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Abstract—This paper presents a novel method for inferring the
odor based on neural activities observed from rats’ main olfactory
bulbs. Multi-channel extra-cellular single unit recordings were done
by micro-wire electrodes (tungsten, 50μm, 32 channels) implanted in
the mitral/tufted cell layers of the main olfactory bulb of anesthetized
rats to obtain neural responses to various odors. Neural response
as a key feature was measured by substraction of neural firing rate
before stimulus from after. For odor inference, we have developed a
decoding method based on the maximum likelihood (ML) estimation.
The results have shown that the average decoding accuracy is about
100.0%, 96.0%, 84.0%, and 100.0% with four rats, respectively. This
work has profound implications for a novel brain-machine interface
system for odor inference.

Keywords—biomedical signal processing, neural engineering, ol-
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I. INTRODUCTION

NEURONS represent and transmit information by firing
sequences of spikes in various temporal patterns [1].

These neural spike patterns contain responses to external
stimulus if these neurons are sensory neurons that are activated
by external sensory input. Thus the external sensory input can
be inferred from neural spike patterns. This is so called neural
decoding.

Many neural decoding algorithms have been developed.
The simplest approach uses a linear estimator [2], which
has been used effectively for real-time neural control of a
2D cursor in brain-computer interface research [3]. But this
approach requires the use of data over a long time window
[4]. One of the popular approach for neural decoding is to
use artificial neural networks [5][6]. In addition Kalman filter
based methods have been exploited for inferring hand position
and velocity [4][7]. These neural decoding algorithms have
been focused on predicting arm motion, intended reach, and
cursor control [8]–[9]. In [10], finger movements have been
inferred from M1 neurons using the maximum likelihood (ML)
method. However, neural decoding of olfactory system has not
been studied widely.

Mammals’ olfactory systems are capable of distinguishing
thousands of odorous compounds. Different odorants induce
odor-specific spatial patterns of olfactory bulb glomerular layer
activity [11]. The olfactory bulb glomeruli receive inputs
from a homogeneous population of olfactory receptor neurons
expressing the same olfactory receptor gene [12]. Glomeruli
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serve as the site of synaptic contact between olfactory receptor
neurons and second-order neurons, mitral/tufted cells. Most
naturally occurring odors are complex mixtures, and the spatial
pattern of glomerular activity reflects both individual com-
ponents [13] and early inter-component interactions [14]. In
addition to spatial patterns, both glomerular and mitral/tufted
cell activities demonstrate stimulus-specific temporal structure
[15].

Here, we present a statistically optimal method, based on
the ML method, for decoding the activity of a large number
of simultaneously recorded MOB neurons during presentation
of various odors. The ML method is an optimal statistical
method to make inference about parameters based on the
underlying probability distribution of a given data set. Also, in
[9] the authors have provided a neuron model that can realize
the likelihood function for an optimal decoding of sensory
information. One of the challenging tasks in ML decoding is
to model the probability density function of the activity change
of a neuron. For modelling of neuronal discharge patterns,
we quantified the activity of each neuron as the change in
firing rate before and after odor stimulus. The mathematical
modelling is done by using the Gaussian distribution. Then
we inferred the odor for which the Gaussian based likelihood
function has a maximum.

II. MATERIALS AND METHODS

A. Odor presentation

All experimental procedures were in accord with the guide-
lines for animal experimentation in Hallym University. Male
Sprague-Dawley rats (350–400g, 4 rats) were used as subjects.
Animals had food and water available ad libitum and were
housed on a 12h light/dark cycle.

Odor delivery was performed during the light phase of
the cycle. Odorants were delivered with a motorized odor
stimulator, presented 10mm from the rat’s nose for 4.0 seconds
with clean air. Approximate concentration was assumed at 1:1
airflow dilution in clean air. Each stimulus was at an interval
of about 120.0 seconds and repeated five times for each ex-
periment. Five organic compound were used as test odorants.
Isoamyl acetate (IAA), Methyl methacrylate (MMA), Methyl
ethyl ketone (MEK), Mixture (MIX), and Mineral oil (OIL).

B. Signal acquisition from MOB neurons

Micro-wire electrodes (32 channels, bare diameter
50μm/coated diameter 100μm-Teflon insulated tungsten wire)
were implanted in the dorsal area of MOB of anesthetized rats
(urethane 1.5g/kg, i.p., Sigma (Cat. U2500)). Neural activities
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Fig. 1. Peristimulus time histograms (PSTHs, top of each graph) and rasters (bottom of each graph) of total 128 neurons over five trials on rat A. PSTHs
visualize the neural firing rate (spike counts/100 ms) in relation to presentation of 5 different odor stimuli. Odor stimuli for 4.0 seconds are marked with two
vertical lines.

were assessed by simultaneously recording extra-cellular
single-unit activities from many mitral/tufted cells.

Signals from individual electrodes were amplified by
10, 000 − 20, 000 gain, filtered from 154Hz to 8.8kHz. A
Many Neuron Acquisition Processor (MNAP; Plexon Inc.,
Dallas, TX) was used to simultaneously record neural activities
from multiple microwires. Data were recorded from 128 odor-
responsive neurons in MOB of the rats.

C. Data analysis
Let rn(k) be the average neural activity of a neuron during

an odor stimulus, i.e., firing rate of neuron #n for an odor
stimulus k among five possible choices. We defined odor-
evoked neural response by

xn(k) = rn(k) − rn(k0) (1)

where rn(k0) is the initial activity of neuron which means av-
erage firing rate before the odor k delivery. The magnitude of
the odor-evoked response xn(k) was calculated by subtracting
the number of spikes that occurred before the stimulus (initial)
onset from the number of spikes that occurred (during 4.0 sec.)
after the stimulus onset.

1) Neural decoding using maximum likelihood method:
We used the ML estimation method for each odor stimulus.
The ML method estimates an unknown parameter, k, so that
the probability density function p(x1(k), x2(k), . . . , xN (k)) as
likelihood function is maximized, i.e.,

k̂ = arg max
k

p(x1(k), x2(k), . . . , xN (k)) (2)

where N is the total number of neurons used for the ML
decoding. Although the neurons’ activities may be not sta-
tistically independent in the physiological view, to avoid
mathematical complication we assumed that the xi(k) and
xj(k) are independent as in [10] and [9]. Thus, the following
is satisfied

p(x1(k), x2(k), . . . , xN (k)) =
N∏

n=1

p(xn(k)) (3)

and finally based on (2) the odor stimuli is estimated by

k̂ = arg max
k

N∏

n=1

p(xn(k)). (4)

2) Modelling the probability density of neural response:
The probability density function was modelled by using the
Gaussian distribution. The Gaussian probability density func-
tion for each neuron’s response is given by

p(xn(k)) =
1√

2πσ2
n(k)

exp[− (xn(k) − μn(k))2

2σ2
n(k)

] (5)

where μn(k) is the ensemble mean of xn(k), i.e., μn(k) =
E[xn(k)]. Also σ2

n(k) is the variance of (xn(k), i.e., σ2
n(k) =

E[(xn(k) − μn(k))2]. Thus to estimate an unknown odor
stimulus, all that we need are μn(k) and σ2

n(k), which can
also be estimated from training data sets.

III. RESULTS

We have examined the performance of the proposed method.
The number of spikes was calculated in 100 ms bins, and
the firing rate rn(k) was obtained by averaging the number
of spikes in 40 bins for 4.0 seconds during odor stimuli.
The initial activity, rn(k0) was obtained by averaging in 100
bins for 10.0 seconds before odor stimuli. Figure 1 shows
peristimulus time histograms (top of each graph) of neural
firing rate of total single neurons during five odor stimuli
and examples (bottom of each graph) of rasters (neural spike
trains) of total 128 neurons. Rasters indicate sparse and dense
spikes occurrences. Beginning and ending points of odor
stimulus for 4.0 seconds are marked with two vertical lines.

Figure 2 represents probabilistic models of odor-evoked
neural responses. The probability density functions of neural
response of broadly tuned neuron #53 shown in Fig. 2(a)
indicate that they are clearly distinguishable across all odorants
because they, x53(k) are significantly different across odorants,
k. The probability density functions of neural response of
highly tuned neuron #6 shown in Fig. 2(b) indicate that
‘MIX’ can be clearly distinguished from other four odorants
but ‘MEK’ and ‘IAA’ cannot be differentiated from each
other because they show small activity change. The proba-
bility density functions of neural response of broadly tuned
neuron #18 shown in Fig. 2(c) indicate that odorants cannot
be distinguished more clearly than neuron #53 because the
models overlap much. The probability density functions of
neural response of neuron #14 shown in Fig. 2(d) indicate
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Fig. 2. Probability density models of odor-evoked neural responses on rat A. (a) neuron #53 (b) neuron #6 (c) neuron #18 (d) neuron #14.
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Fig. 3. Decoding results for five odor stimuli. Each subplot depicts accuracies for four rats. Maximum average decoding accuracy was 100% for rat A,
96.00% for rat B, 84.00% for rat C, and 100% for rat D. (a) rat A (b) rat B (c) rat C (d) rat D.

that odorants can be distinguished even though they suppressed
neural responses.

Figure 3 shows the average decoding accuracy across the
five odor stimuli for rat A, rat B, rat C and rat D. From
the five trials, four trials were used to estimate variables
such as μn(k), μn(k0), and σn(k). This estimation is simply
done by averaging the independent four trials, e.g., μn(k) =
1
4

∑4
m=1 xn(k| in mth trial). The remaining one trial was

set aside for test data. In this case, we have five different
combinations for choosing the test data. The performance
of the ML decoding was evaluated by randomly choosing
N neurons and this random selection was repeated 1, 000
times. Thus, the success rate in Fig. 3 are averaged over
5 × 1, 000 × 5 = 25, 000 for each N .

The number of total recorded neurons is 128 but we
excluded neurons which did not contain any spike firings
during the overall experiment. Thus, for rat A, B, C, and
D the numbers of valid neurons were 108, 108, 116, and
97, respectively. Using 100 neurons, the average decoding
accuracy was as high as 100.00% for rat A, 92.53% for rat B,
81.07% for rat C, and 100.0% for rat D (Only 97 neurons
were used for rat D). Using 50 neurons, the average decoding
accuracy was as high as 99.99% for rat A, 87.83% for rat B,
74.06% for rat C, and 96.55% for rat D. Using only 10
neurons, the average decoding accuracy was as high as 95.48%
for rat A, 66.58% for rat B, 65.31% for rat C, and 90.18%
for rat D.

IV. CONCLUSIONS

We have carried out simultaneous many single neuron
recordings from MOB of anesthetized rats during presentation
of various odors. Most of MOB neurons have exhibited
different increases of firing rate during various odor presen-
tations. In most neural decoding researches, neural firing rate
was modelled using absolute firing rate. Since the proposed
Gaussian based odor-evoked neural response model considers
neural activities both before and after odor stimulus, it could
quantify olfactory neural responses better than the models
using the absolute firing rate. Also, the proposed ML-based
decoding method is computationally efficient. We hope that
our results will trigger a novel brain-machine interface for
discrimination of various odors. This concept of BMI system
could be used for detecting drugs or dangerous objects.
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