
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:6, 2008

2226

Abstract—Neural networks are well known for their ability to

model non linear functions, but as statistical methods usually does,
they use a no parametric approach thus, a priori knowledge is not
obvious to be taken into account no more than the a posteriori
knowledge. In order to deal with these problematics, an original way
to encode the knowledge inside the architecture is proposed. This
method is applied to the problem of the evapotranspiration inside
karstic aquifer which is a problem of huge utility in order to deal
with water resource.

Keywords—Neural-Networks, Hydrology, Evapotranpiration,

Hidden Function Modeling.

I. INTRODUCTION
EURAL networks are known for their ability to identify
non linear relations. For this reason they are used in the

field of hydrology with an increasing success. Nevertheless
the fact that the model obtained with neural network is not
understandable in terms of physical parameters (black box
model) is a brake to their use in this field. On another hand,
researches have been done in order to implement possibly non
linear differential equations inside the network in order to use
available knowledge [1]. The model is then called "gray box".
The approach presented in this paper has the same goal than
the previous one but starts from the naturalist approach: how
can we constrain the network, with naturalist knowledge, in
order to oblige it to deliver the information of interest? The
problem of evapotranspiration is addressed in this paper and
after a presentation of the notation and algorithm in the first
part, we introduce the problem of the evapotranspiration
estimations in a second part. Starting from the standard
multilayer perceptron presented in a third part, we present, at
the end, how by successive approximations a hidden
estimation of evapotranspiration is carried out. Moreover the
estimation seems to be constant even if the number of hidden
neurons changes.

II. NEURAL NETWORKS IN WATER SCIENCES MODELING
During the last twenty years there has been considerable

research devoted, on the one hand, to the field of nonlinear
and adaptive modeling, and on the other hand to the study of
neural networks in order to perform such tasks. Nevertheless,
the idea of using neural networks' ability to model nonlinear
and non-stationary behaviours in hydrological systems

emerged only about ten years ago [2]. Currently, several
theoretical results and many different learning schemes have
proven that neural networks are becoming a very effective
tool in hydrological applications.

Neural networks are firstly devices able to learn. In the case
of signal processing, or system identification, the set of
examples consists of sampled input and output signals.

The second fundamental property of neural networks is that
they can implement non linear functions [3]. This property is a
necessary one for systems such as catchment areas which may
have different responses even when the input is the same (for
example, the behaviour during summer or winter is very
different- See Figure for illustration).

Clearly, Neural Networks are statistical models. They have
been used for about ten years in an increasing number of
applications for elaborate rainfall-runoff models using Self-
Organized networks [4], or multilayer networks [5-7]. Other
approaches are also used, such as fuzzy logic [8] or sequential
automata [9]. Moreover, because of their ability to identify
non linear dynamical models, recurrent non-directed neural
networks are good candidates for simulating fast floods [10].
All these approaches put in evidence that Neural Networks
work better than others models, sometimes just a little better,
in other cases with a significant improvement.

Neural Networks are efficient in modeling water transfer,
and because of the complexity of the phenomenon, we hope
that neural network models may significantly improve not
only flood forecasting, but also scientific knowledge. A way
to deal with this goal is to add constraints into the neural
model in order to lead it to implement rainfall runoff relation,
in such a way that we can interpret the model. According to
this goal, modeling non measurable processing had yet been
done [2][10]. This point is at the heart of this work.

A. The Model of Neuron and Multilayer Network
An artificial neuron is a mathematical operator which

generally computes two actions: first the linear weighted sum
of its inputs, and second the non-linear evaluation of its
output. Various models of neurons have been proposed
depending on the evaluation function. The formula is:

ol = f clm.im
inputs _ m
∑

⎛

⎝
⎜ ⎜

⎞

⎠
⎟ ⎟
 (1)

Neural Networks: From Black Box towards
Transparent Box

Application to Evapotranspiration Modeling

A. Johannet, B. Vayssade, and D. Bertin

N

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:6, 2008

2227

where ol is the output of the neuron l, im is one of its inputs,
clm is the synaptic coefficient linking this input to the neuron
under consideration, and f(.) is the evaluation function. For
example it is possible to choose f(.) = tanh(.). Linear neurons
may exist, they have an Identity function.

A neural network is a set of interconnected neurons. These
connections (defined by the set of coefficients clm) are
computed during the learning phase.

It has been demonstrated that any non linear, smooth
function can be identified by such a network [2]. The accuracy
of the identification depends on the number of hidden
neurons. This result is of course very important, but it only
constitutes a proof of the existence of the solution; therefore
the difficulty is to find the solution using the appropriate
learning method operating on an architecture which includes a
sufficient number of neurons. In this study we firstly consider
the well known two-layer perceptron, and secondly an ad hoc
network, coding in its architecture the function we want to
implement.

B. Learning
The neural network learning phase is the computation of the

synaptic weights in order to minimise a "cost function".
Different learning rules can be derived taking into account
different cost functions and different minimising methods. Let
us consider only identification and forecasting applications;
the cost function J is more understandable in the case of
supervised learning, since this function is generally the sum of
the squared errors between the measured outputs and the
computed values, for each input-output couple of interest. It is
possible to consider this “cost” function J as follows (only one
output neuron):

J(C,k) =
1
2

ok(C)− dk()2

{k}
∑ (2)

where {k} is the set of input-output couples taken for k past
values, and C is the set of synaptic coefficients.

Starting from this cost function, several learning rules have
been proposed depending on the chosen minimising method.
The most popular method has been the backpropagation
learning rule introduced by D. Rumelhart [11] which uses the
steepest gradient descent. However, other more efficient rules
have been proposed, for example a descent inspired by second
order minimisation methods [12-13]. Amongst these second
order methods the “Levenberg-Marquardt” learning rule [14-
15] is at present the most powerful and leads in a few
iterations to a very satisfactory solution.

1) Backpropagation learning rule
The backpropagation learning rule provides a method for

modifying the network's synaptic weights according to the
gradient of the quadratic error. It was the first learning rule
which enabled learning on nonlinear networks, and which
could also operate on multilayer networks.

Let us consider the network shown in Fig. 3. An input-
output couple is presented to the network which has to
associate the input vector ik {ik1, ik2, ik3, …} to the desired
output dk (scalar value in case of one output neuron). It can be
noticed that the intermediate, or hidden, neurons have no
desired value. After computation of the network’s output ok,
the modification to apply to the coefficients, at time t, using a
gradient method with a constant step µ is:

cm
k (t +1) = cm

k (t)− μ
∂J(C,t)

∂ck
m

 (3)

Therefore, using the backpropagation learning rule, the

synaptic coefficients of a multilayered neural network can be
computed. Its principal drawbacks are the sensitivity of the
result to the initialisation of the synaptic weights, and the
slowness of the convergence rate toward a minimum of the
cost function.

2) Levenberg-Marquardt Learning Rule
Because of its efficiency, the Levenberg-Marquardt rule

should be used whenever possible. Nevertheless, the
Levenberg-Marquardt learning rule suffers from two
drawbacks: first it has to invert a matrix which is an
approximation of the Hessian: the second order derivative of
the cost function relative to the synaptic coefficients, i.e a
matrix the dimension of which is equal to nc.nc if nc is the
number of synaptic coefficients. Sometimes this matrix is too
huge to be inverted; sometimes this Hessian matrix may be
non-invertible [15].

In some words (see [14-15] for full presentation),
Levenberg-Marquardt algorithm starts, as bakpropagation,
from a problem of cost function minimization. The principle
of the rule is to apply to the coefficients an increment taking
into account the first and second order of the Taylor
decomposition of the cost function (notes that Levenberg-
Marquardt addresses the cost function, taking into account the
whole set of learning couple at the same time t). Noting that
the second term of the Taylor decomposition needs the
computation of the Hessian Matrix, Levenberg–Marquardt
method considers an approximation of the Hessian:

H=ΔTΔ, where Δ is the vector composed of the first order
derivative of the cost function (computed by the
backpropagation), the formula is:

lmij
lmij c

J
c
J

∂
∂

∂
∂

≅ ∑
{k}

,[H] (4)

The Levenberg-Marquardt rule assumes that at each

presentation t of the whole set of learning couples {ik,ok}, an
increment to the coefficients is computed in the direction of
the gradient: Δ, with amplitude µ(C,t) such that:

() 1T Id).t()t,C(
−

λ+ΔΔ=μ (5)

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:6, 2008

2228

where Id is the Identity matrix.
The interpretation is the following: at the beginning of the

learning process, a high value of factor λ(t) is chosen in order
to lead the matrix µ(C) to be diagonal dominant. The rule is
therefore close to a first order gradient descent rule.

The factor λ(t) is then decreased in order to be neglected in
relation to the approximation of the Hessian part : ΔTΔ. At the
end of learning, the computation essentially uses the second
order information and in a few iterations comes close to the
cost function minimum.

This presentation of the Levenberg-Marquartd rule shows
that backpropragation is necessarily computed in order to
estimate the derivatives Δ.

 Starting from the previous considerations, the identification
of a dynamic system can be addressed by neural networks in
computing learning with input-output couples. It is well
known that the behaviour of a dynamic system depends not
only on external inputs but also on some internal variables that
represent the “state” of the system. Under the condition of
observability of the system, these state variables are assumed
to be past outputs of the real process. However expertise may
indicate that another choice may be to select the most relevant
state variables (see S. Narendra in [16] for further
considerations).

C. Learning of a Discrete-Time Feedback Network
Considering a network at a given instant, learning is

performed using the previous external inputs: {i(t)} plus the
state variables: the previous output or complementary state
variables. Learning on recurrent networks can be performed in
at least two ways: the first one consists in taking into account
all the previous values using a recurrent method, see for
example K. Narendra [16] and P. J. Werbos [17]; the second
way takes into account only a few time events, and formulates
the backpropagation on a small window of time as proposed
by L. Personnaz [18]. The second way was chosen in this
study because of its simplicity.

1) Schemes of identification
Two strategies are possible in order to implement the

learning: in the first one the objective is to capture the
dynamics of the process. Then the errors coming from the
network are taken into account during the learning. The
looped input is initialised with the past estimated value of the
network. This scheme of identification is called “non
directed”.

The second way of learning uses measured values coming
from the system. This mode is termed “directed”.

It is immediately clear that in the case of a neural model
with feedback operating on non measurable state variables,
the previous discussion is not relevant; the only solution is the
non directed model. The identification of the underground
flow of water was approached in this way [10].

III. CLASSICAL APPROACH FOR RAINFALL-RUNOFF
MODELING BY MULTILAYER PERCEPTRON

As usual in the neural network field, the first approach is
the multilayered perceptron with one hidden layer. We applied
rainfall as inputs and runoff as output.

We have applied the model to a well studied underground
system in the Ariège (FRANCE): the system of Baget. The
work performed by the "Laboratoire Souterrain du CNRS"
supplies an extensive set of data: the measures of daily rainfall
and daily flow of the river for 20 years.

The phenomena of water infiltration into a karstic system is
complicated and still partially unknown. A karstic system is a
fractured limestone with a very irregular outflow. Its modeling
by neural networks is therefore interesting in the two fields of
neural networks sciences and karstology.

The Baget is a Pyrenean river interesting for this study
because it is well known [18]. The Baget catchment has an
area of 13,25 km2. Its mean altitude is 950 m and its
pluviometry quite important: 1700 mm of water by year. Its
annual evapotranspiration is estimated to 54 mm. The
evapotranspiration is the quantity of water which is
evaporated in the atmosphere or which is consumed by the
vegetation. As other Pyrenean springs, the Baget spring
presents a low water period during autumn and great flows
during winter and spring. Usually the snow melt doesn’t give
great flows.

The data base has daily flow measurements from august,
31, 1973 to December the 30 1999, and daily rainfall at the
"Balagué" station for the same duration. Rainfall and flow are
represented in Fig. 1 for the last year: 1999.

Rainfall and runoff of Baget river in 1999

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

5,0

0/1 29/2 29/4 28/6 27/8 26/10 25/12

Fl
ow

 (m
3/

s)

0

20

40

60

80

100

Ra
in

fa
ll

(m
m

)

Fig. 1 Rainfall and flows of the Baget river for 1999. One can notices

two high level water periods: during winter and at beginning of
spring. The low level period is during summer and autumn. One can

notice that, due to evapotranspiration, the flow is very low during
summer even if some rainfall occurs

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:6, 2008

2229

In order to compute rainfall-runoff relation by a two layer
Neural network, we chose the rainfall measured by a rain
gauge at "Balagué" station. An input bias is necessary in order
to represent the base flow. Its value is not 1, as is usually
applied, but a lower value due to the great number of very low
values of the flow during the rainfall recording. This
adjustment is necessary in order not to saturate the sigmoids
during learning. The mean of the inputs was shown to be a
good value. As shown in Fig. 2 we apply the rainfall to the
network in a temporal window. This temporal window is
essential in order to capture the temporal behaviour of the
catchment. Seventeen time steps were chosen for rain
recorder, they correspond to the duration of groudwater
transfer .

The learning is processed upon twenty years, from 1974 to
1994, validation is estimated on five years beginning in 1995
and stopping in 1999.

At the output of the network we measure the quality of the
response using a criterion used in hydrology and called the
Nash criterion [19]. The Nash criterion is analogous to the
coefficient of determination and is calculated as:

()

2
k

2kk do
1Nash

σ

−

−=
∑

 (5)

where σ is the standard deviation of the test signal.

The Nash criterion takes into accounts the quadratic error
and normalises this error by the variance of the signal. The
closer the criterion to the value 1, the better the model is. If
forecasting is limited to predict the mean value, the criterion is
equal to zero; negative values are very bad.

Fig. 2 Two layer perceptron for rainfall-runoff relation. Five hidden

neurons are sufficient

One can see on Fig. 3 a typical sequence of runoff
prediction, for the year 1999. The mean value of Nash criteria
upon five simulations for the validation set is 0.66. This value
is not a very good one, and one can note on the hydrogram
that the peak values are not well predicted. Also, during
summer the network "invents" floods when the water level is
very low. The interpretation is that the network has no
information about the temperature (evaporation) and the
consumption of the vegetation. So it can't evaluate the
evapotranspiration.

Flows during 1999

-0,5

-0,4

-0,3

-0,2

-0,1

0,1

0,2

0,3

0,4

0,5

1/1 1/3 1/5 1/7 1/9 1/11

Day

O
bs

er
ve

d
Ff

lo
w

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

Es
tim

at
ed

Fl
ow

Nash = 0,66

Fig. 3 Observed and estimated flow for Baget river with a standard

multilayer perceptron. Because of the evapotranspiration which
cannot be taken into account, the prediction is not very good

IV. ADDING A PRIORI EVAPOTRANSPIRATION

A. Taking into account of Evapotranspiration
Even if the phenomenon of evapotranspiration is different

in karstic systems compared to other aquifers, it is logical to
think that it has an important seasonal component: maximal
during summer and minimal during winter.

"A priori Evapotranspiration"

0,00

0,05

0,10

0/1 29/2 29/4 28/6 27/8 26/10 25/12

Day

"A
rti

fic
ia

l"
 E

TP

Fig. 4 A priori ETP inputted to the network

The classical approach would consists in using a estimation

of the ETP via a formula; for example the Turc formula
computes an estimation of the evapotranspiration using
climatic data as temperature, insolation, … [20].

In lack of climatic data, particularly temperatures, it is

Rainfal

Runoff

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:6, 2008

2230

possible to build a signal so called "a priori ETP" which
would give the information about seasonal variations, and to
apply this signal in input of the network

Thus one can compute a "bell" function which is maximal
in summer, and minimal in winter. If this signal is inputted to
the network, this one would be able to take the information
onto account in order to computes the flow. Such a signal is
represented in Fig. 4.

New simulations are then computed adding this input to the
network with a temporal width of 17 delays as chosen for the
rainfall window. It had to be noticed that the architecture of
the network has to be modified in order to deliver good
forecasts. A three layers network is necessary as shown in Fig.
5.

Fig. 5 Architecture of the network with a priori ETP in input

Using such architecture with such inputs leads to better

prediction: one can obtain a mean Nash criteria of 0.71 (mean
upon five trial with various initialization of coefficients). A
good prediction with a Nash criteria of 0,73 is shown in Fig.
6.

One can note on the hydrogram (Fig. 6) that the
evapotranspiration has been taken into account: the summer
rainfall contributes very little to the water flow.

Flows during 1999

-0,5

-0,4

-0,3

-0,2

-0,1

0,1

0,2

0,3

0,4

0,5

1/1 1/3 1/5 1/7 1/9 1/11

Day

O
bs

er
ve

d
Ff

lo
w

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

Es
tim

at
e

Fl
ow

Nash = 0,73

Fig. 6 Observed and estimated flow for Baget river with a standard

multilayer perceptron. Inputs are rainfall and a priori
evapotranspiration

Nevertheless it is not obvious to know exactly how the neural
network have done signal processing on "a priori ETP". This
information would be very interesting but we are limited by
the "black box" behaviour of the neural networks.

V. EXTRACTING EVAPOTRANSPIRATION FROM NETWORK

A. Not Constrained Network
The improvement observed in forecasting when an "a

priori" evapotranspiration input is added to the network
suggests that the network is able to take this information in
account. Nevertheless it is not obvious to extract such
information in a "black box” model: the coefficients are not
understandable as known parameters. However, in order to
perform such a task we have constrained the architecture of
the network as shown in Fig. 7.

The idea is as follows: a universal identificator is built in
order to identify the evapotranspiration signal: it is composed
of a standard two layers neural network with a linear output
neuron. Its inputs are the "a priori" evapotranspiration taken
into account upon a temporal window. Its output: the real
evapotranspiration is unknown, but is applied to another
network receiving the rainfall as inputs and delivering runoff
as output. The estimated evapotranspiration output is called
hereafter “hidden ETP”. We hope that the network "rainfall-
runoff", computing its learning and having a need of
information about evapotranspiration, would compute the real
function of evapotranspiration. An observer of the output of
the neuron called ETP neuron on the Fig. 7, or hidden ETP,
would deliver an estimation of the evapotranspiration.

Fig. 7 Constrained architecture in order to "isolate" the

evapotranspiration contribution

Simulations are realized with standard neurons with

sigmoïdal function (between {+1,-1}) as usually done, and it
is very interesting to note that the output of the ETP neuron
has always the same shape. The number of hidden neuron of
the ETP sub-network has been increased from 3 to 11, and it
appears that the forecasting quality is not increased from 7
hidden neurons. Without surprise it appears also that the
magnitude of the function can vary a lot: it is the "black box
effect”. The mean estimation of evapotranspiration is shown

Rainfall

Runoff

ETP Signal

ETP signal

Runoff

Rainfall

ETP
neuron

Hidden neurons: from 3 to 11.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:6, 2008

2231

in Fig. 8. Mean is computed upon twenty years of learning
and five trials with different initialization.

Even if the quantification of the curve is not possible, it is
very interesting to note that the maximum of the curve is not
at mid-year as it is supposed with classical models of
evapotranspiration, but at the beginning of September. This
observation is an important result, and need to be studied on
other catchments, karstic or not.

Another observation is possible: the mean estimated ETP
may have negative values which is not possible. Both
observations: different magnitude and negatives values let us
think that the modeling of ETP by the network is not very
realistic. Nevertheless, because of the interest of the method
we continue in the same way in increasing the constraints by
introduction of knowledge in the network.

Mean Estimation of Evapotranspiration

-0,05

0,00

0,05

0,10

1/1 1/3 1/5 1/7 1/9 1/11

Day

ET
P

Mean ETP with 7 hn Mean ETP with 9 hn

Fig. 8 Estimation of Evapotranspiration. The neurons are coded in {-

1;1}

B. Constrained Neurons in {01}
The most obvious constraint to take into account is to force

the ETP to be between 0 (all the water goes to the spring) to 1:
all the water is consumed). This is achievable by choosing for
the ETP neuron a sigmoid function between {0;1}, in place of
identity function. Other neurons of the network are coded in
{-1;1}. This modification is performed and, as for the
previous simulation, we present on Fig. 9 the mean of the
estimated ETP upon 20 years and 5 trials.

It is very interesting to note that the shapes are still identical
and that the maximum is still in September (the minimum in
February). It is surprising to note that another "local
maximum" appears in April.

Unfortunately the magnitudes of the functions are still
different and could discourage any temptation to quantify the
ETP. Nevertheless an estimation of the magnitude of the
“impact” of the ETP upon the computation of the flow is
possible by multiplying the hidden ETP estimation by the
magnitude of the coefficients linking this hidden output to the

rest of the network. Unfortunately the "impact" of the hidden
ETP is not constant in all cases: with 5, 7 or 9 neurons on
input layer of the ETP network as shown in Table I. It is thus
difficult to conclude.

TABLE I

ESTIMATION OF THE "IMPACT" OF HIDDEN ETP UPON THE NETWORK
100*Max

ETP*Moy(abs(Cij))
5 hidden
neuron

7 hidden
neuron

9 hidden
neuron

 3 2.9 3.3

Mean Estimation of Evapotranspiration

0,55
0,60
0,65
0,70
0,75
0,80
0,85
0,90
0,95
1,00

1/1 1/3 1/5 1/7 1/9 1/11

Day

ET
P

Mean ETP w ith 7 hn Mean ETP w ith 9 hn

Fig. 9 Estimation of Evapotranspiration. The neurons are coded in

{0;1}

C. Constrained Neurons with Regularization
Continuing the reasoning and in order to constrain the

magnitude of the curves we have then applied to the goal
function of the network a term of weight decay [21]. The
weight decay is introduced to prevent networks to overfit
during learning: we add in the goal function a term which
limits the magnitude of the coefficients during learning. We
hope that this term will equalize the magnitude of the
coefficients and by consequence the magnitude of the hidden
ETP. Typically this term is the squared sum of the coefficient.
More precisely we have used in this work the following goal
function:

() ()∑∑ +−= 2

{k}

2

2
1.)(

2
1.),(ij

kk CdCokCG βα (6)

Where α and β are ad hoc coefficients (0.95 and 0.05
respectively).

The mean estimation of evapotranspiration is still computed
upon 20 years and 5 initializations and delivers the signals
shown in Fig. 10. It is remarkable to note that the curves with
decay or without decay have really the same shape, but the
magnitude is still different.

 As computed previously an estimation of the “impact” of

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:6, 2008

2232

the hidden ETP upon the network can be done using the
coefficient's magnitude and is reported in Table II.

TABLE II

ESTIMATION OF THE "IMPACT" OF HIDDEN ETP UPON THE NETWORK
100*Max

ETP*Moy(abs(Cij))
5 hidden
neuron

7 hidden
neuron

9 hidden
neuron

 2,0 2.1 2.0

It appears in this table that the "impact" of hidden ETP is

quasi constant which is very interesting: we have probably
obtained a realistic value for the ETP.

Mean Estimation of Evapotranspiration

0,55
0,60
0,65
0,70
0,75
0,80
0,85
0,90
0,95
1,00

1/1 1/3 1/5 1/7 1/9 1/11

Day

ET
P

Mean ETP w ithout Decay

Mean ETP w ith Decay

Fig. 10 Estimation of Evapotranspiration, with and without decay.

Neurons are coded in {0;1}, and the hidden ETP layer has 7 hidden
neurons

D. Best fit with the Help of the Real Evapotranspiration
At this stage of the exposal, we can consider that the neural

network gave a fiable modelling of the shape of
evapotranspiration curve, but not of its amplitude.
Nevertheless, this last parameter can be adjusted taking into
account the mean measured value of the real
evapotranspiration (ETR) on one year. This value is simply
expressed as the difference between the total amount of water
in rainfall on the catchment and the total outflow at the outlet
of this area. It can be noticed that the ETR can only be
measured by this way and only cumulated upon an entire year.
If we do this calculation on the 21 years being used to realize
the learning, we get a mean value of the real
evapotranspiration of 405 mm. On the other hand the
estimated evapotranspiration with the weight decay gives us a
value of 239 (without unity because neural network has
normalized signals). So, the whole curve has to be multiplied
by the factor 405/239 in order to model the
evapotranspiration. When this adjustment is made, we obtain
the modeling of ETP which has been calculated by the

network and quantified by ETR and which is presented in Fig.
11.

Adjusted Evapotranspiration (mm)

1,00

1,05

1,10

1,15

1,20

1,25

1,30

1/1 1/3 1/5 1/7 1/9 1/11

Day
ET

P

Adjusted ETP

Fig. 11 Estimeted evapotranspiration after adjustment using real,

measured over a year, evapotranspiration

Of course, such estimation of the evapotranspiration needs

to be studied deeply in order to give sense to the double
information that the network have extracted: first the date of
the maximum of the ETP and secondly the value of the
magnitude. Nevertheless, the fact that the network delivers
constant estimations, independently of the number of hidden
neurons is very satisfactorily. Moreover, because we can
observe the shape of ETP signal inside the network, the
presented method produces a network which can be called as
“transparent” network.

VI. CONCLUSION
We first showed that because of their ability to identify non

linear dynamical models, neural networks are good candidates
for simulating rainfall-runoff relation. Moreover, using a
specific architecture we showed that static models can be
interpreted in terms of hydrogeology and provide an
estimation of hidden variables like evapotranspiration. This
last property is really innovative and opens up a wide field of
fruitful research in earth science.

ACKNOWLEDGMENT
Authors want to thank warmly A. Mangin and D. D’Hulst

from “Laboratoire Souterrain du CNRS” for helpfull
discussions and providing data sets.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:6, 2008

2233

REFERENCES
[1] Y. Oussar, G. Dreyfus. “How to be a Gray Box: Dynamic

Semi-physical Modeling”. Neural Networks, invited paper, vol. 14,
2001, pp. 1161-1172.

[2] A. Johannet, A. Mangin, D. D'Hulst. “Subterranean Water Infiltration
Modelling by Neural Networks: Use of Water Source Flow”. In Proc. of
ICANN, M. Marinaro and P.G. Morasso eds, Springer, 1994, pp. 1033-
1036.

[3] G. Cybenko. “Approximation by Superposition of a Sigmoidal
Function”. Math. Ctrl Signal Syst, 2, 1989, pp. 293-342.

[4] H. Moradkhani, K. Hsu, H. V. Gupta, S. Sorooshian. “Improved
Streamflow Forecasting Using Self-Organizing Radial Basis Function
Artificial Neural Networks”. Journal of Hydrology, 295, 2004, pp. 246-
262.

[5] I. N. Daliakopoulos, P. Coulibaly, I. K. Tsanis. “Groundwater Level
Forecasting Using Artificial Neural Networks”. Journal of Hydrology
309, 2005, pp. 229-240.

[6] D. I. Jeong, Y. O. Kim. “Rainfall-Runoff models using artificial neural
networks for ensemble streamflow prediction”. Hydrological Processes,
19, 2005, pp. 3819-3835.

[7] B. Kurtulus M. Rasac. “Evaluation of the ability of an artificial neural
network model to simulate the input-outpout responses of a large karstic
aquifer : the Larochefoucault aquifer (Charente – France)”.
Hydrogeological Journal, 2006.

[8] A. P. Jaquin, A. Y. Shamseldin. “Development of rainfall-runoff models
using Takagi-Sugeno fuzzy inference systems”. Journal of Hydrology,
329, 2006, pp. 145-173.

[9] A.-L. Courbis, E. Touraud and B. Vayssade. “Water balance diagnosis
based on a simulation tool”. ENVIROSOFT'98, 1998, pp. 199-208.

[10] A. Johannet, P-A. Ayral, B. Vayssade. “Modelling non Measurable
Processes by Neural Networks: Forecasting Underground Flow Case
Study of the Cèze Basin (Gard – France)”. CISSE, 2006.

[11] D. Rumelhart, G. Hinton, R. Williams. “Learning Internal
Representation by Error Propagation”. PDP, MIT Press, 1988.

[12] E.A. Bender. “Mathematical Method for Artificial Intelligence”. IEEE
Computer Society Press, 1996.

[13] A.J. Shepherd. “Second-Order Methods for Neural Networks”. Springer,
1997.

[14] D.W. Marquardt. Journal of the Society for Industrial and Applied
Mathematics, vol 11, pp. 431-441.

[15] W.H. Press, S.A.Teukolsky, W.T. Vetterling, B.P. Flannery. “Numerical
recipies in C”. Cambridge University Press, 1992.

[16] Narendra K. S., Parthasarathy K. “Gradient Methods for the
Optimization of Dynamical Systems Containning Neural Networks”.
IEEE trans. neur. net., vol 2, 1991, n°2, pp. 252-262.

[17] Werbos P.J. “Backpropagation Throught Time : What it Does and How
to Do It”. Proc. IEEE, 78, N°10, 1990, pp. 1550-1560.

[18] Mangin A. (1970). “Le système karstique du Baget (Ariège)”. Annales
de Spéléologie, vol 25, fasc. 3.

[19] J.E. Nash, J. V. Sutcliffe. “River Flow Forecasting through Conceptual
Model. Part I – A Discussion of Principles”. Journal of Hydrology, 10,
1970, pp. 282-290.

[20] L. Oudin et al. “Which potential evapotranspiration input for a lumped
rainfall-runoff model? Part 2 Towards a simple and efficient potential
evapotranspiration model for rainfall-runoff modelling”. Journal of
hydrology, 303, 2005, pp. 290-306.

[21] Geman S. Bienenstock E. & Doursat R. “Neural networks and the
bias/variance dilemma”. Neural Computation 4, 1992, pp. 1-58.

