameters for a
service are not predefined.

As a particular service example, consider that a temperature
sensor service should be added to the OSGi platform with
“temperature value”, “vendor” and “precission_level” as
parameters. Then the ServicesTable would have an entry that
would represent this service. We would get the SOIDMIB for
this entry, we will suppose it is .1.3.6.1.3.200.16 =
Services.16, then the values in this services group would be:

Services.16.1=”temperature value”
Services.16.2=”INTEGER”
Services.16.3=”Temperature in Celsius degrees”
Services.16.4=”read-only”
Services.16.5=”27”
Services.16.6=”vendor”
Services.16.7=”OCTECT STRING”
Services.16.8=”temperature sensor vendor”
Services.16.9=”read-only”
Services.16.10=”ACZ”
Services.16.11=”precission_level”
Services.16.12=”INTEGER (0..4)”
Services.16.13=”Upper number more precission”
Services.16.14=”read-only”
Services.16.15=”4”

D. Traps
The traps are related to two alarm SNMP tables that are

under the trap node. The trap conditions can be configured
thanks to these two tables. Traps are related to the different
OSGi-MIB objects. A trap is sent from the agent to the
manager when certain OSGi-MIB object is between certain
value ranges. Whichever string or integer object of the OSGi-
MIB (thus for example, possible values are the state of a
bundle or the state of a service) can be used for configuring a
trap. One table is dedicated to string objects and the other to
integer ones. These two tables let set traps about MIB object
conditions in a dynamic way.

V. CONCLUSION
This paper motivates the necessity of SNMP management

for OSGi platforms thus allowing a scaleable remote
management of complex devices in a dynamically changing
environment. In order to achieve this objective, SNMP agent
implementation details have been described.

A new OSGI-MIB has been designed that includes all
relevant information to be managed in an OSGi platform. The
MIB is based on relevant information described in the OSGI
v3 specification. The dynamical nature of OSGi about
bundles, packages, services, etc. requires a special MIB. Our
OSGi-MIB proposal allows such dynamic management
environment without assiging the SNMP manager role to
change the initial MIB.

REFERENCES
[1] P. J. Muñoz, "Diseño de un módulo de gestión de red para un PLC de

Siemens S7", Master Thesis, Valencia, 2003. Award for the Best Master
Thesis in Telematics Engineering for the Association of Spanish
Telecommunication Engineering.

[2] Network Working Group, "A Simple Network Management Protocol
(SNMP)", RFC 1157, may 1990.

[3] W. Stallings “SNMP, SNMPv2, SNMPv3, and RMON 1 and 2”, 3rd
Ed., Adisson-Wesley, 1999.

[4] S. Landis and S. Maffeis ‘‘Building reliable distributed systems with
CORBA,’’ Theory and Practice of Object Systems, John Wiley & Sons
Publishers, New York, 1997.

[5] V. Krishnaswamy, D. Walther, S. Bhola, “Efficient Implementations of
of Java Remote Method Invocation (RMI)”, Proceedings of the 4th
USENIX Conference on Object-Oriented Technologies and Systems
(COOTS), 1998.

[6] Innovation Center Intelligent House, “INHAUS“, http://www.inhaus-
duisburg.de/en/index.htm

[7] OSGi Alliance, “OSGi Service Platform release 3”, March 2003,
available at http://osgi.org

[8] Network Working Group, "Structure and Identification of Management
Information for TCP/IP-based Internets”, RFC 1155, may 1990.

[9] Prosyst Software AG, “SNMP Package”, Manual of Prosyst, 2001-2003,
available at. http://www.prosyst.com/osgi.html

[10] M. L. Santillán, “Desarrollo de una herramienta de gestión remota de
pasarelas de servicios domésticas”, Master Thesis, Madrid, 2004.

[11] Network Working Group, "Management Information Base for Network
Management of TCP/IP-based Internets: MIB-II", RFC 1213, march
199.

