International Journal of Biological, Life and Agricultural Sciences
ISSN: 2415-6612
Vol:4, No:6, 2010

An Index based Forward Backward Multiple
Pattern Matching Algorithm

Raju Bhukya DVLN Somayajulu

Abstract—Pattern matching is one of the fundamental In Unix environment there is a useful commaurtity
applications in molecular biology. Searching DNAated data is a called “grep’[6] which allows user to search globally for lines
common activity for molecular biologists. In thiager we explore matching the regular expression, and print therméexact
the applicability of a new pattern matc_hing tecliccalled Index_ matching algorithms are Naive Brute force algorittBoyer-
based ~ Forward ~ Backward Multiple ~ Pattern Matching,qre algorithm, Knuth-Morris-Pratt Algorithm[1]]2These

algorithm(IFBMPM), for DNA Sequences. Our approaatioids attern matching algorithms can be applied to fiatterns in
unnecessary comparisons in the DNA Sequence duthigp the P 9 a9 PP
DNA Sequences.

number of comparisons of the proposed algorithmvesy less
compared to other existing popular methods. The bmumof
comparisons rapidly decreases and execution timeredses
accordingly and shows better performance.

Inexact/Approximate string matching: Inexacattern
matching is sometimes referred as approximate rpatte
matching or matches withkk mismatches/differences. This
problem in general can be stated as: Given a paReof
length m and string/text of lengthn. (m < n). Find all the
I. INTRODUCTION o L .

o)) occurrences of sub strirgin T that are similar td, allowing
ATTERN matching is an important and active reslearca limited number, say different character in similarity

W.'th large app_hcatlons. DNA is the basic blue pu life matches. The edit/transformation operations areeriios,
and it can be viewed as a long sequence over the fo

alphabetsA, C, Gand T. As the size of the data grows itdeletlon and substitution.
becomes more difficult for users to retrieve neapss
information from the sequences. There are varidndskof
tools available for the comparison which providesat as i i A 3
well as approximate pattern matching. Hence mofieieft approach, Bit parallelism approach, Filtering amdoanation
methods are needed for fast pattern matching tqubsi algorithms. Inexact sequence data arises in vafields and
Let P = {p1, P2 Pa...p} be a set of patterns which areapplications such as computational biology, sigirakcessing
strings of nucleotide characters from a fixed algliaset and text processing. Due to the possible DNA momathe
calledy ={A, C, G, T} Let T be a large text consists of biological inference does not expect an identicaltain but
characters irp, denoted a3™*. The problem is finding all the rather a high sequence similarity usually impliggnisicant
occurrences of in T. It is important application widely used fynctional or structural functionality. The field fo

in data filtering to find selected patterns, in W#y pininormatics has many applications in the moctag world

Keywords—Comparisons, DNA Sequence, Index.

Inexact/Approximate string matching algoritimare
classified into: Dynamic programming approach, Auata

applications, and used in DNA search. Many existe®) time
pattern matching algorithms are reviewed and diasisin two
categories.

1) Exact string matching algorithms

2) Approximate string matching algorithms.

Exact string matching algorithm means findge or
all exact occurrences of a string in a sequence. grbblem
can be stated as: Given a patterof lengthm and a string
(Text) T of length n (n < n). Find all the occurrences pfin
T. The match is exact one, meaning that the exact wo
pattern is found.

Raju Bhukya is with the National Institute of Teockogy, Warangal, India.
He is now with the Department of Computer Scienwm Bngineering (Phone:
+91-9700 5539 22; fax: 0091-8702459547; e-miaju@nitw.ac.if.

Dr. DVLN Somayajulu is with the National Institutef Technology,
Warangal, India. He is now with the Department ainuter Science and
Engineering (Phone: +91-9849 3365 47; fax: 009128%0547;
email: soma@nitw.ac.in).

includes text editors, search engine, molecular icires
industry, agriculture and Comparative biology. Inanmyg
information retrieval systems it is necessary tcate one or
more patterns quickly.
Pattern matching algorithms have two main objestive

1) Reduce the number of charactemparisons required
in the worst and average case analysis.
Reducing the time requirement in the worst and
average case analysis.

2)

The proposed work is based on an IFBMPM mddel
DNA Sequence. In this model input file is scanned from left
to right until end of the file. The charactedexes are stored
in the 2D vector callethdex table. In the current model when
we need to search some pattBrim textS, we start the search
from the indexes stored in the row ofndex table which
corresponds to the first character of the patternlf any

429

International Journal of Biological, Life and Agricultural Sciences
ISSN: 2415-6612
Vol:4, No:6, 2010

character mismatches in its position, we skip trsrch and go is aligned with the right most occurrence®@fn P. The worst
for the nextindex which corresponds to the first character otase complexity i©(m+n) and the average case complexity is
the patterrP according to théndexes stored inindex table for O(n/m). Although Knuth Morris-Pratf2] algorithm has better
matching. This process continues to searchPfto the end of worst case running time than the Boyer-Moore atboni

text S By using the IFBMPM method, the number of

comparisons and comparisons per character ratioGPC) The Knuth-Morris-Pratt algorithf@] is based on the finite
decreases when compared with some of the existigéfte machine automation. The pattériis pre processed to
algorithms MSMPMAS]. create a finite state machiivkthat accepts the transition .The

finite state machine is usually represented astresition
The rest of the paper is organized as follows. briefly table. The complexity of the algorithm for the saage and the
reviewed the background and related work in théi@e@. In worst case performance 3(m+n). In approximate pattern
section 3 we provided a proposed moiel IFBMPM and matching method the oldest and most commonly used
related algorithm foDNA Sequence. Results and discussion approach is dynamic programming. By using dynamic

are presented in section 4. Section 5 concludegaper. programming approach especially in DNA sequencing
Needleman-Wunsch[4] algorithm and Smith-waterman
Il. BACKGROUND AND RELATED WORK algorithms are more complex in finding exact patter

matching algorithm. By this method the worst casmplexity
is O(mn).The major advantage of this method is flexibility i
adapting to different edit distance functions.

In this section we review some work related ONA
Seguences. An alphabet se}. = {A, C, G, T}is the set of
characters foDNA Sequence which used in this algorithm.

In 1996 Kurt£3] proposed another way to reduce the space

The following notations ar in thi r: . . .
e following notations are used in this pape requirements of almo€(mn).The idea was to build only the

DNA Sequence character§'={A, C, G, T} states and transitions actually reached in thegssing of the
@denotes empty string text. The automation starts at just one state aarhitions are
|P| denotes the length of the striRg built as they are needed. The transitions thosee wet
S[n] denotes that a text which is a string of length necessary will not be build. Wu.S.Manber and Mydi7E
P[m] denotes a pattern of length proposed the algorithm for approximate limited ession
CPC — Comparisons per character. matching, and Wu.S.Manber[8] proposed the algorithm for

fast text searching allowing errors.
String matching mainly deals with problemfioiding all
occurrences of a string in a given text. In most tog Ukkonen[5] proposed automation method in for finding
applications it is necessary to the user and theldper to be approximate patterns in strings. He proposed tka igsing a
able to locate the occurrences of specific paitemnsequence. DFA for solving the inexact matching problem. Thbug
In this section we discuss about these differgmégyof string automata approach doesn’t offer time advantage Boger-
matching methods. Some of the exact string matchifgoore algorithm[1] for exact pattern matching. The
algorithms available, such as Naive string sedBchte-force complexity of this algorithm in worst and averagase is
algorithm, Bayer-Moore algorithm, Knuth-Morris-Rrat O(m+n)In this every row denotes number of errors and
algorithms [1], [2]. column represents matching a pattern prefix. Detgstic
automata approach exhibi@®(n) worst case time complexity.
In Brute-force algorithm the first charactéithe patter® The main difficulty with this approach is constioct of the

is compared with the first character of the strifglf it is DFA from NFA which takes exponential time and space
match, then patter® and stringT are matched character by

character until a mismatch is found or the enchefpatterrP The first bit-parallel method is known ashift-or” which

is detected .If mismatch is found, the pattBris shifted one searches a pattern in a text by parallelizing dpmereof non

character to the right and the process continudse Tdeterministic finite automation. This automationsha+1

complexity of this algorithm i©(mn). states and can be simulated in its non determinfetim in

O(mn)time.
The Bayer-Moore algorithnfl] applies larger shift-

increment for each mismatch detection. A main nicalifon The filtering approach was started in 1990isTapproach
to the Naive algorithm is the matching of pattBrand string is based upon the fact it may be much easier kohiaf a text
T is done from right to lefte., after aligningP and stringT ~ position doesn’t match. It is used to discard leageas of text
the last character & will matched toT first. If a mismatch is that cannot contain a match. The advantage ireghpgoach is
detected, sa€ in T is not inP thenP is shifted right so tha®

430

International Journal of Biological, Life and Agricultural Sciences
ISSN: 2415-6612
Vol:4, No:6, 2010

the potential for algorithms that do not inspect txt
characters.

TABLE |
STRING MATCHING ALGORITHMS SUMMARY
Algorithm Comparison Preproc- Searching Time
Author] .
Name Ordel essiny Complexity
Boyer R.S. Boyer From right to
Moore and J.S. Moore left Yes O(mn)
Nigel Is not
Horspool Horspool relevant Yes O(mn)
Brute) Is not No o(mn)
force relevant
Michael O
Kunt_h Rabin and From left to . O(n+m)
Morris . . Yes independent from
Pratt Richard M right the alphabet size
Karp P
Quick Is not
Search Sunday relevant Yes O(mn)
Michel O
Karp Rabin and From left to
Rabin Richard M right Yes O(mn)
Karp
Zhu R.F.Zhuand From right to
Takaoka T Takaoka left Yes O(mn)
IFBMPM From left to
Index Model right Yes O(mn)
Based
Il PROPOSEDWORK

In the proposed work we use thralexes for the DNA
Sequence belongs to) *. It is scanned from left to right and
filled in their correspondingndexes. To search a pattefin
a stringSwhose alphabet sgL Let the string b& of havingn
charactersnd the patter® of havingm characters.

To search a pattern in a string whose alphségX= {A,
C, G, T}. Let the string b& of havingn and the patteri® of
having m characters. Thes, P7Y*, |S| = nand|P| = m.
GenerallyP| <|S|i.e., m< n.

A. Algorithm
Input String S of n characters and a pattefd of m
characters, wherg,Pp *.

Output The no. of occurrence and the position®af S.

Algorithm:

Stepl: Integer arrays indexTab[4][n], charindex[4]
Integer found:=1, n_occ:=0,n_cmp:=1;

Step2: FOR i:=0;i<n;i++
indexTab[(S[i]-64)%5][charIndex[(S[i]-
64)%5]++]:=i;
End FOR
Step 3: FOR i:=0;i<chatindex[(P[0]-64)%5];i++
found:=1;

IFi+m-1>n-1

found:=0
SKIP the test, GOTO step 4.
End IF
FOR r:=0;r <m/2;r++
n_cmp++;
IF P[r]=s[r+i]
n_cmp++;
IF P[m-r-1]=S[i+m-r-1]
DO Nothing
ELSE
found:=0
End IF
ELSE
found:=0
End IF
End FOR
Step 4:IF found:=1
n_occ++
PRINT “Pattern Found At Location i,
Occurrence no is: n_occ”
End IF
End FOR

This algorithm first takes a string as inpand for each
given pattern it checks whether the pattern ocitutise string
or not. If the pattern occurs in the string it pgipattern with
its starting position in the string.

It first builds up a table calléeddex table, which is useful
to reduce the number obmparisons. Once théndex table is
created for a string it is used for all the difi@rpatterns. For
each pattern we start checking from the first ctt@randexes
of the pattern with using thadex table which reduces the
unnecessargomparisons.

Theindex based algorithm for multiple pattern matching
uses a table(2D vector) called indexTab[4][n]. Hasic idea
used here is to store all tlwedexes of each character in its
corresponding vector. The algorithm is suitable Hmiogical
applications such as DNA pattern matching whichdset®
compare two strings of the character§m {A, C, G, T}. i.e.,
theindex of each occurrence of A is stored in indexTab[¥][n
corresponding to thi:ndex of A in indexTab[4][n].The ASCII
indexing technique is used here to reduce the pecegsing
time and pre processing tinsemparisons. For each character
in Y we compute its array subscript value in indexTab b
using the following technique.

431

International Journal of Biological, Life and Agricultural Sciences

ISSN:
Vol:4,
TABLE Il
COMPUTING ARRAY SUBSCRIPT VALUES FO®NA CHARACTERS
Character ASCIl ASCllIValue-64 (ASClIValue-64)%5
Value (or) [(S[i]-64)%5]

A 65 1 1

C 67 3 3

G 71 7 2

T 84 20 0

From Table II, (S[i]-64)%5] always returns a subscript

value in the range 0,1,2,3 which is needed for ijiting 2D
vector of size [4][n]. The subscript values 0,1,2epresents
the characters T, A, G, C respectively. So for edddracter of

string the function(S[i]-64)%5 directly references to its

corresponding vector in the 2D vector indexTab[§#][fhe
vector
occurrence of each character with referencé3p|{64)%5].

TABLE Il
ARRAY SUBSCRIPT VALUES AND THEIR CORRESPONDING CHARA ERS

Array Subscript Value Character
0 T
1 A
2 G
3 C

For each first occurrence of the first chaenaif pattern
this algorithm compares one character from left amek
character from right until all characters are corepaif all
characters matches to the pattern it prints théepafound
from the starting location. If any character mischas it
skips the test and continues to check the nextroacce of the
first character of the pattern.

B. Mathematical Analysis

LetSbe the string of length, P be the pattern of length
andS, P> *, andi be theindex of the first character of the
patternP in the stringS, Let X; be denote the character at the
th location in the string(or patterX) Now for each value aof
we check

WhetherP, = S, if it so we will checkP.r.1 = Simr-1 fOr
r=0, 1, 2,..., m/2

If these twocomparisons are true untilr < m/2 then we
will print Pattern Found at the Location

And we continue the search for next value. of
C. Trivial cases in comparison

Case i: If S = gi.e., |S| = 0andP = gi.e., |P| = Othen the
number of occurrences Bfin Sis 0.

charindex[4] stores the counter value of heac

2415-6612
No:6, 2010

Case ii:If S =gi.e. |S| = 0and for any|P| > 0 then the
number of occurrences 8fin Sis 0.

Case iii: If S# gi.e., |S|# 0 and for any|P| = 0O then the
number of occurrences 8fin Sis 0.

Case iviIf S# gi.e., |S[£0, P+ gi.e., |[P|# 0and|S| < |P|
then the number of occurrencesRoih Sis 0.

D. Example 1:

Let us take a string= ACTTAGGCTCAACGATGTTAGCATC
of 25 characters arfe=TTAG.

The following index table stores all théndexes of each
character A, C, G and T in its corresponding rotve T row
stores thandexes of occurrences of the character T rbw
for A, 2" row for G and %row for C.

0 1 2 3 4 5 6
TO 2 3 15 17 18 23
Al 0 4 10 11 14 19 22
G2 5 6 13 16 20
C3 1 7 9 12 21 24

The first character in the pattern PTiso we start search
for P from the & row(which stores théndexes of character
T). The firstindex stored in & row is 2 so we start the
algorithm from 2° character in the string, the searching
process is shown below.

The algorithm first compares the first chaeacin the
pattern with the character of firistdex of the 0" row in table.

S=EACTTAGGCTCAACGATGTTAGCATC
P=TTAG
The first character matches then it compates last
character of the pattern to the corresponding charan the
string.

S=EACITTAGGCTCAACGATGTTAGCATC
S=TTAG
The last character is matched then it comptresecond
character from the left.

S=ACITTAGGCTCAACGATGTTAGCATC
P=TTAG
Again it continues matching for'®2character from the
right.

SSACTTAGGCTCAACGATGTTAGCATC
PITAG
Now all the character matches it prints thessage the
pattern found at the location 2 in the string. THE iRdex

432

International Journal of Biological, Life and Agricultural Sciences
ISSN: 2415-6612
Vol:4, No:6, 2010

stored in the O row of the above table is 3, we start searcB=ACTTAGGCTCAACGATERAGCATC

again from thendex 3 of the string. P=TTAG
It is also matched so compare the second ctearfiom the
S=EACTTAGGCTCAACGATGTTAGCATC right.
P=TTAG
The first character from the left is match#iten it checks SSACTTAGGCTCAACGATITAGCATC
for the match of the first character from the right P=TTAG

All the characters are matched from the lacafi7, so we
print the message Pattern found at the location &
continues the search for P from the riextex18 in the & row
of index table.

S=EACTTAGGCTCAACGATGTTAGCATC
P=TTAG
It is also matched then it compares the seadratacter
from the left.
SSEACTTAGGCTCAACGATGRATGCATC
SSACTTAGGCTCAACGATGTTAGCATC P=TTAG
S=TTAG The first character from the left is matchsolwe compare
Here the match failed foPcharacter from the left, it stop the first character from the right
the search and then continues the search frometkig ndex
stored in the B row of the table. The thirthdex stored inthe SSACTTAGGCTCAACGATGRABGCATC
0" row is 8 so we start search from theex 8 of the string S. P=TTAG
The first character from the right is misma&dhhere we

SACTTAGGCTAACGATGTTAGCATC g0 the comparison.

P=TAG
The first character from the left is matcheuernt it The lastndex stored in the O row of theindex table is 23,
compares the first character from the right. we need to start the search for P frorff 2Baracter in S, there

is only one character after the"®8haracter in the string, but
the pattern has 3 characters more from tH&|a8ation. So it

is impossible to occur the pattern starting frorff &&ation in
The match failed for the first character frtime right so it g Finally the search for P in S is completed, Buoed two
skip the test from the startingdex 8. The nexindex stored times in the string S.

in the 0" row of theindex table is 15 so we start search from
15. E. Example 2:

The DNA sequence data has been taken frorMtiteple
Skip Multiple Pattern Matching algorithm MSMPMRA] for
testing the IFBMPM algorithm. It explains large geqgce data
by taking a DNA biological sequen&7>* of sizen=1024
and patterP/7> *. Let Sbe the following DNA sequence.

SSEACTTAGGCTAACGATGTTAGCATC
P=TAG

SSACTTAGGCTCAACGAITTAGCATC
P=TTAG
Clearly the first character from the left iatched. So we
compare the first character from the right.

SSACTTAGGCTCAACGAGTTAGCATC
P=TTAG AGAACGCAGAGACAAGGTTCTCATTGTGTCTCGCAATAG

TGTTACCAACTCGGGTGCCTATTGGCCTCCAAAAAAGGC
TGTTCAACGCTCCAAGCTCGTGACCTCGTCACTACGACG
GCGAGTAAGAACGCCGAGAAGGTAAGGGAACTAATGAC

The match failed at this point, so we skip tibgt from the
index 15. Again continues from the neixtdex stored in the
0™ row of theindex table which is 17.

GCGTGGTGAATCCTATGGGTTAGGATCGTGTCTACCCCA

SEACTTAGGCTCAACGAT@RGCATC AATTCTTAATAAAAAACCTAGGACCCCCTTCGACCTAGAC
p:j--r AG TATCGTATTATGGACAAGCTTTAACTGTCGTACTGTGGAG

The first character from left is matched, tivem compare GCTTCAAAACGGAGGGACCAAAAAATTTGCTTCTAGCGT
the first character from the right_ CAATGAAAAGAAGTCGGGTGTATGCCCCAATTCCTTGCT
GCCCGGACGGCCAGGCTTATGTACAATCCACGCGGTAC

S=EACTTAGGCTCAACGATGRGCATC TACATCTTGTCTCTTATGTAGGGTTCAGTTCTTCGCGCAA
P=TTAG TCATAGCGGTACTTCATAATGGGACACAACGAATCGCGG

It is also matched we continue search from skeond CCGGATATCACATCTGCTCCTGTGATGGAATTGCTGAAT
character from the left. GCGCAGGTGTGAATACTGCGGCTCCATTCGTTTTGCCGT

GTTGATCGGGAATGCACCTCGGGGACTGTTCGATACGA
CCTGGGATTTGGCTATACTCCATTCCTCGCGAGTTTTCG

433

International Journal of Biological, Life and Agricultural Sciences
ISSN: 2415-6612
Vol:4, No:6, 2010

ATTGCTCATTAGGCTTTGCGGTAAGTAAGTTCTGGCCAC 1200 -
CCACTTCGAGAAGTGAATGGCTGGCTCCTGAGCGCGTC
CTCCGTACAATGAAGACCGGTCTCGCGCTAAATTTCCCC
CAGCTTGTACAATAGTCCAGTTTATTATCAAAGATGCGAC
AAATAAATTGATCAGCATAATCGAAGATTGCGGAGCATAA 600 7
GTTTGGAAAACTGGGAGGTTGCCAGAAAACTCCGCGCC 400 -
TACTTTCGTCAGGATGATTAAGAGTATCGAGGCCCCGCC 200 -
GTCAATACCGATGTTCTTCGAGCGAATAAGTACTGCTATT

1000 - * * .
800 -

TTGCAGACCCTTTGCCAGGCCTTGTCTAAAGGTATGTTA MSMPMA BruteForce Triematching Navie String Proposed
CTTAATATTGACAATACATGCGTATGGCCTTTTCCGGTTA Input A1) Method
ACTCCCTG.

Theindex table forSis very large to show here. So for Fig.1 Experimental results of different algorithms

different P's the number of occurrences and the number of

comparisons are shown in the following table. Fig.2 shows the number @imparisons made for different

algorithms to the pattern of length 2. The pattek&”, in the

TABLE IV proposed algorithm takes 62émparisons where as all the
EXPERIMENTAL RESULTS OF PROPOSED ALGORITHM other takes more than 1280mparisons. We are reducing the
f.‘ battere's) Cr;c;.r:;te No.of No.of comparisons less than half by using théndex based
o. s occurrences comparisons technique.
1 A 1 259 518
2 AG 2 53 624 1400 -
3 CAT 3 11 567 -—"* .-
4 AACG 4 5 614 1200 1
5 AAGAA 5 2 616 1000 -
6 AAAAAAGG 8 1 634 800 -
7 TTCTTAATAAAA 12 1 651
8 GGCTGTTCAACGCTC 16 1 598 600 1
400
200 A
In molecular biology this type of large seques are 0 : : : : ‘
common to compare with some other sequences . &okch MSMPMA BruteForce Triematching Navie String Proposed
whether the given pattern presents in the sequenoet we Method

Input AG(2
need a efficient algorithm which does the searcless time MPULAG(2)

and with good complexity. The general algorithnke Brute
Force or other conventional algorithms will take muciméi to Fig.2 Experimental results of different algorithms
do this. There are so many algorithms are introduoesolve
this problem with lessomparisons and in less time but each
have their drawbacks. The proposktiex Based Forward
Backward String Searching algorithm is one simplkit®n
for such needs.

Fig.3 shows the number @imparisons made for different
algorithms to the pattern of length 3. The patt€CAT’, in the
proposed algorithm takes 5&@mparisons where as all the
other algorithms like Brute-force, MSMPMA and Trie-
matching takes more than 12€@8mparisons.

This algorithm can be appreciated for decrgpsihe
1400 -

number of comparisons as compared with the other — . o
algorithms as shown in the following graphs. 1200 1
1000 -
IV. RESULTSAND DISCUSSION 800 1
From the proposed algorithm it has been oleskrthe 600 1
following experiments when compared with some ef tther 400 +
algorithms. Fig.1 shows the humbercomparisons made for 200
different algorithms to the single pattern of ldndt. For a 0 . ; . ; .
single pattern A’ the proposed algorithm takes 518 MSMPMA BruteForce Triematching Navie String ~ Proposed
comparisons whereas all the other algorithms take nearl Input CAT(3) Method

1024 comparisons.
Fig.3 Experimental results of different algorithms

434

International Journal of Biological, Life and Agricultural Sciences
ISSN: 2415-6612
Vol:4, No:6, 2010

Fig 4. shows the number admparisons made for different The CPC value is less than 1 in tirelex based matching
algorithms to the pattern of length 4. The pattehACG, in algorithm where as in all other algorithms it ismathan 1.
the proposed algorithm takes 6d@mparisons where as all the

other algorithms takes more than 135&mparisons. 1600 1
1600 - 1400 4 -— *
1200 4
1400
1000 4
1200 800 -
1000 - 600
800 - 400 -
600 200
400 - 0
MSMPMA BruteForce Triematching Navie String Proposed
200 1 Input AAAAAAGG(8) Method
0
MSMPMA BruteForce Triematching Navie String Proposed .) .)
Method Fig.6 Experimental results of different algorithms

Input AACG(4)

Fig 7. shows the number ajomparisons made for
different algorithms to the single pattern of ldndgt2. The
pattern TTCTTAATAAAA in this the proposed algorithm

Fig 5. shows the number afomparisons made for takes 65lcomparisons where as all the other takes more than
different algorithms to the pattern of length 5.eThattern 1390 comparisons. In this case the comparison slightly
“AAGAA, in the proposed algorithm takes 6&@mparisons decreased when compared with the earlier cases.
where as all the other takes more than 1&¥Bparisons. By

Fig.4 Experimental results of different algorithms

taking pattern size 5 our algorithtcomparisons has increased 1600
slightly. In all other cases it is less than halenre as in this 1400 4 . >—
case is more than the half. 1200 -
1000
1600 4 800 4
1400 - -— . 600
1200 400 -
1000 - 200
800 0
600 | MSMPMA BruteForce Triematching Navie String Proposed
400 | Input TTCTTAATAAAA(L2) Method
200 -
0 , Fig.7 Experimental results of different algorithms

MSMPMA BruteForce Triematching Navie String Proposed . .
Input AAGAA(5) Method Fig 8. shows the number @bmparisons made for

different algorithms MSMPMA[8], Brute-force, Triedatching,
Naive string search with the proposed pattern nvagch
algorithm and tested with the pattern of lengdh The pattern
Fig 6. shows the number aomparisons made for “GGCTGTTCAACGCTCCIn this theindex based sequential
different algorithms to the single pattern of léng. The searching algorithm takes 5%®mparisons where as all the

pattern ‘AAAAAAGG, in the proposed algorithm takes gaather takes more than 1348mparisons. Overall performance
comparisons where as all the other takes more than 138% the algorithm is very good when analyzed wittheot

comparisons. algorithms.

Fig.5 Experimental results of different algorithms

435

International Journal of Biological, Life and Agricultural Sciences
ISSN: 2415-6612
Vol:4, No:6, 2010

1600 -
1400 -
1200 - TABLE V
1000 - EXPERIMENTAL RESULTS OHFBMPM FOR DIFFERENT PATTERN SIZES
800 1 s Pattern | - . IFBMPM
600 - N. PatternP’s) Lenth | rren Model CP_C
0 OCCUITENCE omparison Ratio
400 A
1 A 1 259 518 0.505
200 2 AG 2 53 624 0.609
0) 3 CAT 3 11 567 0.55%
_ _ o 4 AACG 4 5 614 0.599
MSMPMA BruteForce Triematching Navie String Proposed 5 AAGAA 5 2 616 0.601
Input GGCTGTTCAACGCTCC(16) Method 6 AAAAAA 6 3 627 0.61:
7 AGAACGC 7 2 600 0.585
8 AAAAAAGG 8 1 634 0.619
Fig.8. Experimental results of different algorithms @~ GCTCATTAG 9 1 582 0.568
9 P 9 10 CCTTTTCCGG 10 1 562 0.548
. . . 11 TTTTGCCGTGT 11 1 650 0.634
Fig 9. shows the comparison between the differ 12 TrcTTAATAAAA 12 1 651 0.635
algorithms like MSMPMA, Brute-force, Trie-Matching, 13 ~ GGGACCAAAAAAT 13 ! 579 0.565
.)) i . 14 TTTTGCCGTGTTGA 14 1 638 0.623
Naive-string matching and thindex based sequential 15 CCTCCAAAAAAGGCT 15 1 578 0.564
searching algorithms. It is clear that oinmdex based 16 GGCTGTTCAACGCTCC 16 1 598 0.583
. . 17 TTTTCGATTGCTCATTA 17 1 643 0.627
algorithm outperforms when compared with all othefgy sogarrreceratacTee 18 1 598 0.583
algorithms. 19 GGCCTTGTCTAAAGGTATG 19 1 579 0.565
20 CCTGAGCGCGTCCTCCGTAC 20 1 570 0.556
1600 4
Table.VI shows experimental results of diffare
1400 A——2 .
T =y algorithms used to compare and analyze the reselited to
1200 - the algorithms like MSMPMA[8], Brute-Force, Trie-Kt,
—=— MSMPMA ——+— Buute Force naive string matching with the proposed algorithi.
1000 1 —+— Triematching Naive String Search comparison has been done on the basis of number o
800 1 ---#--- Proposed Model comparisons and comparison per character with the other
algorithms.Index based algorithm gives the best performance
600 P . o oo #oom ST T . and CPC(comparison per character) ratio comeslfdrhthe
current algorithm.
400
TABLE VI
200 COMPARISONS OF DIFFERENT ALGORITHMS WITHFBMPM
2 3 4 5 6 7 8

Fig 9. Comparison of different algorithms

Ourindex based algorithm gives very good performance

in number ofcomparisons of the patterns when comparedA

with the other popular algorithms. The dotted liggges the AACG
index based where as the MSMPMA, Brute-Force, Trigiasannce
matching and Naive string based is the other midites in

the graph.

No.of IFBMPM MSMPMA Brute-Force Tri-match Naivestring
Model

Pattern occur

ances
No.of cPC No.of cPC No.of cPC No.of cPC No.of cPC

Comp Comp Comp Comp Comp

259 518 0.50 1024 1.00 1024 1.00 1025 1.00 1024 1.00
G 53 624 0.60 1230 1.20 1282 1.25 1284 1.25 1281 1.25
CAT 11 567 0.55 1298 1.26 1318 1.28 1321 1.29 1310 1.27
5 614 0.59 1359 1.32 1376 1.34 1380 1.34 1376 1.34
2 616 0.60 1375 1.34 1388 1.35 1393 1.36 1387 1.35
1 634 0.61 1394 1.36 1409 1.37 1417 1.38 1407 1.37
TTCTTAATAAAA 1 651 0.63 1390 1.35 1390 1.35 1402 1.36 1399 1.36
GGCTGTTCAACGCTCC 1 598 0.58 1349 1.31 1349 1.31 1365 1.33 1349 1.31

Table.V shows experimental results of thdex based
algorithm, the number ofcomparisons decreases and The following are observed from the experimengalilts.
comparison per character ratio is less than lie césndex
based method.

1) Reduction in number afomparisons.
2) The ratio ofcomparisons per character has
gradually reduced and is less than 1.

436

International Journal of Biological, Life and Agricultural Sciences
ISSN: 2415-6612
Vol:4, No:6, 2010

Raju Bhukya has received his B.Tech
in Computer Science and Engineering
from Nagarjuna University in the year
2003 and M.Tech degree in Computer
Science and Engineering from Andhra
University in the year 2005. He is
currently working as an Assistant

3) Suitable for unlimited size of the input file.
4) Once thendexes are created for input sequencsd
we need not create them again.
5) For each pattern we start our algorithm from th
matching character of the pattern whic
decreases the unnecessemgnparisons of other

characters. Professor in the Department of
6) It gives good performance for DNA related Computer Science and Engineering in National lnitof
sequence applications. Technology, Warangal, Andhra Pradesh, India. Haiisently

working in the areas of Bio-Informatics and DatanMg.
V. CONCLUSION

A new algorithm for searching sequence patternrapgsed.
This paper gives the time efficient method for gajvpattern
matching problem. It is very simple approach fardfihg the
patterns. The proposed algorithm gives very goo
performance with the other algorithms. We have camagp
comparisons per character ratio, numberamparisons. We
have implemented wittDNA Sequence further it can be
extended to protein sequence.

Somayajulu DVLN has received
his M. Sc and M. Tech
degrees from Indian Institute of
Technology, Kharagpur in 1984
and in 1987 respectively, and his
Ph. D degree in Computer Science
& Engineering from Indian
Institute of technology, Delhiin
2002. He is currently working as
REFERENCES Professor and Head of Computer

[1] Boyer R. S, and J. S. Moore, “A fast stisearching algorithm, Science & E_ng'nee”ng at Nat'or_]al Institute of _ngyv

‘Communications of the ACEO (October 1977), pp. 762 772. Warangal. His current research interests are bm+imatics,
[2] Knuth D., Morris.J Pratt.V Fast pattern ofdhg in strings,SIAM data Warehousing’ database Security and Data M|n|ng

journal on computing
[3] Kurtz. S, Approximate string searching undeighted edit distancén

proceedings of the™south American workshop on string processing.

(WSP 96)Carleton Univ Press, 1996 156-170.
[4] Needleman,S.B Wunsch, C.D(1970). A generalhmetapplicable to the

search for similarities in the amino acid sequen€ewo proteins.

J.Mol.Biol48,443-453.
[5] Ukkonen,E., Finding approximate patternssfrings J.Algor. 6, 1985,

132-137
[6] Wu S., and U. Manber, “Agrep — A Fast Appimate Pattern-

Matching Tool,” Usenix Winter 1992 Technical Conference, San

Francisco(January 1992), pp. 153 162.
[7] WU.S.,Manber U., and Myers,E .1996, A sub-dpagic algorithm for

approximate limited expression matchinglgorithmica 15,1,50-67,

Computer Science Dept, University of Arizona,1992.
[8] [MSMPMA] Ziad A.A Algadi, Musbah Agel & Ibralem M.M.EI

Emary, Multiple Skip Multiple Pattern Matching alithms. IAENG

International Journal of Computer Scien84:2.

437

