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Abstract—Neural networks are well known for their ability to 

model non linear functions, but as statistical methods usually does, 
they use a no parametric approach thus, a priori knowledge is not 
obvious to be taken into account no more than the a posteriori 
knowledge. In order to deal with these problematics, an original way 
to encode the knowledge inside the architecture is proposed. This 
method is applied to the problem of the evapotranspiration inside 
karstic aquifer which is a problem of huge utility in order to deal 
with water resource. 

 
Keywords—Neural-Networks, Hydrology, Evapotranpiration, 

Hidden Function Modeling. 

I. INTRODUCTION 
EURAL networks are known for their ability to identify 
non linear relations. For this reason they are used in the 

field of hydrology with an increasing success. Nevertheless 
the fact that the model obtained with neural network is not 
understandable in terms of physical parameters (black box 
model) is a brake to their use in this field. On another hand, 
researches have been done in order to implement possibly non 
linear differential equations inside the network in order to use 
available knowledge [1]. The model is then called "gray box". 
The approach presented in this paper has the same goal than 
the previous one but starts from the naturalist approach: how 
can we constrain the network, with naturalist knowledge, in 
order to oblige it to deliver the information of interest? The 
problem of evapotranspiration is addressed in this paper and 
after a presentation of the notation and algorithm in the first 
part, we introduce the problem of the evapotranspiration 
estimations in a second part. Starting from the standard 
multilayer perceptron presented in a third part, we present, at 
the end, how by successive approximations a hidden 
estimation of evapotranspiration is carried out. Moreover the 
estimation seems to be constant even if the number of hidden 
neurons changes. 

II. NEURAL NETWORKS IN WATER SCIENCES MODELING 
During the last twenty years there has been considerable 

research devoted, on the one hand, to the field of nonlinear 
and adaptive modeling, and on the other hand to the study of 
neural networks in order to perform such tasks. Nevertheless, 
the idea of using neural networks' ability to model nonlinear 
and non-stationary behaviours in hydrological systems 

emerged only about ten years ago [2]. Currently, several 
theoretical results and many different learning schemes have 
proven that neural networks are becoming a very effective 
tool in hydrological applications. 

Neural networks are firstly devices able to learn. In the case 
of signal processing, or system identification, the set of 
examples consists of sampled input and output signals.  

The second fundamental property of neural networks is that 
they can implement non linear functions [3]. This property is a 
necessary one for systems such as catchment areas which may 
have different responses even when the input is the same (for 
example, the behaviour during summer or winter is very 
different- See Figure for illustration).  

Clearly, Neural Networks are statistical models. They have 
been used for about ten years in an increasing number of 
applications for elaborate rainfall-runoff models using Self-
Organized networks [4], or multilayer networks [5-7]. Other 
approaches are also used, such as fuzzy logic [8] or sequential 
automata [9]. Moreover, because of their ability to identify 
non linear dynamical models, recurrent non-directed neural 
networks are good candidates for simulating fast floods [10]. 
All these approaches put in evidence that Neural Networks 
work better than others models, sometimes just a little better, 
in other cases with a significant improvement.  

Neural Networks are efficient in modeling water transfer, 
and because of the complexity of the phenomenon, we hope 
that neural network models may significantly improve not 
only flood forecasting, but also scientific knowledge. A way 
to deal with this goal is to add constraints into the neural 
model in order to lead it to implement rainfall runoff relation, 
in such a way that we can interpret the model. According to 
this goal, modeling non measurable processing had yet been 
done [2][10]. This point is at the heart of this work. 
 

A. The Model of Neuron and Multilayer Network 
An artificial neuron is a mathematical operator which 

generally computes two actions: first the linear weighted sum 
of its inputs, and second the non-linear evaluation of its 
output. Various models of neurons have been proposed 
depending on the evaluation function. The formula is: 

ol = f clm.im
inputs _ m
∑
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where ol is the output of the neuron l, im is one of its inputs, 
clm is the synaptic coefficient linking this input to the neuron 
under consideration, and f(.) is the evaluation function. For 
example it is possible to choose f(.) = tanh(.). Linear neurons 
may exist, they have an Identity function. 

A neural network is a set of interconnected neurons. These 
connections (defined by the set of coefficients clm) are 
computed during the learning phase. 

It has been demonstrated that any non linear, smooth 
function can be identified by such a network [2]. The accuracy 
of the identification depends on the number of hidden 
neurons. This result is of course very important, but it only 
constitutes a proof of the existence of the solution; therefore 
the difficulty is to find the solution using the appropriate 
learning method operating on an architecture which includes a 
sufficient number of neurons. In this study we firstly consider 
the well known two-layer perceptron, and secondly an ad hoc 
network, coding in its architecture the function we want to 
implement. 

 

B. Learning 
The neural network learning phase is the computation of the 

synaptic weights in order to minimise a "cost function". 
Different learning rules can be derived taking into account 
different cost functions and different minimising methods. Let 
us consider only identification and forecasting applications; 
the cost function J is more understandable in the case of 
supervised learning, since this function is generally the sum of 
the squared errors between the measured outputs and the 
computed values, for each input-output couple of interest. It is 
possible to consider this “cost” function J as follows (only one 
output neuron):  

 

J(C,k) =
1
2

ok(C)− dk( )2

{k}
∑                             (2) 

 
where {k} is the set of input-output couples taken for k past 
values, and C is the set of synaptic coefficients. 

Starting from this cost function, several learning rules have 
been proposed depending on the chosen minimising method. 
The most popular method has been the backpropagation 
learning rule introduced by D. Rumelhart [11] which uses the 
steepest gradient descent. However, other more efficient rules 
have been proposed, for example a descent inspired by second 
order minimisation methods [12-13]. Amongst these second 
order methods the “Levenberg-Marquardt” learning rule [14-
15] is at present the most powerful and leads in a few 
iterations to a very satisfactory solution.  

 
1) Backpropagation learning rule 
The backpropagation learning rule provides a method for 

modifying the network's synaptic weights according to the 
gradient of the quadratic error. It was the first learning rule 
which enabled learning on nonlinear networks, and which 
could also operate on multilayer networks. 

Let us consider the network shown in Fig. 3. An input-
output couple is presented to the network which has to 
associate the input vector ik {ik1, ik2, ik3, …} to the desired 
output dk (scalar value in case of one output neuron). It can be 
noticed that the intermediate, or hidden, neurons have no 
desired value. After computation of the network’s output ok, 
the modification to apply to the coefficients, at time t, using a 
gradient method with a constant step µ is: 
 

cm
k (t +1) = cm

k (t)− μ
∂J(C,t)

∂ck
m

                          (3) 

 
Therefore, using the backpropagation learning rule, the 

synaptic coefficients of a multilayered neural network can be 
computed. Its principal drawbacks are the sensitivity of the 
result to the initialisation of the synaptic weights, and the 
slowness of the convergence rate toward a minimum of the 
cost function. 

 
2) Levenberg-Marquardt Learning Rule 
Because of its efficiency, the Levenberg-Marquardt rule 

should be used whenever possible. Nevertheless, the 
Levenberg-Marquardt learning rule suffers from two 
drawbacks: first it has to invert a matrix which is an 
approximation of the Hessian: the second order derivative of 
the cost function relative to the synaptic coefficients, i.e a 
matrix the dimension of which is equal to nc.nc if nc is the 
number of synaptic coefficients. Sometimes this matrix is too 
huge to be inverted; sometimes this Hessian matrix may be 
non-invertible [15]. 

In some words (see [14-15] for full presentation), 
Levenberg-Marquardt algorithm starts, as bakpropagation, 
from a problem of cost function minimization. The principle 
of the rule is to apply to the coefficients an increment taking 
into account the first and second order of the Taylor 
decomposition of the cost function (notes that Levenberg-
Marquardt addresses the cost function, taking into account the 
whole set of learning couple at the same time t). Noting that 
the second term of the Taylor decomposition needs the 
computation of the Hessian Matrix, Levenberg–Marquardt 
method considers an approximation of the Hessian:  

H=ΔTΔ, where Δ is the vector composed of the first order 
derivative of the cost function (computed by the 
backpropagation), the formula is: 

 

lmij
lmij c

J
c
J

∂
∂

∂
∂

≅ ∑
{k}

,[H]                             (4) 

 
The Levenberg-Marquardt rule assumes that at each 

presentation t of the whole set of learning couples {ik,ok}, an 
increment to the coefficients is computed in the direction of 
the gradient: Δ, with amplitude µ(C,t) such that: 

 

( ) 1T Id).t()t,C(
−

λ+ΔΔ=μ                            (5) 
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where Id is the Identity matrix. 
The interpretation is the following: at the beginning of the 

learning process, a high value of factor λ(t) is chosen in order 
to lead the matrix µ(C) to be diagonal dominant. The rule is 
therefore close to a first order gradient descent rule. 

The factor λ(t) is then decreased in order to be neglected in 
relation to the approximation of the Hessian part : ΔTΔ. At the 
end of learning, the computation essentially uses the second 
order information and in a few iterations comes close to the 
cost function minimum. 

This presentation of the Levenberg-Marquartd rule shows 
that backpropragation is necessarily computed in order to 
estimate the derivatives Δ. 

 Starting from the previous considerations, the identification 
of a dynamic system can be addressed by neural networks in 
computing learning with input-output couples. It is well 
known that the behaviour of a dynamic system depends not 
only on external inputs but also on some internal variables that 
represent the “state” of the system. Under the condition of 
observability of the system, these state variables are assumed 
to be past outputs of the real process. However expertise may 
indicate that another choice may be to select the most relevant 
state variables (see S. Narendra in [16] for further 
considerations).  

 

C. Learning of a Discrete-Time Feedback Network 
Considering a network at a given instant, learning is 

performed using the previous external inputs: {i(t)} plus the 
state variables: the previous output or complementary state 
variables. Learning on recurrent networks can be performed in 
at least two ways: the first one consists in taking into account 
all the previous values using a recurrent method, see for 
example K. Narendra [16] and  P. J. Werbos [17]; the second 
way takes into account only a few time events, and formulates 
the backpropagation on a small window of time as proposed 
by L. Personnaz [18]. The second way was chosen in this 
study because of its simplicity.  

 
1) Schemes of identification 
Two strategies are possible in order to implement the 

learning: in the first one the objective is to capture the 
dynamics of the process. Then the errors coming from the 
network are taken into account during the learning. The 
looped input is initialised with the past estimated value of the 
network. This scheme of identification is called “non 
directed”. 

The second way of learning uses measured values coming 
from the system. This mode is termed “directed”. 

It is immediately clear that in the case of a neural model 
with feedback operating on non measurable state variables, 
the previous discussion is not relevant; the only solution is the 
non directed model. The identification of the underground 
flow of water was approached in this way [10].  
 

III. CLASSICAL APPROACH FOR RAINFALL-RUNOFF 
MODELING BY MULTILAYER PERCEPTRON 

As usual in the neural network field, the first approach is 
the multilayered perceptron with one hidden layer. We applied 
rainfall as inputs and runoff as output.  

We have applied the model to a well studied underground 
system in the Ariège (FRANCE): the system of Baget. The 
work performed by the "Laboratoire Souterrain du CNRS" 
supplies an extensive set of data: the measures of daily rainfall 
and daily flow of the river for 20 years. 

The phenomena of water infiltration into a karstic system is 
complicated and still partially unknown. A karstic system is a 
fractured limestone with a very irregular outflow. Its modeling 
by neural networks is therefore interesting in the two fields of 
neural networks sciences and karstology. 

The Baget is a Pyrenean river interesting for this study 
because it is well known [18].  The Baget catchment has an 
area of 13,25 km2. Its mean altitude is 950 m and its 
pluviometry quite important: 1700 mm of water by year. Its 
annual evapotranspiration is estimated to 54 mm. The 
evapotranspiration is the quantity of water which is 
evaporated in the atmosphere or which is consumed by the 
vegetation. As other Pyrenean springs, the Baget spring 
presents a low water period during autumn and great flows 
during winter and spring. Usually the snow melt doesn’t give 
great flows. 

The data base has daily flow measurements from august, 
31, 1973 to December the 30 1999, and daily rainfall at the 
"Balagué" station for the same duration. Rainfall and flow are 
represented in Fig. 1 for the last year: 1999.  

 

Rainfall and runoff of Baget river in 1999
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Fig. 1 Rainfall and flows of the Baget river for 1999. One can notices 

two high level water periods: during winter and at beginning of 
spring. The low level period is during summer and autumn. One can 

notice that, due to evapotranspiration, the flow is very low during 
summer even if some rainfall occurs 
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In order to compute rainfall-runoff relation by a two layer 
Neural network, we chose the rainfall measured by a rain 
gauge at "Balagué" station. An input bias is necessary in order 
to represent the base flow. Its value is not 1, as is usually 
applied, but a lower value due to the great number of very low 
values of the flow during the rainfall recording. This 
adjustment is necessary in order not to saturate the sigmoids 
during learning. The mean of the inputs was shown to be a 
good value. As shown in Fig. 2 we apply the rainfall to the 
network in a temporal window. This temporal window is 
essential in order to capture the temporal behaviour of the 
catchment. Seventeen time steps were chosen for rain 
recorder, they correspond to the duration of groudwater 
transfer . 

The learning is processed upon twenty years, from 1974 to 
1994, validation is estimated on five years beginning in 1995 
and stopping in 1999. 

At the output of the network we measure the quality of the 
response using a criterion used in hydrology and called the 
Nash criterion [19]. The Nash criterion is analogous to the 
coefficient of determination and is calculated as: 

 
( )

2
k

2kk do
1Nash

σ

−

−=
∑

                               (5) 

 
where σ is the standard deviation of the test signal. 

The Nash criterion takes into accounts the quadratic error 
and normalises this error by the variance of the signal. The 
closer the criterion to the value 1, the better the model is. If 
forecasting is limited to predict the mean value, the criterion is 
equal to zero; negative values are very bad. 

 

 
Fig. 2 Two layer perceptron for rainfall-runoff relation. Five hidden 

neurons are sufficient 
 

One can see on Fig. 3 a typical sequence of runoff 
prediction, for the year 1999. The mean value of Nash criteria 
upon five simulations for the validation set is 0.66. This value 
is not a very good one, and one can note on the hydrogram 
that the peak values are not well predicted. Also, during 
summer the network "invents" floods when the water level is 
very low. The interpretation is that the network has no 
information about the temperature (evaporation) and the 
consumption of the vegetation. So it can't evaluate the 
evapotranspiration. 

 

Flows during 1999

-0,5

-0,4

-0,3

-0,2

-0,1

0,1

0,2

0,3

0,4

0,5

1/1 1/3 1/5 1/7 1/9 1/11

Day

O
bs

er
ve

d 
Ff

lo
w

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

Es
tim

at
ed

Fl
ow

Nash = 0,66

 
Fig. 3 Observed and estimated flow for Baget river with a standard 

multilayer perceptron. Because of the evapotranspiration which 
cannot be taken into account, the prediction is not very good 

IV. ADDING A PRIORI EVAPOTRANSPIRATION  

A. Taking into account of Evapotranspiration 
Even if the phenomenon of evapotranspiration is different 

in karstic systems compared to other aquifers, it is logical to 
think that it has an important seasonal component: maximal 
during summer and minimal during winter. 
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Fig. 4 A priori ETP inputted to the network 

  
The classical approach would consists in using a estimation 

of the ETP via a formula; for example the Turc formula 
computes an estimation of the evapotranspiration using 
climatic data as temperature, insolation, … [20]. 

In lack of climatic data, particularly temperatures, it is 

Rainfal
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possible to build a signal so called "a priori ETP" which 
would give the information about seasonal variations, and to 
apply this signal in input of the network 

Thus one can compute a "bell" function which is maximal 
in summer, and minimal in winter. If this signal is inputted to 
the network, this one would be able to take the information 
onto account in order to computes the flow. Such a signal is 
represented in Fig. 4.  

New simulations are then computed adding this input to the 
network with a temporal width of 17 delays as chosen for the 
rainfall window. It had to be noticed that the architecture of 
the network has to be modified in order to deliver good 
forecasts. A three layers network is necessary as shown in Fig. 
5.  
 

Fig. 5 Architecture of the network with a priori ETP in input 
 
Using such architecture with such inputs leads to better 

prediction: one can obtain a mean Nash criteria of 0.71 (mean 
upon five trial with various initialization of coefficients). A 
good prediction with a Nash criteria of 0,73 is shown in Fig. 
6. 

One can note on the hydrogram (Fig. 6) that the 
evapotranspiration has been taken into account: the summer 
rainfall contributes very little to the water flow.  
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Fig. 6 Observed and estimated flow for Baget river with a standard 

multilayer perceptron. Inputs are rainfall and a priori 
evapotranspiration 

Nevertheless it is not obvious to know exactly how the neural 
network have done signal processing on "a priori ETP". This 
information would be very interesting but we are limited by 
the "black box" behaviour of the neural networks. 
 

V. EXTRACTING EVAPOTRANSPIRATION FROM NETWORK 

A. Not Constrained Network 
The improvement observed in forecasting when an "a 

priori" evapotranspiration input is added to the network 
suggests that the network is able to take this information in 
account. Nevertheless it is not obvious to extract such 
information in a "black box” model: the coefficients are not 
understandable as known parameters. However, in order to 
perform such a task we have constrained the architecture of 
the network as shown in Fig. 7.  

The idea is as follows: a universal identificator is built in 
order to identify the evapotranspiration signal: it is composed 
of a standard two layers neural network with a linear output 
neuron. Its inputs are the "a priori" evapotranspiration taken 
into account upon a temporal window. Its output: the real 
evapotranspiration is unknown, but is applied to another 
network receiving the rainfall as inputs and delivering runoff 
as output.  The estimated evapotranspiration output is called 
hereafter “hidden ETP”. We hope that the network "rainfall-
runoff", computing its learning and having a need of 
information about evapotranspiration, would compute the real 
function of evapotranspiration. An observer of the output of 
the neuron called ETP neuron on the Fig. 7, or hidden ETP, 
would deliver an estimation of the evapotranspiration. 

 

 
Fig. 7 Constrained architecture in order to "isolate" the 

evapotranspiration contribution 
 
Simulations are realized with standard neurons with 

sigmoïdal function (between {+1,-1}) as usually done, and it 
is very interesting to note that the output of the ETP neuron 
has always the same shape. The number of hidden neuron of 
the ETP sub-network has been increased from 3 to 11, and it 
appears that the forecasting quality is not increased from 7 
hidden neurons. Without surprise it appears also that the 
magnitude of the function can vary a lot: it is the "black box 
effect”. The mean estimation of evapotranspiration is shown 
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in Fig. 8. Mean is computed upon twenty years of learning 
and five trials with different initialization.  

Even if the quantification of the curve is not possible, it is 
very interesting to note that the maximum of the curve is not 
at mid-year as it is supposed with classical models of 
evapotranspiration, but at the beginning of September. This 
observation is an important result, and need to be studied on 
other catchments, karstic or not. 

Another observation is possible: the mean estimated ETP 
may have negative values which is not possible. Both 
observations: different magnitude and negatives values let us 
think that the modeling of ETP by the network is not very 
realistic. Nevertheless, because of the interest of the method 
we continue in the same way in increasing the constraints by 
introduction of knowledge in the network. 

Mean Estimation of Evapotranspiration
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Fig. 8 Estimation of Evapotranspiration. The neurons are coded in {-

1;1} 

B. Constrained Neurons in {01} 
The most obvious constraint to take into account is to force 

the ETP to be between 0 (all the water goes to the spring) to 1: 
all the water is consumed). This is achievable by choosing for 
the ETP neuron a sigmoid function between {0;1}, in place of 
identity function. Other neurons of the network are coded in 
{-1;1}. This modification is performed and, as for the 
previous simulation, we present on Fig. 9 the mean of the 
estimated ETP upon 20 years and 5 trials.  

It is very interesting to note that the shapes are still identical 
and that the maximum is still in September (the minimum in 
February). It is surprising to note that another "local 
maximum" appears in April.  

Unfortunately the magnitudes of the functions are still 
different and could discourage any temptation to quantify the 
ETP. Nevertheless an estimation of the magnitude of the 
“impact” of the ETP upon the computation of the flow is 
possible by multiplying the hidden ETP estimation by the 
magnitude of the coefficients linking this hidden output to the 

rest of the network. Unfortunately the "impact" of the hidden 
ETP is not constant in all cases: with 5, 7 or 9 neurons on 
input layer of the ETP network as shown in Table I. It is thus 
difficult to conclude. 

 
TABLE I 

ESTIMATION OF THE "IMPACT" OF HIDDEN ETP UPON THE NETWORK 
100*Max 

ETP*Moy(abs(Cij)) 
5 hidden 
neuron 

7 hidden 
neuron 

9 hidden 
neuron 

 3 2.9 3.3 
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Fig. 9 Estimation of Evapotranspiration. The neurons are coded in 

{0;1} 
 

C. Constrained Neurons with Regularization  
Continuing the reasoning and in order to constrain the 

magnitude of the curves we have then applied to the goal 
function of the network a term of weight decay [21]. The 
weight decay is introduced to prevent networks to overfit 
during learning: we add in the goal function a term which 
limits the magnitude of the coefficients during learning. We 
hope that this term will equalize the magnitude of the 
coefficients and by consequence the magnitude of the hidden 
ETP. Typically this term is the squared sum of the coefficient. 
More precisely we have used in this work the following goal 
function:  

( ) ( )∑∑ +−= 2

{k}

2

2
1.)(

2
1.),( ij

kk CdCokCG βα               (6)  

Where α and β are ad hoc coefficients (0.95 and 0.05 
respectively). 

The mean estimation of evapotranspiration is still computed 
upon 20 years and 5 initializations and delivers the signals 
shown in Fig. 10. It is remarkable to note that the curves with 
decay or without decay have really the same shape, but the 
magnitude is still different. 

 As computed previously an estimation of the “impact” of 
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the hidden ETP upon the network can be done using the 
coefficient's magnitude and is reported in Table II.  

 
TABLE II 

ESTIMATION OF THE "IMPACT" OF HIDDEN ETP UPON THE NETWORK 
100*Max 

ETP*Moy(abs(Cij)) 
5 hidden 
neuron 

7 hidden 
neuron 

9 hidden 
neuron 

 2,0 2.1 2.0 
 
It appears in this table that the "impact" of hidden ETP is 

quasi constant which is very interesting: we have probably 
obtained a realistic value for the ETP. 

 

Mean Estimation of Evapotranspiration

0,55
0,60
0,65
0,70
0,75
0,80
0,85
0,90
0,95
1,00

1/1 1/3 1/5 1/7 1/9 1/11

Day

ET
P

Mean ETP w ithout Decay

Mean ETP w ith Decay

 
Fig. 10 Estimation of Evapotranspiration, with and without decay. 

Neurons are coded in {0;1}, and the hidden ETP layer has 7 hidden 
neurons 

 

D. Best fit with the Help of the Real Evapotranspiration 
At this stage of the exposal, we can consider that the neural 

network gave a fiable modelling of the shape of 
evapotranspiration curve, but not of its amplitude. 
Nevertheless, this last parameter can be adjusted taking into 
account the mean measured value of the real 
evapotranspiration (ETR) on one year. This value is simply 
expressed as the difference between the total amount of water 
in rainfall on the catchment and the total outflow at the outlet 
of this area. It can be noticed that the ETR can only be 
measured by this way and only cumulated upon an entire year. 
If we do this calculation on the 21 years being used to realize 
the learning, we get a mean value of the real 
evapotranspiration of 405 mm. On the other hand the 
estimated evapotranspiration with the weight decay gives us a 
value of 239 (without unity because neural network has 
normalized signals). So, the whole curve has to be multiplied 
by the factor 405/239 in order to model the 
evapotranspiration. When this adjustment is made, we obtain 
the modeling of ETP which has been calculated by the 

network and quantified by ETR and which is presented in Fig. 
11. 
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Fig. 11 Estimeted evapotranspiration after adjustment using real, 

measured over a year, evapotranspiration 
 
Of course, such estimation of the evapotranspiration needs 

to be studied deeply in order to give sense to the double 
information that the network have extracted: first the date of 
the maximum of the ETP and secondly the value of the 
magnitude. Nevertheless, the fact that the network delivers 
constant estimations, independently of the number of hidden 
neurons is very satisfactorily. Moreover, because we can 
observe the shape of ETP signal inside the network, the 
presented method produces a network which can be called as 
“transparent” network. 
 

VI. CONCLUSION 
We first showed that because of their ability to identify non 

linear dynamical models, neural networks are good candidates 
for simulating rainfall-runoff relation. Moreover, using a 
specific architecture we showed that static models can be 
interpreted in terms of hydrogeology and provide an 
estimation of hidden variables like evapotranspiration. This 
last property is really innovative and opens up a wide field of 
fruitful research in earth science.  
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