
International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:3, No:2, 2009

372

Adaptive Motion Estimator Based on Variable
Block Size Scheme

S. Dhahri, A. Zitouni, H. Chaouch, and R. Tourki

Abstract—This paper presents an adaptive motion estimator

that can be dynamically reconfigured by the best algorithm
depending on the variation of the video nature during the lifetime
of an application under running. The 4 Step Search (4SS) and the
Gradient Search (GS) algorithms are integrated in the estimator in
order to be used in the case of rapid and slow video sequences
respectively. The Full Search Block Matching (FSBM) algorithm
has been also integrated in order to be used in the case of the
video sequences which are not real time oriented.

In order to efficiently reduce the computational cost while
achieving better visual quality with low cost power, the proposed
motion estimator is based on a Variable Block Size (VBS) scheme
that uses only the 16x16, 16x8, 8x16 and 8x8 modes.

Experimental results show that the adaptive motion estimator
allows better results in term of Peak Signal to Noise Ratio
(PSNR), computational cost, FPGA occupied area, and dissipated
power relatively to the most popular variable block size schemes
presented in the literature.

Keywords—H264, Configurable Motion Estimator, Variable

Block Size, PSNR, Dissipated power.

I. INTRODUCTION
IDEO communication is a rapidly evolving field for
several applications which include video telephony,

videoconference, remote surveillance, remote working and
learning, etc. It is also a key feature for the upcoming
information and communication technologies based on
residential digital lines (VDSL, ADSL and ISDN) and the
3rd generation of mobile telephony system (UMTS). In this
scenario, video image compression plays a fundamental
role in reducing the enormous bit-rate for transmission and
storage (approximately hundreds of Mbits/s for main image
formats). To this objective, the ISO and the ITU-T
committees have worked on several compression standards
such as JPEG, MPEG (versions 1, 2, 4), H.261, H.263 and
H.26L [1, 2].

Motion estimation is regarded as one of the most
effective technique to reduce the flow required by a video
codec. This stage is the most expensive in computing times
and power consumption for the standard H264. Indeed, the
method of estimation influences enormously the quality of

Authors are with Electronics and Micro-Electronics Laboratory (LAB-

IT06), Faculty of Sciences of Monastir, Monastir, 5000, Tunisia.
the image and the handled video. The choice of the research
strategy to be used in the stage of motion estimation is

decisive in the total execution and on the video quality. One
of the principal strategies to obtain an effective
compression is to use a technique which exploits the space
and temporal redundancy. Two main techniques are used
for motion estimation: pixel recursive algorithms and block
matching algorithm (BMA). The first one estimates the
motion between successive frames on a pixel by pixel base,
whereas the BMA estimates motion on a block by block
basis. In general, due to its simple hardware realization, the
block-matching approach is the most suitable.

The computational cost of a motion estimation algorithm
is greatly affected by the number of candidate blocks to be
computed. In order to compute the Somme of Absolute
Difference (SAD), the FBMA evaluates every possible
motion vector inside the search area, find the best matched
block and give the highest PSNR. Other strategies are based
on the so called fast block motion estimation algorithms
group which includes the Three-Step Search algorithm
(TSS), the Modified Log Search algorithm (LS), the Four
Steep Search (FSS) and the Alternative Pixel-Decimation
Search algorithm (APDS) [3, 4, 5, 6, 7, 8, 9]. These
algorithms take into account a reduced group of available
candidate blocks at the expense of a reduction in term of
PSNR.

Experimental results performed in [10] show that the full
search algorithm is very greedy in computing times, but
always gives the best results in compression ratio and
PSNR (Fig. 1). This work shows also that in the case of fast
sequences (ex. Forman) the 4SS algorithm gives better
PSNR and compression rates relatively to other algorithms.
In the case of slow sequences (ex. Miss America), [10]
shows that the GS algorithm is more advantageous since the
best block are always very close to the fetched block. By
studying the sequences that contain the two types of motion
(fast and slow) (ex. News and Carphone), [10] shows that
the results are very close and speed can be improved by
considering methods of research adapted for each type of
block.

The motion estimation for each 16x16 macro-block in
the emerging H.264/AVC can be divided into 16x16, 16x8,
8x16, and 8x8 modes. If the 8x8 mode is chosen, each 8x8
block can be independently coded into 8x4, 4x8, and even
4x4 blocks. Consequently, many VBS motion estimation
algorithms has been proposed in literature, such as bottom-
up merge and top-down split [11], prediction by merge and

V

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:3, No:2, 2009

373

split [12], and low complexity motion estimation [13], etc.
In general, since, a video application can contain many

sequences that are different in terms of motion nature
(slow, stationary, fast), an adaptive motion estimation
scheme is very suitable to improve performances of a video
Codec (Fig. 1).

This paper presents the proposed adaptive motion
estimator that can be dynamically configured by three
algorithms (FSBM, 4SS, GS) depending on the variation of
the video nature during the lifetime of a running
application. This configuration is based on a recognition
step that collects motion information of each block from its
same block in the previous images and their neighbor’s
blocks in the current image. Contrary to many solutions
proposed in the literature, the proposed approach is based
on an efficient technique for decomposing the motion
block. In fact, a new VBS motion estimation algorithm
based on 16x16, 16x8, 8x16 and 8x8 only has been
proposed, which can efficiently reduce the computational
cost while achieving similar or better visual quality with
low cost power on different architectures.

4 SS

GS

 Adaptive motion estimator

Rapid

Slow

Two motion types

Fig. 1 Principal of the adaptive motion estimator

This paper is organized as follow: Section 2 presents
brief overview of the Block Matching Algorithms (BMA)
which are integrated in the adaptive motion estimator (4SS,
GS, FS). In section 3, the architecture of the proposed
motion estimator is presented. The proposed VBS scheme
is described in section 4. Section 5 presents some
experimental results and Section 6 concludes the paper.

II. BLOCK MATCHING ALGORITHMS
The FSBM algorithm is the most straightforward motion

estimation operation. The process of block-matching is
found in a search window of previous frames of the macro
blocks most similar to the macro blocks in the current
frame. The accuracy of ME depends on the matching
criteria and one of the most popular criteria is the sum of
absolute difference (SAD) given by:

()∑ ∑
= =

++−−=
16

1i

16

1j
)lj,ki(1tPj,itP)l,k(SAD

Where (k, l) is the location in the search window, Pt(i, j) is
a pixel at (i, j) in the current frame, and Pt−1(i, j) is a pixel
in the previous frame. When the value SAD(k,l) is
minimum, (k,l) is the motion vector of the macro block.

The advantages of implementing FSBM as the motion
estimation algorithm include both the guaranteed optimality
of the solution and the regularity of a hardware
implementation. This regularity stems from the fact that
consecutive motion vectors share many of the pixel values
in calculation.

A. Four Step Search
The Four-Step Search (4SS) is an algorithm that builds

upon the TSS, while being more center-based. The 4SS
differs in that it maintains a more regular search pattern
with half-stop techniques employed in the algorithm [6].
The 4SS offers a similar best-case scenario for
computational complexity when compared to the TSS (17
searches). The worst-case situation for the 4SS is 27 search
points compared to 33 for the TSS, which is an
improvement. Experimental studies performed on multitude
standard video sequences show that this algorithm is well
adapted to the fast sequences by giving the better PSNR
and compression rates relatively to other algorithms.

Fig. 2 Four Step Search paths

B. Gradient Search
The block-based gradient descent search (BBGDS)

algorithm has been proposed by literature [5]. Based on the
observation that global minimum distribution is centralized
in real video sequence, this algorithm uses a very center-
based search pattern of nine checking points in each step
with a step size of one. It does not restrict the number of
searching steps but it stops when the minimum checking
point of the current step is the central one or it reaches the
search window boundary. This algorithm has advantages:
very low complexity in terms of candidate to evaluate, good
regularity in terms of motion vector generation and only

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:3, No:2, 2009

374

portion of search area memory can be accessed.
Experimental studies performed on multitude standard
video sequences show that this algorithm is well adapted to
the slow sequences by giving the better PSNR and
compression rates relatively to other algorithms

Fig.3 Gradient Search paths

C. Full Search
This algorithm defines a rectangular geometry for the

image areas, consequently, the research window is limited
to [- p, p] which is the area of research around the origin of
the block in the reference image (Fig. 4). For an image with
a size of (2p+1) × (2p+1) and for a window with a size of
M*M and a block with a size of N ×N, the number of
operations that are treated by the FSBM algorithm for each
block is Nb = (2p+1)2×N2. The number of operations for
each window is Nf = (2p+1)2×M2. Since this algorithm is
the slowest in term of computing times, it is generally used
for the applications with high image quality. It allows the
sweeping of all the blocks of the research window. This
makes it possible to reach the adequate motion vector in
this window.

Fig. 4 Method of search for the full search algorithm

This algorithm selects the minimum among the possible
vectors inside the research window (the motion vector
belongs to the area [- p, p]). This approach is inadaptable
by the majority of real time applications because of the high
number of operations that is performed. Obviously, this
algorithm always finds the optimal motion vector for the
given research window. It should also be obvious, that this

algorithm suffers from greatest data-processing complexity.
For example, considering the research area of [- 7, +7],
there are 226 calculations steps of the SAD which must be
carried out for each macro block in a window.

III. ADAPTIVE MOTION ESTIMATOR MODELING
The motion estimation suggested integrates three

algorithms: FSBM, 4SS and GS. The 4 modes (16x16,
16x8, 8x16 and 8x8) defined by the proposed VBS
technique are integrated in this estimator. Knowing that all
the motion estimators use memory to store the pixels of the
block under running as well as block of reference and carry
out the SAD calculation, these modules were defined only
once inside the proposed architecture. Thus, each technique
of motion estimation is defined only by its controller. Once
configured, the selected controller communicates with the
common SAD module inside architecture by using the
memory common resources and ensures the estimation
according to the algorithm of estimation in question. Such a
strategy allows the estimator to be configured according to
the nature of the application under running. Generally, the
new Codec use motion estimation which integrates only
one algorithm for each application [14, 15, 16, 17, 18]. For
an application which handles video sequences of variable
types, several estimators are normally necessary in order to
guarantee an acceptable video quality for each type of
sequence.

4 -Phase Bus

 Reference
Memory

SAD
FSM
FSBM

FSM
4SS

FSM
GS

Configuration
Module

Current
Memory

Fig. 5 Optimal architecture of the estimator

In our realization, each algorithm is specified by its
control part that is described as a Finite State Machine
(FSM). The architecture is optimized in order to make the
redundant blocks reusable by the three algorithms (Fig. 5).
According to the algorithm to be implemented, the
corresponding FSM communicates with the other blocks
via a 4-Phase handshaking bus. According to the
application to be treated, the estimator is configured by the
suitable algorithm. This allows the use of a single estimator
for various applications, which makes it possible to
guarantee an effective video compression. The estimator is
composed of a set of modules which are configured with
the proposed VBS scheme. The calculated SAD is stored in
a memory. If the scanning of the search window is finished,
then the memorized SAD is compared and the minimal
SAD will be detected. Then a new research can be started.
The optimal SAD with its position is sent towards a buffer

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:3, No:2, 2009

375

memory.
The proposed motion estimator has been designed by

Register Transfer Level (RTL) level by using the VHDL
language. After being calculated by the chosen algorithm,
the calculated SAD values are memorized in a memory in
order to define for each block the starting point in the
research window. All the calculated SAD values of the
window are stored in a memory buffer and the minimal
value is determined by trying. Then the output of the
corresponding algorithm search block is the value of the
minimal SAD and their positions. In other terms, the
outputs are the motion vectors which will be used for the
reconstruction of the image by the coder.

For (k = -p; k ≤ (p- bloc_col_v+1); k++)
 For l = -p; l≤ (p- bloc_line_v +1); l++)
 req <= '1';
 For (r = 0; r≤ length_v-1; r++)
 data_cour <= var_cour(r);
 data_ref <= var_ref(r);
 End;
 For v = 0; v≤length_v-1; v++)
 var_cour (v) <= "00000000";
 End;
 wait until ack ='1';
 motion_vec (z) <= sad_in;
 motion_vec2 (z, 0) <= k;
 motion_vec2 (z, 1) <= l;
 Req <= '0';
 z: = z+1;
 wait until ack ='0';
 For (m = k; m≤k+ (bloc_col_v-1) ; m++)
 For (n = l; n ≤ l+ (bloc_line_v-1); n++)
 var_cour (v) <= memory (m, n);
 v: =v+1;
 End;
 End;
 End;
 End;
 For (h = 0; h≤ nsad_v -1; h++)
 If (motion_vec (h) <= sad_min) then
 sad_min:= motion_vec (h);
 posit_x:= motion_vec2 (h, 0);
 posit_y:= motion_vec2 (h, 1);
 Else
 sad_min:= sad_min;
 End if;
 sum_sort0 <= sad_min;
 x_sort0 <= posit_x;
 y_sort0 <= posit_y;
 End;

Fig. 6 Algorithmic description of the Full Search algorithm

In the proposed architecture, the presence of a new

window is indicated by a command signal (cmd_fen). This
signal allows the initialization of the memory. After
initialization, the algorithm begins the treatment by a signal
called wr_ena (Fig. 7). The setting to '1' of the signal
wr_ena makes it possible to charge a new window (current

and reference). The setting to '0' of this signal allows the
beginning of the sweeping of the window. For a new
window the same operation will be repeated. An
algorithmic description of the Full Search algorithm is
represented by Fig. 6.

Fig. 7 The window read/write protocol

IV. VARIABLE BLOCK SIZE (VBS) SCHEMES

A. Variable Block Size 1 (VBS1)
Unlike previous standards, H.264/AVC adopts a tree-

based decomposition to partition the macro-block (MB)
into smaller sub-blocks of specified sizes. The quad-tree
structure enables the possibility of a MB being coded in
four different modes illustrated in Fig. 8, with partitions
sizes of 16x16, 16x8, 8x16 and 8x8, while in the 8x8
partition mode, each 8x8 partition can be further split into
8x4, 4x8, and 4x4 sub-partitions. The availability of smaller
ME blocks improves prediction in general, and in
particular, the small blocks improve the ability of the model
to handle fine motion detail and result in better subjective
viewing quality because they do not produce large blocking
artifacts.

Fig. 8 Multiple motion estimation modes defined in H.264/AVC

B. Variable Block Size 2 (VBS2)
Serious experiments on the test video sequences used in

JVT Test Model Ad Hoc Group [11] show that there is an
average of 35 per cent homogeneous area in a typical video
frame, and these areas are suitable for larger size inter mode
coding. Therefore, several cost calculation of small size
modes can be saved. Based on this consideration, several
mode decision algorithms were proposed to reduce the
number of candidate modes [11, 12]. In [19], many Fast
VBS Motion Estimation algorithms were tested before
extracting the Zoom Motion Estimation (ZME) algorithm
[19] based on 3 partitions sizes 16x16, 8x8 and 4x4
arranged as shown in Fig. 9.

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:3, No:2, 2009

376

Fig. 9 Multiple motion estimation modes defined in H.264/AVC

C. Variable Block Size 3 (VBS3)
The proposal of the new typical based VBS scheme is to

extract, using the SAD criteria, the block-size introducing
the minimum computational complexity with minimum
memory requirement. In this algorithm, only 16x16, 16x8,
8x16, and 8x8 block-sizes for motion estimation are
considered. This approach will reduce extensively the
computational complexity since the 3 other modes are
eliminated, without affecting the overall visual video
quality. For better understanding, the following flowchart
explains in detail our proposed algorithm steps Fig. 10.

Fig. 10 Fast block size selection algorithm FBSA

V. EXPERIMENTAL RESULTS
To evaluate the performances of the proposed adaptive

motion estimator, both software and hardware
implementations have been performed. The impact of the
new VBS3 motion scheme on the encoding process, along
with several analyses on three CIF (352x288) sequences
test with different characteristics is proposed. At the
beginning, the performances evaluation of the VBS3
algorithm compared to the VBS1 and VBS2 on a SW DSP
(TMS320C64) design platform are presented. The used
parameters consists on a QP =38 and a search window
(Horizontal: [-15, 15] and Vertical:[-15, 15]). Finally, the
logic synthesis and the power estimation results of the
proposed estimator with the VBS3 scheme are presented
and compared with the VBS1 and VBS2 schemes. These
designs target the Altera FPGA technology and performed
by the ISE and the X-Power tools.

A. Subjective, Objective and Complexity Analysis
Table I and Table II show that the elimination of 4x8,

8x4 and 4x4 block size (performed by our VBS3 scheme)
from the mode selection does not affect the video quality
(PSNR and SSIM [20]). Thus, the VBS3 algorithm
provides better subjective and objective quality compared
to the VBS2 scheme with complexity reduction in terms of
clock cycles up to 44 per cent (Table III).

Fig. 11 Number of use modes for different variable block decision
algorithm

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:3, No:2, 2009

377

These results demonstrate the fact that from one hand,
VBS3 outperforms the other variable block size techniques
used in this study, such as VBS1 and VBS2 in terms of MB
sizes (bit) distortion with a major loss in complexity. On the
other hand, VBS3 is very similar to the other VBS
predicting algorithms in terms of subjective quality with a
major gain in the computational complexity and a better
image quality depending on the motion characteristic of the
video. In fact, the visual image quality with a major
reduction in the computational effort complexity has been
objectively improved. However, the penalized is performed
only for the low motion sequence since the extra search will
not be necessary (Fig. 11).

TABLE I

 OBJECTIVE QUALITY PERFORMANCE (PSNR) OF BLOCK MODE SELECTION
SCHEMES

TABLE II
 SUBJECTIVE QUALITY PERFORMANCE (SSIM) OF BLOCK MODE

SELECTION SCHEMES

TABLE III
 SPEED PERFORMANCE (MILLIONS CYCLES) OF BLOCK MODE SELECTION

SCHEMES

B. RTL Design Results
In order to evaluate the occupied area and the dissipated

power of the proposed motion estimator, the ISE and the X-
Power FPGA design tools have been used. Table IV
presents the logic synthesis and the power estimation
results of the adaptive motion estimator configured with the
FSBM algorithm and integrating the VBS1, VBS2, and the
VBS3 schemes targeting the Virtex2pro FPGA technology.

Experimental results show that the FPGA equivalent area
and the dissipated power obtained by our VBS scheme are
slightly inferior to those obtained by the VBS1 and the
VBS2 schemes. But since the motion estimator is
responsible for nearly 70% of the power dissipated in
certain video encoders, any reduction in power in the

motion estimator would be critical for inclusion in a
portable or other power-conscious device.

The gain in terms of the FPGA equivalent area designed
with our VBS and the VBS2 schemes is about +4,35%
relatively to the FPGA equivalent area designed by the
standard VBS1. Also the gain in terms of the power
dissipated by our VBS scheme is about +5,17% and
+1,79% relatively to the power dissipated by the VBS1 and
the VBS2 schemes (Table V).

TABLE IV

 FPGA EQUIVALENT AREA AND POWER ESTIMATION RESULTS
Used VBS Equivalent area Dissipated power

(mW)

VBS1 23% 58

VBS2 22% 56

VBS3 22% 55

TABLE V
 COMPARISON OF THE VBS SCHEMES IN TERMS OF FPGA EQUIVALENT

AREA AND DISSIPATED POWER

Equivalent area:

VBS2 vs. VBS1
)%100

1VBS
2VBS100(×−

+4,35%

Equivalent area:

VBS3. vs. VBS1
)%100

1VBS
3VBS100(×−

+4,35%

Dissipated power:

VBS2 vs. VBS1
)%100

1VBS
2VBS100(×−

+3,45%

Dissipated power:

VBS3. vs. VBS1
)%100

1VBS
3VBS100(×−

+5,17%

Dissipated power:

VBS3. vs. VBS2
)%100

2VBS
3VBS100(×−

+1,79%

VI. CONCLUSION
In this paper a configurable motion estimator for the

codec H264 has been presented. This estimator integrates
three algorithms (FSBM, 4SS and GS) and implements a
VBS scheme. Depending on the nature of the application
under running this algorithm will be reconfigured
dynamically by the adequate algorithm. Since, the motion
estimator is responsible for nearly 70% of the power
dissipated and computation cost in certain video encoders,
any amelioration of the motion estimator performances
would be critical for inclusion in a portable or other power-
conscious device. Experimental results lead us to conclude
that the proposed estimator integrating our VBS scheme
allows better image quality with less computing time, less
FPGA occupied area and less dissipated power relatively to
the other VBS schemes. As a perspective, further design
targeting ASIC technology for proposed adaptive motion
estimator show that substantial improvements, in terms of
encoding speed and dissipated power, can be obtained
through optimizing heavily. This research work is ongoing,
and the results will be presented in future publications.

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:3, No:2, 2009

378

REFERENCES
[1] G. Cote, and L. Winger, Recent progress in the field of video

compression, IEEE Canadian Review- Spring 2002.
[2] ITU-T SG15, Video Codec for Audiovisual Service at Px64 Kbits/s,

In ITU-T recommendation H.261 Version 3, Mars 1993.
[3] R. Srinivasan, and K. R. Rao, “Predictive coding based on efficient

motion estimation”, IEEE Trans. on Circuits and Syst. on Video
Technol., vol. 33, no. 8, August 1985, pp. 888-896.

[4] M. Ghanbari, “The cross-search algorithm for motion estimation,”
IEEE Trans. on Communications, vol. 38, no. 7, July 1990, pp. 950-
953.

[5] L.-K. Liu et E. Feig, 'A block-based gradient descent search
algorithm for block motion estimation in video coding', IEEE Trans.
on Circuits and Sys. for Video Technol., Vol. 6, No 4, pp. 419-
422,1996.

[6] Lai-Man Po, and Wing-Chung Ma, “A novel four-step search
algorithm for fast block motion estimation,” IEEE Trans. on Circuits
and Syst. for Video Technol., Vol. 6, no. 3, June 1996, pp.313 – 317.

[7] C. Zhu, X. Lin, L-P. Chau, K-P. Lim, H-A. Ang and C-Y. Ong, “A
novel hexagon-based search algorithm for fast block motion
estimation,” IEEE International Conference on Acoustics, Speech,
and Signal Processing, 2001. Vol. 3, pp.1593 – 1596.

[8] C. Chun-Ho, and P. Lai-Man, “A novel cross-diamond search
algorithm for fast block motion estimation,” IEEE Trans. on Circuits
and Syst. for Video Technol., vol. 12, no. 12, December 2002,
pp.1168-1177.

[9] Jae Hun Lee, and Al, “Variable block size motion estimation
algorithm and its hardware architecture for H.264 /AVC”, IEEE Inter.
Symp. on Circuits and Sys., May 2004.

[10] A. Djeffal, and Z. Baarir, “Video coding adaptive block matching “,
8th African Conference on Research in Computer Science, November
2006, pp.1-8.

[11] Y.K. Tu, J.F. Yang and M.T. Sun, Fast Variable-size Block Motion
Estimation Using Merging Procedure with an Adaptive Threshold,
IEEE International Conference on Multimedia and Expo. Baltimore,
July 2003, p.II-789-792.

[12] Z. Zhou, M.T. Sun and Y.F. Hsu, Fast variable block-size motion
estimation algorithms based on merge and split procedures for
H.264/MPEG-4 AVC, IEEE International Symposium on Circuits
and Syst., ISCAS. Vancouver, British Columbia, Canada, May 23-26,
2004.II-789-792.

[13] Y. Jiang,S. Li and S. Goto, A Low Complexity Variable Block Size
Motion Estimation Algorithm for Video Telephony Communication,
47th IEEE International Midwest Symposium on Circuits and Syst..
July 2004, p.II-465 - II-468.II-789-792.

[14] M. G. Xavier, “Optimizing performance of an encoder following the
standard Advanced Video Coding for a vector machine,” Master
Memory, Faculty of Sciences libre University of Bruxcelle, 2006.

[15] S. Yalcin, H.F. Ates, I.Hamzaoglu, “A high performance hardware
architecture for an SAD reuse based hierarchical motion estimation
algorithm for H.264 video coding”, Proc. Inter. Conf. on Field Prog.
Logic and App., Tampere, Finland, Aug 2005.

[16] P. Brault, “Motion Estimation and image segmentation”, Thesis
Memory, Faculty of Sciences of Orsay, November 2005.

[17] LIU Hao, ZHANG Wen-jun, CAI Jun, “A fast block-matching
algorithm based on variable shape search”, Journal of Zhejiang
University Science A, Mars 2005.

[18] Tiago Miguel Braga da Silva Dias, “High-Performance VLSI Motion
Estimation Processors: Data Reuse and Sub-Pixel Accuracy”, Master
Memoir, Univ. de Tec. de Lisboa, Inst. Sup. Tec., Sep. 2004.

[19] M.A. Ben Ayed,A. Samet and N. Masmoudi, Toward an Optimal
Block Motion Estimation Algorithm for H.264/AVC, International
Journal of Image and Graphics (IJIG). 2006.

[20] Z. Wang,A.C. Bovik,H.R. Sheikh and E.P. Simoncelli, Image quality
assessment: From error visibility to structural similarity, IEEE Trans.
on Image Processing. vol. 13, no. 4, 2004.

