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Abstract—A triangular fin with variable fin base thickness is 

analyzed and optimized using a two-dimensional analytical method. 
The influence of fin base height and fin base thickness on the 
temperature in the fin is listed. For the fixed fin volumes, the 
maximum heat loss, the corresponding optimum fin effectiveness, fin 
base height and fin tip length as a function of the fin base thickness, 
convection characteristic number and dimensionless fin volume are 
represented. One of the results shows that the optimum heat loss 
increases whereas the corresponding optimum fin effectiveness 
decreases with the increase of fin volume. 
 

Keywords—A triangular fin, Convection characteristic number, 
Heat loss, Fin base thickness.   

I. INTRODUCTION 
XTENDED surfaces or fins are used to increase the heat 
dissipation in many engineering and industrial applications 

such as the cooling of combustion engines, electronic 
equipments, compressors, aircraft and so on.  Many papers for 
the various fin shapes using many kinds of methods have been 
presented.  For example, Sfeir applied the heat balance integral 
method to solve for the heat flow and temperature distribution 
in extended surfaces of different shapes and boundary 
conditions [1].  Ma et al. investigated a two-dimensional 
rectangular fin with arbitrary variable heat transfer coefficient 
on the fin surface using a Fourier series approach [2].  Kang 
and Look analyzed the trapezoidal fins of various slopes using 
the analytical method [3].  Abrate and Newnham presented heat 
conduction in an array of triangular fins with an attached wall 
using the finite element method [4]. 

All these papers analyzed but not optimized the fin.  There 
are many papers that deal with the fin optimum design.  For 
example, Laor and Kalman studied the optimization of the three 
shapes (rectangular, triangular and parabolic) for the three 
types of fins (longitudinal, spine and annular) using the general 
heat balance differential equation [5].  Chung et al. dealt with 
the optimum design of convective longitudinal fins of a 
trapezoidal profile using the general differential equation based 
on the energy balance [6].  Yeh investigated the optimum 
dimensions of rectangular fins and cylindrical pin fins [7].  
Considering different uniform heat transfer coefficients on the 
fin faces and on the tip, Casarosa and Franco approached the 
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optimum design of single longitudinal fins with a constant 
thickness by means of an accurate mathematical method [8].  
All these optimizations are based on the one-dimensional 
analysis. 

For the two-dimensional optimization, Chung and Iyer 
presented an extended integral approach to determine the 
optimum dimensions for rectangular longitudinal fins and pin 
fins by incorporating traverse heat conduction [9].  Kang and 
Look present the optimum heat loss and dimensions based on 
the fixed fin base height for a thermally and geometrically 
asymmetric trapezoidal fin using the analytical method [10].  
Kundu and Das determined the optimum dimensions for 
eccentric annular fins using Lagrange multiplier technique 
[11]. 

In all these papers, the fin base temperature is given as a 
constant for the boundary condition and the effect of fin base 
thickness is not considered.  In this study, by using a 
two-dimensional analytical method, a straight triangular fin 
with variable fin base thickness is analyzed and optimized for 
the fixed fin volume.   

II. 2-D ANALYTICAL METHOD 
For a straight triangular fin with variable fin base thickness 

as shown in Fig. 1, dimensionless two-dimensional governing 
differential equation under steady state is  
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Four boundary conditions are required to solve the governing 
differential equation and these conditions are shown as (2) 
through (5). 
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The solution for the temperature distribution θ(X, Y) within the 
triangular fin obtained using separation of variables method 
with (1) through (4) is 
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Fig. 1 Geometry of a triangular fin with variable wall thickness 
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The eigenvalues λ n can be calculated using (12) that is 
arranged from (5).  
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The heat loss conducted into the fin through the fin base is 
calculated by (23). 
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Dimensionless heat loss from the fin is written as 
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Fin Effectiveness 
Fin effectiveness is defined as the ratio of heat loss from the 

fin to that from the outside wall.  With assuming that heat is 
transferred from the inside wall to the outside wall along x 
direction only, the energy balance equation can be written in 
dimensionless form as 

0
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Two boundary conditions are given in (26) and (27). 
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When (25) is solved using these boundary conditions, the 
dimensionless temperature distribution between inside wall and 
outside wall is   
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The heat loss from the outside wall is calculated as 

blx
whw dx

dTlkl2q
=

−= .                                                         (29) 

The dimensionless heat loss from the outside wall can be 
expressed as 
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Fin effectiveness is then expressed as 
wQ/Q=ε .                                                                           (31) 

Fin Volume 
The triangular fin volume, as shown in Fig. 1, can be 

calculated by (32).  
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The dimensionless fin volume is expressed as 
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III. RESULTS AND DISCUSSION 
The dimensionless temperature profile along the normalized 

Y position (i.e. NY=2Y/Lh) for different values of fin base 
height at X=(Lb+Le)/2 is shown in Fig. 2.  It is observed that the 
temperature decreases as the fin base height decreases for the 
same value of NY.  It also shows that the decreasing rate of 
temperature along the normalized Y position becomes more 
remarkable as the fin base height increases.  
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Fig. 2 Dimensionless temperature along the normalized position of Y 

(Lb=0.1, Le=1.6, M=0.5) 
 

TABLE I 
DIMENSIONLESS FIN TEMPERATURE WITH THE VARIATIONS OF LB AND LH  

(M=0.1,  LE-LB=2) 

               θ(X=Lb+0.1, Y=0)    Lb Lh=0.1           Lh=0.3          Lh=0.5 
   0.01            0.9018           0.9529          0.9686 
   0.05            0.8689           0.9358          0.9571 
   0.1              0.8310           0.9152          0.9428 

0.2              0.7642           0.8763          0.9151 
 

Table I lists the dimensionless temperature at the arbitrary 
fin position (at X=Lb+0.1, Y=0) with the variation of the fin 
base thickness and fin base height for M=0.1 and Le-Lb=2.  As 
expected, this table illustrates that the temperature decreases as 
the fin base thickness increases due to the increase of the 
thermal resistance between the fin base and the inside wall.  It 
also can be noted that the temperature decreases as the fin base 
height decreases. 

The dimensionless heat loss as a function of fin tip length for 
different values of convection characteristic number is 
presented in Fig. 3.  It is observed that the heat loss increases 
rapidly when the fin tip length approaches fin base thickness 
(i.e. very short fin).  It is because that the fin base height 
increases as the fin tip length decreases for the fixed fin 
volume.  Obviously, the design in this case is impractical, 

although the heat dissipation is large.  Another important 
phenomenon shown in Fig. 3 is that the maximum heat loss 
does not exist when the convection characteristic number is 
beyond certain value.  For example, the maximum heat loss 
exists for M=0.2 and M=0.3 whereas it does not exist for 
M=0.4.  The maximum heat loss will be referred to the 
optimum heat loss and the fin tip length at which the heat loss 
becomes the maximum is referred to the optimum fin tip length 
in this study. 

Fig. 4 presents the fin effectiveness as a function of fin tip 
length under the same conditions as given in Fig. 3.  It shows 
that the fin effectiveness decreases whereas the heat loss 
increases as the fin tip length decreases from 0.8 to 0.4 because  
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Fig. 3 Heat loss as a function of fin tip length (V=0.5, Lb=0.1) 
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Fig. 4 Fin effectiveness as a function of fin tip length (V=0.5, Lb=0.1) 
 
of the fixed fin volume. As already mentioned, this 
phenomenon explains why the fin design is impractical as the 
fin tip length approaches fin base thickness.  Even though the 
maximum heat loss exists for M=0.2 and M=0.3 as shown in 
Fig. 3, the fin effectiveness increases continuously as the fin tip 
length increases for all given values of M.  It can also be noted 
that the effectiveness increases as the convection characteristic 
number decreases for the same value of fin tip length. 
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Fig. 5 depicts the variation of the optimum heat loss and the 
optimum effectiveness as a function of the fin base thickness 
for a triangular fin when the dimensionless fin volume is 
arbitrarily fixed as 0.5.  The optimum fin effectiveness means 
the effectiveness when the heat loss becomes the maximum 
heat loss for given conditions.  It indicates that both the 
optimum heat loss and the corresponding optimum fin 
effectiveness decrease as the fin base thickness increases.  Note 
that the optimum heat loss increases whereas the corresponding 
optimum effectiveness decreases as the convection 
characteristic number increases for the same value of fin base 
thickness. 

 

Fin base thickness Lb

0.0 0.1 0.2 0.3 0.4 0.5

P*

1.0

1.8

2.6

3.4

4.2

5.0

5.8
P* = ε*
P* = 5 Q*

M=0.1

M=0.3

M=0.2

 
Fig. 5 Optimum heat loss and fin effectiveness versus the fin base 

thickness (V=0.5) 
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Fig. 6 Optimum fin tip length and fin base height versus the fin base 

thickness (V=0.5) 
 

Fig. 6 presents the variation of the optimum fin tip length and 
fin base height under the same condition as given in Fig. 5.  The 
variation of fin tip length is relatively not much whereas the fin 
base height increases monotonically with the increase of fin 
base thickness.  Physically, it means that the actual fin length 
becomes shorter and the fin shape is fatter since the fin base 

thickness increases.  It also shows that the fin base height 
increases while the fin tip length decrease as the convection 
characteristic number increases for the same value of fin base 
thickness. 

The dimensionless fin volume, V, was arbitrarily selected to 
be 0.5 in the previous discussion.  The variations of the 
optimum performance and dimension as a function of V are 
shown in Figs. 7-8.  As expected, the increase of V enhances 
the optimum heat loss.  The corresponding optimum 
effectiveness decreases remarkably first and then decreases 
slowly with the increase of the fin volume because the 
increasing rate of optimum fin height is larger than that of the 
optimum fin tip  
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Fig. 7 Optimum heat loss and fin effectiveness versus the fin volume 

(Lb=0.1) 
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Fig. 8 Optimum fin tip length and fin base height versus the fin volume 

(Lb=0.1) 
 
length with the increases of the fin volume as shown in Fig. 8.  
For one example, in the case of M=0.2, fin base height 
increases from 0.05 to 1.02 (i.e. 20.4 times) whereas the fin tip 
length increases from 0.5 to 2.06 (i.e. 4.1 times) as the fin 
volume increases from 0.01 to 1.  Fig. 8 also shows the 
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optimum fin tip length increases rapidly first and then levels off 
whereas the optimum fin base height increases almost linearly 
as the fin volume increases. Physically, the optimum straight 
triangular profile fin becomes rather ‘fatter’ with the increase 
of the fin volume.  It can be noted that the optimum fin tip 
length increases as the convection characteristic number 
decreases for the same fixed fin volume. 

Fig. 9 represents the variation of the optimum heat loss and 
the optimum fin effectiveness as a function of the convection 
characteristic number for several fixed fin volume. It shows 
that the variation trend of the performance with the variation of 
the convection characteristic number is somewhat similar to 
that with the variation of the fin volume. 
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Fig. 9 Optimum heat loss and fin effectiveness vs. convection 

characteristic number (Lb=0.05) 
 

The optimum fin tip length and fin base height as a function 
of convection characteristic number for the same condition as 
given in Fig. 9 is shown in Fig. 10.  As shown in this figure, the 
optimum fin tip length decreases as the convection 
characteristic number increases and the optimum fin base 
height increases due to the fixed fin volume.  Physically, this 
means that the shape of the optimum triangular fin becomes 
shorter and fatter with the increase of the convection 
characteristic number. 

IV. CONCLUSION 
From this two-dimensional analysis of a triangular fin, the 

following conclusions can be drawn: 
1. For fixed fin volume, the maximum heat loss in the practical 

fin length does not exists with the variation of fin tip length when 
given variables (for example, fin base thickness, convection 
characteristic number and fin volume) are larger than certain 
value.  

2. Both the optimum heat loss and the corresponding 
optimum fin effectiveness decrease with the increase of the fin 
base thickness. 

3. Even though the optimum heat loss increases, the 
corresponding optimum fin effectiveness decreases as the 
convection characteristic number and the fin volume increase.  
It is because that the optimum fin tip length decreases whereas 

the optimum fin base height increases or that the increasing rate 
of fin tip length is less than that of the fin base height as the 
convection characteristic number and the fin volume increase. 

NOMENCLATURE   
h: heat transfer coefficient over the fin [W/m2℃] 
k: thermal conductivity of fin material [W/m℃] 
lb: fin base thickness [m] 
Lb: dimensionless fin base thickness, lb/lc 
lc: characteristic length [m] 
le: fin tip length [m] 
Le: dimensionless fin tip length, le/lc 
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Fig. 10 Optimum fin tip length and fin base height vs. convection 

characteristic number (Lb=0.05) 
 
lh: one half fin base height [m] 
Lh: dimensionless one half fin base height, lh/lc 
lw: fin width [m] 
M: convection characteristic number (=hlc/k) 
NY: normalized position of Y (=2Y/Lh) 
q: heat loss from the fin [W] 
Q: dimensionless heat loss from the fin, q/(kwΦi) 
qw: heat loss from the bare wall [W] 
Qw: dimensionless heat loss from the bare wall, qw/(kwΦi) 
s: fin lateral slope {=Lh/(Le-Lb)} 
T: fin temperature [℃] 
Tb: fin base temperature [℃] 
Ti: temperature of inside wall [℃] 
T∞: ambient temperature [℃] 
v: fin volume [m3] 
V: dimensionless fin volume, v/(lc

2·lw) 
x: length directional variable [m] 
X: dimensionless length directional variable, x/lc 
y: height directional variable [m] 
Y: dimensionless height directional variable, y/lc 
 
Greek symbol 
ε: fin effectiveness 
θ: dimensionless temperature, (T-T∞)/(Ti-T∞)  
λn: eigenvalues (n = 1, 2, 3, ···) 
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Φi: adjusted temperature of inside wall [℃], (Ti-T∞)  
 
Subscript 
b: fin base  
c: characteristic 
e: fin tip 
h: fin base height  
i: inside wall 
w: outside wall 
∞: surrounding 
 
Superscript 
* : optimum 
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