
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:8, 2008

2849

Mimicking morphogenesis for robust behaviour of

cellular architectures
David Jones, Richard McWilliam, Alan Purvis

Abstract—Morphogenesis is the process that underpins the self-
organised development and regeneration of biological systems. The
ability to mimick morphogenesis in artificial systems has great
potential for many engineering applications, including production
of biological tissue, design of robust electronic systems and the
co-ordination of parallel computing. Previous attempts to mimick
these complex dynamics within artificial systems have relied upon
the use of evolutionary algorithms that have limited their size and
complexity. This paper will present some insight into the underlying
dynamics of morphogenesis, then show how to, without the assistance
of evolutionary algorithms, design cellular architectures that converge
to complex patterns.

Keywords—Morphogenesis, Regeneration, Robustness, Conver-
gence, Cellular automata

I. INTRODUCTION

Morphogenesis provides biological systems with a robust

framework for the differentiation of undeveloped or partially

developed cells. Remarkable examples of biological systems

that utilize morphogenesis include:

1) The human liver: This organ is capable of withstanding

and repairing damage to up to two-thirds of its con-

stituent cells.

2) The Salamander: If bissected from its tail, the tail will

often grow back.

3) Ascidians (marine filter feeders), whose blood cells

alone have been reported to give rise to a fully functional

organism[1].

Morphogens are soluble proteins that diffuse about source

cells within developing tissue. These chemical messages co-

ordinate the differentiation of cells, determining what type of

cell belongs where in the tissue. Alan Turing, in his seminal

paper “The Chemical basis of Morphogenesis” [3] showed

that systems of multiple chemicals that diffuse and interact

can create some of the irregular patterns found in biological

systems.

Wolpert[4] compared morphogenesis to the formation of

a simple pattern representing the French flag. This pattern

has served as the benchmark for those seeking to mimic

morphogenesis. Miller et al presented an evolved solution to

Wolpert’s French Flag on a cellular architecture[2], that proved

to be capable of repairing damage incurred to up to 25% of

its cells. That Miller et. al’s work was constrained to simple

patterns and limited reliability is because the relationship

between the rules obeyed by each cell and the resulting pattern

is unknown. Researchers in this field have used a supervised

d.h.jones2@dur.ac.uk, r.p.mcwilliam@dur.ac.uk, alan.purvis@dur.ac.uk
University of Durham, School of Engineering , South Road, Durham, DH1

2PQ

evolutionary algorithm to evolve local rules against a cost

function that is defined as the difference between the desired

pattern and the pattern that results from the execution of the

system.

This paper will first show that cellular automata can be

constrained to form robust patterns that perpetually repair

themselves in the event of corruption, then present a mecha-

nism for designing cellular automata to form arbitrary patterns

that does not require the use of an evolutionary algorithm.

II. A CELLULAR AUTOMATA MODEL OF MORPHOGENESIS

A two-dimensional cellular automata of identical cells can

be used to mimick morphogenesis. Each cell of the automaton

receives inputs from its four immediate neighbours, those to

the north, south, east and west of itself. These inputs are

“morphogens” that, via a set of rules determine both the state

of the cell and the form of the output morphogen from the

cell. The set of rules obeyed by each cell is identical for each

cell. The biological analogue of the output of an automata

cell would be the proteins it forms respective of its location

within the body. Within the model, the organ will be a pattern

of colours and each cell output will be a colour. Each cell will

communicate an integer state with its immediate neighbours.

At each discrete time-step every cell computes its next state.

Let us index each cell with the tuple (i, j), then describe the

state of each cell at time t with an integer, ci,j,t and the pattern

of the entire array as a matrix, Ct (see figure 1a).

III. A FRAMEWORK FOR THE DESIGN OF ROBUST

CELLULAR AUTOMATA

If C0 is the initial pattern of Ct, f(C0) is its subsequent

pattern after one time step, and f(f(C0)) or f2(C0) is its

pattern at t = 2; where the function f() describes the transition

function. The matrix Ct is first transcribed into a row-major

vector, Ct (figure 1b) in order for f() to be a linear function

of matrix algebra.

Let us now define a simple transition function from one

time step to the next:

ci,j,t+1 = nci,j−1,t+wci−1,j,t+eci+1,j,t+sci,j+1,t+xci,j,t+k

(1)

Where n, e, s, w and x are coefficents of the state of neigh-

bours of each cell, and of the state of the cell itself.

A transition function for the entire array can be formed from

(1) such that f(Ct) = TCt + K where K is a constant and

the transtion matrix (for a 3 by 3 CA), T, takes the form:



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:8, 2008

2850

(a) (b)

Fig. 1. Index of CA elements, and a row-major vector equivalent

T =





























x e 0 s 0 0 0 0 0
w x e 0 s 0 0 0 0
0 w x 0 0 s 0 0 0
n 0 0 x e 0 s 0 0
0 n 0 w x e 0 s 0
0 0 n 0 w x 0 0 s

0 0 0 n 0 0 x e 0
0 0 0 0 n 0 w x e

0 0 0 0 0 n 0 w x





























(2)

The spacing of the coefficients n, e, s, w and x within T

depend on the size of the CA.

By the repeated application of f(), the transition from C0

to Ct (where t > 1) becomes a non-linear function:

f2(C0) = T(TC0 + K) + K

f3(C0) = T(T(TC0 + K) + K) + K

f3(C0) = T
3C0 + T

2K + TK + K

This can be expanded to form:

f t(C0) = T
tC0 + T

t−1K + K
t−2K + ... + TK + K

Using the geometric series equation this can be simplified to

form:

f t(C0) = T
tC0 + (

I − T
t−1

I − T
)K

Equation (III) determines the pattern formed after t itera-

tions of the transition function (1) have been applied to every

cell synchronously.

Given a sufficiently large t, in order for the dynamic non-

linear system to converge, the final pattern, Ct, must be

independent of the initial pattern, C0. Thus no matter what

the starting pattern (where t = 0 refers to the initial pattern

or any pattern that might be the result of system corruption),

the pattern of cell states will always return to the same stable

pattern.

To satisfy this constraint T
t, the coefficient of C0, must

equal zero. For this to be so, referring to the coefficients of

the states of the cells above, below, left and right and of the

cell itself respectively, the following three constraints must

hold:

1) Either n or s must equal zero

2) Either e or w must equal zero

3) x must equal zero.

This tells us that each cell must determine its next input

according to the state of one neighbouring cell per axis.

By expanding this analysis to an alternative sum-of-products

modulo-two transition function it can be shown that this con-

clusion also holds true for combinatorial transition functions.

IV. DESIGNING ROBUST CELLULAR ARCHITECTURES TO

FORM SPECIFIC PATTERNS

Let us consider the requirements on the implementation of

robust cellular architectures. In a two-dimensional automata

each cell with have at most two inputs, one nearest-neighbour

from each axis. Each cell will obey the same transition

function. We require that this architecture should be able to

converge upon any specified pattern.

If a combinatorial transition function (a function formed

using simple logic operators) is used, certain patterns will exist

that cannot be formed. This is because the same two-input

combination cannot be mapped to many different outputs.

Thus if the pattern we desire the automata to converge to

requires two cells to have the same inputs, but have different

outputs, a more elaborate solution is required.

Instead we could use two combinatorial functions imple-

mented using look-up tables (LUT). The first function, g(),
determines the next-state of the cell based on the current state

of two of its neighbours, one to its left or right, the other

above or below the cell. The second function, h(), will use

the current state of the cell to determine its output in a many-

to-one mapping. Figure 2 shows one possible implementation

of the transition function defined by the LUTs.

Fig. 2. An implementation of the cell transition function using LUTs

To determine the entries to be stored in each LUT we need

a design algorithm. At each time-step, every cell determines

its next state. Having reached the desired final state, the cell

transition rules of the automata must ensure that the next-state

of the automata is the same as the current state. Therefore

the necessary LUT entries can be derived from the final state

by determining the two-inputs of each cell and its next-state

output whilst in its correct state.

A further complication exists because the output of each

cell is not necessarily the same as its current state. Hence

we need some means of assigning a final state to each cell.

During execution the pattern emerges from one corner of the

automata (henceforth referred to as the origin) and progresses

towards the opposite corner of Ct (See figures 3 and 4). If we

progress through the cells in the same direction, assigning each

cell a state that, where possible, has already been assigned to

previous cells, it won’t be necessary to re-solve portions of the

pattern as the algorithm progresses. Listing 1 shows a pseudo-

code implementation of this design algorithm.



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:8, 2008

2851

Listing 1. Design algorithm pseudo-code
For each of 4 r e f l e c t i o n s a b o u t t h e c e n t r e o f t h e p a t t e r n :

For each c e l l in t h e p a t t e r n , in o r d e r from top−l e f t t o bottom−r i g h t :

C e l l s t a t e = 0

While no s o l u t i o n has been found :

De te rmine t h e i n p u t s t o t h e c e l l

T e s t t h e s t a t e−to−o u t p u t mapping a g a i n s t p r e v i o u s l y

d e t e r m i n e d mappings . I f t h e r e i s a c o n f l i c t i n c r e a s e

t h e c e l l s t a t e by 1

T e s t t h e two−i n p u t t o c e l l−s t a t e mapping a g a i n s t p r e v i o u s l y

d e t e r m i n e d mappings . I f t h e r e i s a c o n f l i c t

i n c r e a s e t h e s t a t e by 1

Thus each feature of the desired pattern must have its

position in the pattern determined from another feature closer

to the origin, or the origin itself. Since each cell can only

communicate with its immediate neighbours, each position

must be determined by a non-repeating sequence of state

values. By progressing through the cells from the corner

opposite the origin towards the origin, and attempting to

assign each cell with previously used assignments first, these

position-determining sequences will use a minimal number of

states.

V. RESULTS - A ROBUST VENETIAN DRAGON PATTERN

The design framework we have presented is not limited by

the same constraints and is thus capable of forming much

more complicated patterns. Thus, rather than form the simple

French flag pattern we have chosen to create a robust pattern

of the dragon from the Venetian flag.

Using the algorithm describd in section four, a solution

to the Venetian dragon pattern on a 75 by 50 array of cells

was found using 2457 states and 3627 rules. Note that there

are fewer states than would be required to index each cell

uniquely. Figures 3 and 4 show the Venetian dragon pattern

developing from a null and a corrupt state.

Fig. 3. A Venetian dragon pattern forming from null initial conditions

VI. CONCLUSIONS

This report has sought to introduce a mathematical analysis

of an artificial cellular system inspired by the biological

process of morphogenesis. The results of this analysis include:

Fig. 4. A Venetian dragon pattern forming from partially corrupted initial
conditions

1) That to ensure the final pattern is completely robust, it

is necessary that the transition rules stored by each cell

are independent of the current cell state. In addition the

rules can only depend upon the state of one cell per axis,

either the cell to the left or to the right, either the cell

above or the cell below.

2) That it is possible to find a mapping from the automata

patterns to a set of transition rules using the algorithm

proposed in section four.

Morphogenesis has been demonstrated as an effective tool

for forming patterns on cellular arrays. Thus remains the

question, where else is it applicable? A sufficiently complex

self-assembling robot will require a morphogenesis algorithm

to co-ordinate the assembly process. The distribution and co-

ordination of processes across large computing farms may

benefit from this self-organising technique. Systems that can-

not afford failure could benefit from an architecture that is

intrinsically robust. More generally the approach should be of

use to others in the field of bio-mimicry, in particular those

working to imitate self-replicating systems.

REFERENCES

[1] N. J. Berrill and A. Cohen. Regeneration in clavellina

lepadiformis. Journal of experimental biology, 13, 1936.

[2] J. Miller and W. Banzhaf. Evolving the program for a cell:

From french flags to boolean circuits. On Growh, Form

and Computers, 2003.

[3] A. Turing. The chemical basis of morphogenesis. Philos,

Trans. Roy. Soc., Ser. B 237, 37, 1950.

[4] L. Wolpert. Positional information and the spatial pattern

of cellular differentiation. J Theor. Biol., 25:1-47, 1969.


