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Abstract—People detection from images has a variety of
applications such as video surveillance and driver assistance system,
but is still a challenging task and more difficult in crowded
environments such as shopping malls in which occlusion of lower
parts of human body often occurs. Lack of the full-body information
requires more effective features than common features such as HOG.
In this paper, new features are introduced that exploits global
self-symmetry (GSS) characteristic in head-shoulder patterns. The
features encode the similarity or difference of color histograms and
oriented gradient histograms between two vertically symmetric blocks.
The domain-specific features are rapid to compute from the integral
images in Viola-Jones cascade-of-rejecters framework. The proposed
features are evaluated with our own head-shoulder dataset that, in part,
consists of a well-known INRIA pedestrian dataset. Experimental
results show that the GSS features are effective in reduction of false
alarmsmarginally and the gradient GSS features are preferred more
often than the color GSS ones in the feature selection.

Keywords—Pedestrian detection, cascade of rejecters, feature
extraction,self-symmetry, HOG.

I. INTRODUCTION

EDESTRIAN detection from images has a variety of
practical applications such as video surveillance and driver

assistance system,so much research have been done actively in
computer vision community and significant progresses have
been made [1], [2]. However, pedestrian detection is still a
challenging task because of complex backgrounds, variations
of human poses, and clothes. It is even more difficult to detect
pedestrian in crowded environments such as shopping malls
and subway stations owing to frequent occlusion. In order to
detect humans in those circumstances, there have been research
on detection of upper parts of human body such as head and
shoulders [3]-[7].

In particular, head-shoulder detection has attracted attentions
as the head-shoulder pattern has more salient, informative
shape than the head part only. In [4], a local shape matching
scheme, which computes the resemblance with called edgelet
features, has been proposed to detect and track multiple,
partially occluded humans. In [5], [6], cascade-style
head-shoulder detectors based on histogram of oriented
gradients (HOG) features [8] rather than local silhouette
matching, have been used to perform rapid human detection in
crowded scenes. In [7], an aggregation of multilevel HOG and
local binary pattern (LBP) features have been adopted to count
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Fig. 1 Image channels for which local features are computed by some
transformation such as sum and histogram

the number of people in case where partial occlusion happens.
Meanwhile, it is also important for head-shoulder detector to

operate in the near real-time, e.g., at a speed of 10-20 frames
per second for practical applications. To accomplish this,
cascade-of-rejecters approach, which is proposed by Viola and
Jones (VJ) [9], has been widely used together with local,
rapid-to-compute features such as HOG [10]-[11].In most VJ
cascade classifiers, each classifier determines whether to pass
or reject on the basis of not global features but local features.
Because of such local features, the cascade classifiers
sometimes would yield false alarms for input patterns that seem
unlikely to be misclassified as head-shoulder patterns, as shown
in Fig. 2. This is a limitation that the local features have
inevitably, even if used in combination.

In this paper, we introduce a new class of features that
exploits the global self-symmetry (GSS) characteristic in the
head-shoulder pattern to reduce the false alarms effectively in
local feature-based cascade classifiers. The features encode the
similarity or difference of color and gradient information
between blocks that are vertically symmetric to each other.

The remainder of this paper is organized as follows. Section
II describes the global self-symmetry features in detail, and our
cascade classifier is introduced briefly in Section III. Section
IV discusses experimental results and conclusions are made in
Section V.

II.GLOBAL SELF-SYMMETRY FEATURES

Fig. 1 shows two image channels, HOG and color for which
the local features are extracted from a set of rectangular blocks
by using integral images [9]. HOG is computed by building a
weighted orientation-based histogram of gradients at pixels
within a rectangular block. Likewise, a color histogram is built
by summing color values within a block. In training a cascade
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classifier, features from the feature pool, which
HOG and color histogram for every rectangular
evaluated and then the best ones are used as inpu
each stage.

Even though the local features are known to b
they are not perfect enough to detect the head-shoul
with few false positives. Fig. 2 shows ex
wrongly-detected negative images by a cascade cla
HOG and color features. They share the same or sim
or edges locally with head and/or shoulder patte
difficult for the local features, chosen by the cascad
to discriminate them correctly. However, they ha
correct classification thanks to their rather global
are quite different from the head-shoulder pa
head-shoulder patterns have a global sel
characteristic or strong vertical symmetry of shape
around heads and both shoulder, even though slight
the symmetry occurs depending on human pose.

Fig. 2 Examples of false positive images
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gradient histogram, are very likely to be vertically s
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e.g., the two blocks including the arrows in Fig
extracted readily by re-using the HOG features.

Fig. 3 Global, vertical self-similarities of color and 
information around shoulders
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Fig. 4 The one-to-one correspondence of orienta
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pedestrian to incorporate the global, vertical
the HOG block level.
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of the new classifier is illustrated in Fig. 5. The cascaded
classifier consists of a series of classifiers, ...3,2,1, iH i

, each

determining whether to rejecter an input image. An input is
rejected at the i-th stage if the output is larger than a threshold,
and is passed into the (i+1)-th stage classifier otherwise. An
input is classified as positive one if it has passed through
classifiers at all stages.The output of the i-th stage classifier is
represented by
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(2)

where i
kf and iN denote the k-th feature and the number of

features at the i-th stage, respectively. Feature i
kf is computed

from a D-dimension vector, e.g., color histogram and gradient
histogram in a feature block by using a D-to-1 mapping such as
principle component analysis (PCA). Here, i

kf is computed

by projecting a histogram into a discriminant vector determined
by linear discriminant analysis (LDA). We choose the
LDA-based D-to-1 mapping because it is very fast to compute
in comparison with SVMs that has been used as weak
classifiers in previous works, e.g., [10].The parameters, and

are determined in a greedy style, unlike in boosting-style

learning where they are by a formula according to error rates of
weak classifiers.

Fig. 5 The architecture of cascade-correlation classifier

It is quite reasonable that the outputs of preceding stage
classifiers contribute to the training of the current stage
classifier because, although training samples at the current
stage (both positives and negatives) have passed through the
preceding stage classifiers, they are likely to be distributed in
the output space in favor of classification. Experimental results
showed that the feedforward connections are effective in
completing the training at much higher performance point as
well as at a faster speed than without the connections. In fact,
the concept of the feedforward connection between stages or

layers originates from a neural network model, called
cascade-correlation neural networks [14]. Hence, we call the
monolithic cascaded classifier cascade-correlation classifier.
A similar approach has been adopted in the VJ cascade
classifier architecture, named nested cascade classifier [15]
where each classifier receives the output of the last stage
classifier only. The GSS features are evaluated in the
cascade-correlation classifier framework.

IV. EXPERIMENTAL RESULTS

A. Dataset

Because there is no open dataset for head-shoulder detection,
we created a dataset by cropping pedestrian images from a
public INRIA dataset [8] and adding about 120 negative images
into the INRIA negative image set. While cropping
head-shoulder patterns from the INRIA dataset, care must be
made to center head patterns in the cropped images. Unlike
pedestrian detection in case that full-body pattern is available,
the head position is very a salient discrimination feature
because the within-class variation of positive samples gets
large if the head locations are aligned imprecisely.

The dataset consists of 1,800 positive samples with the size
of 24x24 (1,000 samples for training and 800 for test) and 900
head-shoulder-free images (500 for training and 400 for test).
The negative images of shopping mall, subway platform, and
campus were added into the negative image set since the places
are where we want to deploy the detector. In addition, images of
lower-body parts such as legs and feet were included in the
negative image set because preliminary experiments discovered
those patterns often produce false alarms. Some positive and
negative samples in the dataset are shown in Fig. 6.

(a)
(

(a)

(b)

Fig. 6 A head-shoulder dataset. (a) positive samples, (b) images for
negative samples

B. Results

A cascade-correlation classifier was trained in such a way
that a classifier at each stage is trained by using 1,000
24x24-sized positive samples and 8,000 24x24-sized negative
samples. Before used in training, the negative samples were
selected randomly from the negative image set and passed
through the preceding stage classifiers.

Table I shows the values of training parameters. The
maximums (minimums) of height and width of feature blocks
were set to 10 (3) since features from larger blocks were not
chosen at all in the feature selection in training. For features,
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signed HOG (with signed gradient information) features with
18 orientation bins were computed and CIE-LUV color
histograms were also extracted for each block. All
cascade-correlation classifiers, which trained independently
with different sets of distinct features, were tested with 800
positive samples and 300,000 patches selected randomly from
the test negative image set. The training took about 8-9 hours
on Intel 2.7GHz CPU.

Performance was evaluated on graphs of miss rate vs. false
positive per window(FPPW). Fig. 7 shows the performance of
the classifiers with HOG features only (dotted line),
HOG+LUV features (dashed line), and HOG+LUV+GSS
features (solid line). For fair comparison, all curves were
averaged for 10 classifiers, each trained independently.
Surprisingly, adding LUV color features to HOG features
makes a remarkable improvement in comparison with HOG
features only. At a FPPW of 10-4, a usually used reference point,
the classifier with LUV features shows a miss rate of 0.4 that is
much lower than 0.54 of the classifier with no LUV features.
Color information cannot be competent if it is used alone, but
the result reveals that color can be a complementary, effective
source when combined with HOG. Conflicting results have
been reported on whether such raw color features are beneficial
[11],[12]. Our results confirm the fact that raw color is salient
information that enables us to reject head-shoulder-free images
much easier than no color information. In fact, detection rate of
0.6 at the FPPW of 10-4 is worse than the detection rate of 0.9
that SVM-based full-body detectors of [2][11] reported for the
INRIA dataset, which implies the fact that head-shoulder
detection is harder than full-body detection.

When the GSS features were added into the HOG and color
feature set, it made the performance improvement by reduction
of 12% missing rate at a FPPW of 10-4 than with the
HOG+LUV features. Being considered a marginal
improvement in comparison with the improvement in case of
utilization of color information, decrease in the missing rate
larger than 10% at a FPPW of 10-4 is a significant improvement.
The HOG GSS features were chosen more frequently in
training than the color GSS features.

We performed another experiment to examine the
effectiveness of the GSS features depending on human pose,
i.e., angle view. The test dataset was split into three separate
datasets of the head-shoulders for frontal view, rear view, and
profile view. Classifiers with the GSS features were tested with
the three datasets, and the results are shown in Fig. 8. As
expected, it is remarkably observed that performance in the
frontal-view dataset, the missing rate of 0.3 at the FPPW of 10-4

is significantly better than that in the profile-view dataset, the
missing rate of about 0.45. It should be noted that Fig.
8(a)-(b)reveals that the GSS features contribute to better
performance for the frontal-view dataset than in the
profile-view one. It is reasonable that the GSS features are
effective for the frontal-view head-shoulder detection as they
have been developed based on the self-similarity or vertical
symmetry of head-shoulder patterns.

Fig. 7 Performance of classifiers with HOG, HOG+LUV, and
HOG+LUV+GSS features
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TABLE I
TRAINING PARAMETERS

Parameters Value

Image size 24 x 24
min/max of heights of feature blocks
min/max of widths of feature blocks

3/10
3/10

true positive rate at each stage 0.90

false positive rate at each stage 0.65

max no. of features at each stage 40
1.0
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(b)

Fig. 8 Evaluation of the GSS features. (a) Performan
frontal-view dataset. (b) Performance on the profile-vi
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Fig. 9 Detection results on a downtown stree
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