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Development of Admire Longitudinal
Quasi-Linear Model by using State
Transformation Approach

Jiangiao. Yu, Jianbo. Wang, And Xinzhen. He

Abstract—This paper presents a longitudinal quasi-linear model
for the ADMIRE model. The ADMIRE model is a nonlinear model of
aircraft flying in the condition of high angle of attack. So it can’t be
considered to be a linear system approximately. In this paper, for
getting the longitudinal quasi-linear model of the ADMIRE, a state
transformation based on differentiable functions of the nonscheduling
states and control inputs is performed, with the goal of removing any
nonlinear terms not dependent on the scheduling parameter. Since it
needn’t linear approximation and can obtain the exact transformations
of the nonlinear states, the above-mentioned approach is thought to be
appropriate to establish the mathematical model of ADMIRE. To
verify this conclusion, simulation experiments are done. And the result
shows that this quasi-linear model is accurate enough.

Keywords—quasi-linear model, simulation, state transformation
approach, the ADMIRE model.

|. INTRODUCTION

HE admire, the aero-data model in a research environment,

is a nonlinear six degree of freedom simulation model
developed by the Swedish Defence Research Agency using
aerodynamic data obtained from a generic single-seat,
single-engine fighter aircraft with a delta-canard configuration
[1]. ADMIRE is augmented with a full-authority flight control
system and includes engine dynamics and detailed actuator
models. It includes a large number of uncertain aerodynamic,
actuator, sensor, and inertia parameters, whose values within
specified ranges can be set by the user.

The aerodynamic functions are defined over a wide flight
envelope with a significant range of Mach number (0.3 to 1.2)
and wide ranges of angle of attack (-30°to 90°) and sideslip
angle (-30°to 30°) at low subsonic speeds. And the
configuration of the model is showed as in Fig. 1.

In this paper, a longitudinal quasi-linear model of ADMIRE
will be established by using state transformation method. The
approach of state transformation is called state transformation
because the quasi-LPV model is obtained through exact
transformations of the nonlinear states [2]. It basically performs
a state transformation based on differentiable functions of the
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nonscheduling states and control inputs with the goal of
removing any nonlinear terms not dependent on the scheduling
parameter [4]. This technique was introduced by Shamma and
Cloutier. And it has been applied to a wide range of
applications [5] - [8].

—

Fig. 1 Principal layout of the configuration

At the end of this paper, simulation experiments are done to
verify the accuracy of this model.

II.AIRCRAFT DYNAMIC MODEL

A. Definition of Reference Frame

There are two frames used in the course of establishing the
aircraft dynamic mode
shown as in Fig. 2 and Fig. 3 [1].

Sg-frame and Sy-frame. They are

Xg Z

Fig. 2 Body fixed frame, Sg-frame
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Fig. 3 Sy-frame

The origin of Sg-frame is the centre of gravity (Og), and the
origin of Sy-frame is the aerodynamic reference point (Oy).
The reference point is fixed but the location of the centre of
gravity can change. In the nominal case, these two points
coincide. The relative position of the two points is shown as in
Fig. 4 [1].

Fig. 4 Definition of reference frames

B. Forces and Moments

In Fig. 3, the definition of the direction of the forces and
moments from the aero data is shown. There are six

aerodynamic coefficients defined—C+, Cy, Cc, C;, Ci, C. And
then the aerodynamic forces and moments can be written as

F,=—0:S Crot s

F,=-0-S Co»

F,=—0 S, Cpuet »

M, =TS s ~Cor —Zgq - Fy + Vg - Fs
M, =0-S, B - Crit —Xg *Fy+24F,,
M, =0 S Bt Criot *Xeg*Fy =Yg - Fy s

where { is the dynamic pressure of the plane, and @ = %pv 2

(p isthe density of the air and V is the velocity of the plane);
S, IS the area of the wing; b, is the length of the wingspan;

Xe » Y and z., are the relative distance between the centre
of gravity and the aerodynamic reference point which are not a
fixed coordinate.
Now the expressions of lift coefficient and drag coefficient
shown as (1) and (2) can be gotten.

C,=C,cosa—-C; sina (1)

C, =C,sina+C; cosa 2

C.The Plane’s Longitudinal Motion Equations

For achieving the plane’s independent longitudinal motion
equations, some assumptions are made: the plane just flies in
the vertical plane and the lateral coefficients are very small so
that they have no impact on the longitudinal coefficients. The
deflection of pitch motion is just decided by longitudinal
motion coefficients, and the deflection of yaw motion and roll
motion is just decided by lateral motion coefficients. That is to
say, there is no deflection of yaw motion and roll motion, and
the deviation from the zero value caused by the lateral motion
coefficients which are produced by various interference factors
can be cleared away very fast. According to these assumptions,
the plane’s longitudinal motion equations [3] can be gotten.

m%—\t/:TCOSa—D—mgsiny

mvi—jt/:Tsina+L—mgcos;/
Iyd—q:M
dt
d—)t(:Vcos;/
d_y:Vsin}/ ) (3)
dt
4o _
dt
am__
dt ¢
a=0-y
¢, =0
#, =0

where L , D, M are lift, drag and pitch moment.; T is the

q

thrust which is parallel to the direction of xg-axis.; V., 8 , y
, 0 , «a arevelocity, pitch angle, flight path angle, pitch rate,
angle of attack; x , y are the plane’s coordinates in inertial

reference frame; m , | g ., m, are aircraft total mass, y

y
body axis moment of inertia, acceleration due to gravity,
variation of aircraft mass in one second; ¢, , ¢, are control

relation equations.

I1l. DEVELOPMENT OF AIRCRAFT LONGITUDINAL
QUASI-LINEAR MODEL

A. Aircraft Longitudinal State-space Equations

Considering the characteristics of the aircraft longitudinal
motion, « , q are chosen as variable state vector, and h, the
height of aircraft, take the place of y . The differential equation
about q has been given in (3). Now the differential equation

about « can be obtained from (3), too.
By the 8th equation of (3) time t to derivatives, (4) can be
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gotten.
do_do_dy @
dt dt dt
With the 2nd and 6th equations of (3), the (4) can be rewritten
as (5).
da  Tsina+L-mgcosy
dt mV
Now all the differential equations needed are gotten, and
they can be shown as (6).

®)

_Tsina+L-mgcosy

Y ©®)
4=""

y

B. Simplification of Aerodynamic Coefficients
Although the state-space (6) has been gotten, it isn’t the form
needed. So it should be developed further.
There are just two forces and one moment in (6): lift L, drag
D, and pitching moment M. And they can be written as (7).
L=gscC,
D=0SC, @)
M =gscC,,,
where S is the area of wing surface; C is the average value of
aerodynamic chord; C, is coefficient of lift; C, is coefficient

of drag; C,, is coefficient of pitching moment; @ = %pv s

dynamic pressure; o, a function of h, is the density of the

atmosphere.

According to (7), the problems of forces and moments can be
changed into the problems of aerodynamic coefficients. As the
longitudinal motion of aircraft is only researched, it is just
needed to be considered of coefficient of lift, coefficient of drag
and coefficient of pitching moment. And these three
coefficients can be decided by other three coefficients. They are

coefficient of tangential force C, , coefficient of normal
force C,, , and coefficient of pitching moment C,, . So the latter

three coefficients are the ones that should be considered. These
coefficients usually can be gotten by using the interpolation
tables which are gotten by using the real data of aircraft and the
experiment of tunnel. These coefficients can be simplified
according to the size and physical meaning of the components
of these coefficients.

Besides the structure of aircraft, these coefficients also can
be impacted by Mach number, angle of attack and system
parameters. In the model of ADMIRE, the system parameters

are left canard deflection o,_, right canard deflection o, left

Ic?

right outer elevon deflection &

rc?

outer elevon deflection ¢,

loe * roe !

left inner elevon deflection o,
)

right inner elevon deflection

lie

rudder deflection &, , leading edge flap deflection o, ,

rie 1

horizontal thrust vectoring J,,, and vertical thrust vectoring
Oy, -

And in different area of Mach number Ma, these
aerodynamic coefficients are different. They will change when
Mach number in the area of 0.4 to 0.5 and whenMa =1.4. In
this paper, the situation of Ma < 0.4 is just researched.

Here, some definitions are made in (8).

5, =8, +6,,)!2
§ai = (5|ie _5rie)/ 2
Sy = (G0 + 510 )1 2
5y = (8 =60 )1 2
i:@+@y2 ®
5.=(6,-6.)2
5, =0,

5,=(6,+5,)12
1. Simplifying Coefficient of Tangential Force
The coefficient of tangential force can be written as ( 9 )

before being simplified [1].
Criot =Crpy +C5, + CTM + CTD_ey + CTM" + CTan + CT».E (9)

Thasic

high
+ CT»a + CTﬁ + CT{)r +Cr,

where they are all the components of coefficient of tangential
force decided by angle of attack or other system parameters.

By ignoring the impaction of left elevon deflection, angle of
sideslip, leading edge flap deflection, rudder deflection and
other small components, coefficient of tangential force can be
simplified as (10).

C; =Cqy (M )+ C,, (a) + CTa‘na (5n ,a), (10)

where
a) C;o(M) is the basic component of coefficient of tangential

force, which is only related to Mach number. It can be gotten by
using one-dimensional interpolation methods;
b) C,, (a) is related to angle of attack. And according to the

data table, when angle of attack is a positive number, it is a big
negative number;
¢) Cy,., (5, ,€) is related to canard deflection. It is the most

important component that should be considered and it should
be linearized.
2. Simplifying Coefficient of Normal Force
The coefficient of normal force can be written as (11) before
being simplified [1].
Cyy = Chpe TCh, +CN.>~9. +CN(§ey +CNM +Cy

Niot

_+Cy.
on e (11)
+Cy,, +Cu, +Cps +Cy, +Cy,, +Cyq +Cy™,

where they are all the components of coefficient of normal

force decided by angle of attack or other system parameters.
By ignoring the impaction of left elevon deflection, angle of

sideslip, leading edge flap deflection, rudder deflection and

other small components, coefficient of normal force can be

simplified as (12).
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Cy=Cy,..
=Cy, (M )+ CN(SS,X (O,QX:NW (qacorr'M )
+Cy, . (6,,@)-Cy s, (@0 M)+ Cy(a])- . -Cy
where
a) Cy, (M) is the basic component of coefficient of normal

+ CN[X + CNO_n + CNq

(12)

(qacorr ! M )’

eq

force, which is only related to Mach number;
b) Cy, (0.@)-Cy, (42, .M) is related to dynamic pressure
and Mach number, where ga
dynamic pressure;

C) CNM(ﬁn '“)CNeﬁ (qam,M) is related to canard
deflection;

d)In the component of C, (]a|)~qC -Cy,, (qa

=0a=*0.0001, and ga is

corr

M),

corr 1

9. =qc/(2v), where q is pitch rate and ¢ is aerodynamic

chord.
3. Simplifying Coefficient of Pitching Moment
The coefficient of pitching moment can be written as (13)
before being simplified.
C, =C +C,, +Cm(5ei +Cm§ey +C

Mot Mpasic

+ Cmsn

Mses

+Cmd. +Ch +Cmﬂ +Cp, +Cmq +C,, (13)
+Ch, +Chon

where they are all the components of coefficient of pitching
moment decided by angle of attack or other system parameters.

By ignoring the impaction of left elevon deflection, angle of
sideslip, leading edge flap deflection, rudder deflection and
other small components, coefficient of pitching moment can be
simplified as (14).

Cn=Cp.. TCm, +Cy, +C

= Cm0 (M )+ Cmr,-ea (O'a)
+Cp, | (8,.a) Co, (@ M)
(e, @)+ Cy, (6,,0) 0, Crp, (@ M),

Mg

(14)

where

a) CmO(M) is the basic component of coefficient of pitching
moment, which is only related to Mach number;

b) Cmdea (O,a) is related to angle of attack;

C) me (5n,oc)-CmeJn (qam,M) is related to canard
deflection;
d) (Cmqa (@)+C,, . (6,.2))-a, -Cp,,, (G2, M) is related to

pitch rate.
4. Simulation
According to the simplification, it can be known that the

component of cMah s ignored in every coefficients. This
component is the correction term to big angle of attack. IT is

ignored here, because the range of angle attack is - 10°to 30

o

To get the relation between these coefficients and angle of

attack and Mach number, some simulations are done by using
MATLAB programming. With the (1) and the (2) and letting

the range of angle of attack be 0° to 30°, the efficient curves as

Fig. 5 to Fig. 9 can be gotten, where the four curves in every
picture is gotten when Mach number equal to 0.1 or 0.2 or 0.3
or 0.4.
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Fig. 5 Coefficient of Tangential Force for different Mach numbers
after being simplified
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Fig. 7 Coefficient of Pitching Moment for different Mach numbers
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According to these curves, it can be known that angle of
attack is the main factor which affect these coefficients when

Ma<04.
C.Establishing The Longitudinal Quasi-linear Model of The
ADMIRE

With (10) and (12), (1) and (2) can be rewritten as (15) and
(16).
C. =

+

Cy, (M )cos & - C;, (M )sin ]

Cy,. (0,a)Cy, (d@g, M)cosa -C; (a)sin a]

+ [C n. (00,@)Cy,, (0@ M )cos @ —Cy (5,,a)sin a]
+ CNqa QUCD qc - CNEq (qaco,r M )COS o

(15)
C, =[Cy, (M )sina +Cy, (M )cos ]
+[Cy,, (0.@)Cy,, (@3 \M)sina +C; (a)cos a]
+ [C w5 (60@)C,, (d@g M )sina +Cy (5, ,a)cos a]
+ CNqa qa‘) q. - CNE,q (qacorr M )Sin a
(16)
According to (6), (14), (15) , and (16), the mathematical
model of the aircraft as (17) can be gotten.
[CNU (M)cosa -C, (M )sin a]

gs . sina
BEETas Cy,. (0.a)Cy,, (08, M )cOs - C,. (a)sma] =
g = + [CN(,- } (s, ,a)CNw_ (98 M Jcos -C, (8,,@)sin a]

B, (M)+C.,, (0.0)+Cp, (6,,0) o (G M )]
y
qs c
0 1—r?]—vCNW(ja‘).CNw(qam,M)coso:W [a}
| gse [
0 B, (@)+c, (6@, (@ M) a
Iy 9a 'ona leq ZV

17
For looking simple, some variables are defined : 0
AX =|C, (M)sina+C, (M)cosa|
+ [CNM (0.a)Cy,, (g, .M)sina +C; (a)cos a]
BX =|[C,, (M)cosa -C, (M)sina|
+ [CNM (0,a)Cy,, (43, M )cosa —C; (a)sin a]
Cx =C, (M)+C, (0,a)
Co,, (6,,@)=Cy,  (6,,2)Cy,, (08 M)sina
+Cq, | (6, ,a)cos
C,,(6,.a@)=Cy, (6,.ay, (42, M)cosa
-C;, (6,,a)sina

na

Cn,, (6,,0)=C,, (6,,0)-Cpy, (G M).

Mspa

Then, the mathematical model can be written as (18).

754



International Journal of Mechanical, Industrial and Aerospace Sciences
ISSN: 2517-9950
Vol:4, No:8, 2010

. —E[BX ic, (6 a)]_ sina T Here, q,, should be known, and with (20), (22) can be
@\_ o mv gotten.
g ch [cx C,,. (6 a)| as i
" ~ B [ax r0, (S .a))- SNy
mvV ? mV
gs c - z
. 0 1_TCN qa‘)'CNeq (qacorr M )COSa W |iaj| +|: — % Noa (Ial) CNEq (qacm s M )COS(Z :| qeq
qsc c
0 q [C +C (é‘n ’0{)]'Cme[1 (qacorr ’M )E q (22)
(18) And then with (22), q,, is written as (23).
Equation (18) is the motion state equation of aircraft. gs sina
——|[BX —T
Considering the canard deflection &, as the control input, it q. = mv [ +Cy, (5neq* )]+
can be found that (18) is not linear to canard deflection J, . So it " 1_£CNM (|a|)~ (3Ne (qam M )Cosai
should be known of the first-order Taylor expansions of m\_/ [ ] v (23)
C.. (6,.a)andC, (5,.a).And they are given by _ GSPBX+C,, (6 )+ sinaT
_ T
C,,(6,.a)=Cy (5neq )+ D[CL& (Greq @S0 — Srea) mV —gsC,, (|a|)- o (qa,,, .M )COSaW
Cmsna (5“ ,a) = Cmana (5"611‘ ) * chma a( neq ,a)lén ~ Oreg ) By (23) t to derivatives, ( 24 ) can be gotten .
where D() = % G =%‘d
n p c
With the Taylor expansions (18) can be rewritten as (19). :{as[sx +C7,, i coser T[mv a5C q“‘)'c”w(qaw”‘M)COS“E}
i ,%[Bx +C, (reqs ] Slna [mv -TsCy,, (ja‘).CNeq (qaw,,,M)cosa%}
M N ch [cx +C,, (5neq a)] s, (a))-Cy, (G2, M )sina%{qs[sx +C,,. (§neq,a)]+sinaT}'d
r = mv —ﬁSCNMQ(xD-CNeu (98 sM )cosozi
0 1—£CN (ja\)-CN (8, M )cOS r—— [ ZV}
oo™ & ] (24)
0 q ¢ [C a)+C,, (5n ,a)]'Cmeq (qacm,M)% q With (21), the expression of ¢ as (25) can be gotten.
? =135 . € g
- C:;f D[CLW (5neq a)] [ ] @ _|: mV Nga (Ial) CNeq (qacgrr 'M )Cosa 2V :|(q qeq)
+ qe St 5n _5neq qs
I qy D[Cm» a neq OC)] _W D[CLé o neq 143 ké‘ §neq)
(19) _ _ (25)
Letting the left side of (18) equal to zero, (20) can be gotten. With (25), (24) can be rewritten as (26).
[0} ' —%-d
—E[BX +C. (5, a)]——s'”“T "
|:0:|: " v {aS[BX“JrC (S0 a +cosa T{mv gsc,, a‘ qac M)COSaL}
0 ch [ex +c,, (e, a)] - : v
y {mv gsCy (ja\) CNn Q8 M cosa—}
_0 _ECN qa‘).CN (qa 'M)Cosai " -GSCy, Qa‘) (9@, M )sin %{ﬁS[BX +C (s a)]+SInaT}
mv qa eq corr 2V
+ =~ 2|)-Cy_ (@ oS —
0 cISC [C +C (5n ,a)]_cmeq (g2, .M )% {QEJ ) [mv ascy,, (a)-C, (e 7M)c 1
L -{[1—%%“ (Ja‘).ch (qaw" M )cosa%}(q - qm)—% D[CLW (5m ,a)kﬁn —ﬁm )}
(20)
Equation (19) less (20) and (21) can be gotten. Define (26)
- 7 - ~
{d} 0 l_qTCNqa () Cu (G2 M )COW% { a } s[Bx 40 (6..a)]+ cosa «T{mv -ascy, (a])-Cy, (qam,,,M)cosa%}
T asc C _ DX = — 2
4 0 q © [C +C (§n '“)]'Cmeq (G0 M )E 47 e [mv -asCy,, (o) Cy,, (qam,,,M)cosa%}
—ED[C (5 a)] —ﬁSCNWﬂa\)CNeq(qam,M)sina%{ﬁS[BX +C,, (% a)]+sinaT}
mV Lsqa \7Neq? — ,
+ qTSED[CmE a (5neq a)] Sn §neq] {mv —q’SCNMQa\)-CNEq (qam,,,M)cosa%]
y where
(21)
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BX“ = [*CNU (M)sina -C; (M)cos al Equation (21) less (27) and (28) can be gotten.
-Cy,, (0,2)C,,, (08, M )sina
+ [ng (0,a)c,,, (93, M)cosa -C; (a)cosa—Cs (a)sin a]
Then (26) can be rewritten as (27).

qeq =DX- {|:1_ qf/ N (IOCl) CNeq (qacorr M )Cosa%:l(q - qeq)

ook, o, o0
@7)
gs c
|: o :| 0 _WCNqa (lai)'CNeq (qacorr’M)CosaZ a
f—a | ch[ ] C as C _
0-CGq | |0 Cy. (@)+C,,. (5n,a) Cp, (qawr,,M)W—DX - VCNW(|04).CNeq (qam,M)COSaE 0—0
28)
% | (
“mv CLana (5neq'a) [ ]
+ asc n neq
it D[Cmﬂ (5neq,a]+ DX > D[c §neq,a]
y
wher_e _5neq and g, can_ be gotten from (20). And (28) is the ° — Beore ;er:g?ilnigaerai;iezsd
quasi-linear model that is the result. 002
IV. SIMULATIONS -0.04
Now the quasi-linear model has been gotten, but it should be ﬁ 006
checked to make sure whether it is right by the simulation g
method. Programming with MATLAB, solving (18) and (28) g -0.08
by the method of fourth-order Runge-Kutta, letting them have g
the same initial values and conditions ,and setting simulation ot
step to be 0.01s and simulation time to be 3s, the curves as Fig. o
10 and Fig. 11 can be gotten.
= = = 0.14
Before being linearized
After being linearized o 05 1 15 2 25 3
Time
(s)
03— Fig. 11 The curves of Pitch Rate
Em—
_ H\\ From the Fig. 10 and the Fig. 11 and the results of the
g \ simulations, it can be found that the two curves have difference
Sozs when t become larger. The errors are result from the
< linearization of C, (5,.2)andC,_ (5,.a). But the errors
E are very small. So it can be concluded that the quasi-linear
< oz model is accurate enough.
V.CONCLUSION

015 - Y ! - > o= In this paper, a longitudinal quasi-linear model of ADMIRE
has been presented by using state transformation method.
Because there is only once linearization in the process of
Fig. 10 The curves of Angle of Attack establishing, the model can reflect the dynamic characteristics
of aircraft very accurately, which is very helpful to the design
of control system for aircraft with high angle of attack. And
satisfactory results are gotten in the simulations experiment.

Time (s)
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