
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:9, 2011

1066

A Third Drop Level For TCP-RED Congestion
Control Strategy

Nabhan Hamadneh, Michael Dixon, Peter Cole, and David Murray

Abstract—This work presents the Risk Threshold RED (RTRED)
congestion control strategy for TCP networks. In addition to the
maximum and minimum thresholds in existing RED-based strategies,
we add a third dropping level. This new dropping level is the risk
threshold which works with the actual and average queue sizes to
detect the immediate congestion in gateways. Congestion reaction
by RTRED is on time. The reaction to congestion is neither too
early, to avoid unfair packet losses, nor too late to avoid packet
dropping from time-outs. We compared our novel strategy with RED
and ARED strategies for TCP congestion handling using a NS-2
simulation script. We found that the RTRED strategy outperformed
RED and ARED.

Keywords—AQM, congestion control, RED, TCP.

I. INTRODUCTION

Current high speed network gateways are likely to be
congested due to the increased demand for the limited network
resources such as routers and link bandwidths. Early TCP
congestion control strategies attempted to manage congestion
by manipulating the congestion window size cwnd; which is
a parameter that regulates the sending rate [1].

The goals of any congestion control strategy are: (I) Fair re-
source allocation (II) Reasonable queuing delay (III) minimal
packet loss and (IV) Low resource consumption.

These four goals are conflicting. For example, if we design
a strategy to reduce the packet loss rate at the gateway,
higher queue sizes will be produced. Higher queues on routers
increase end-to-end delays. In this paper, we propose the Risk
Threshold RED (RTRED) strategy to better balance these
conflicting goals.

The key idea of congestion control is to determine the
congestion level to start packet dropping. Unfortunately, there
is no strategy that provides a perfect balance. In the next sec-
tions, we show how RTRED solves some of the imbalances in
previous strategies. We also show how RTRED better balances
packet loss, average delay and queue space utilization.

This paper is organized as follows: section II introduces
TCP congestion control. Section III describes the previous
work in TCP congestion control. Section IV introduces the
algorithm of our proposed strategy. The network topology used

The authors are with the School of Information Technology, Murdoch
University, South St, Murdoch, WA 6150, Australia.

N. Hamadneh, Office Number: ECL-4.042, Phone: +61-4-49096732, Email:
n.hamadneh@murdoch.edu.au.

M. Dixon, Office Number: ECL-3.047, Phone: +61-8-93606086, Email:
m.dixon@murdoch.edu.au.

P. Cole, Office Number: ECL-3.041, Phone: +61-8-93602918, Email:
p.cole@murdoch.edu.au.

D. Murray, Office Number: ECL-3.048, Phone: +61-8-93602723, Email:
d.murray@murdoch.edu.au.

in our simulator is presented in section V. Section VI analyzes
the simulation results and section VII concludes our paper.

II. BACKGROUND

There are two main approaches for handling congestion in
TCP networks. The first approach is congestion recovery and
the second is congestion avoidance.

Congestion recovery works after the gateway is overloaded.
Strategies that use this approach are source algorithms. These
algorithms adjust the sending rate upon congestion signals,
such as triple acknowledgments, time-out or Explicit Conges-
tion Notification (ECN). TCP Tahoe [2], TCP Reno [3], [4],
and TCP Vegas [5] are examples of these strategies.

In the congestion avoidance approach, some arrangements
are made before the gateway is overloaded. Because they
are applied by network components, the strategies that apply
this approach are called network algorithms. Active Queue
Management (AQM) is one of the algorithms that implements
this approach [6]. The Random Early Detection (RED) and its
variants are the most popular strategies that adopted the AQM
algorithm for congestion avoidance [7].

Source algorithms operate end-to-end to send packets at the
perfect rate. The congestion window (cwnd) is modified to
adjust the sending rate. The manner in which the sending
rate is adjusted is called Additive Increase/Multiplicative De-
crease (AIMD). When a transmitted segment is successfully
acknowledged the window is additively increased. The window
is decreased in a multiplicative manner upon packet loss, time
out and Explicit Congestion Notification (ECN) signals.

Normally, the congestion recovery and congestion avoid-
ance algorithm work in conjunction to handle congestion.
The earlier implementation for network congestion control
strategies is the Tail Drop (TD) strategy [6]. This strategy
uses First In First Out (FIFO) queue management. When the
gateway buffer is overloaded and a packet is dropped, the
source algorithm interprets this as a congestion. TCP reacts by
reducing the sending rate by adjusting the congestion window
size.

Tail Drop implementation has two main problems which are:
the Lock Out and the Full Queue problems. The first problem
occurs when a few connections monopolize the queue space.
The second problem occurs when the gateway keeps sending
full queue signals to the sources for a long period of time [1].
The AQM approach implemented by RED and its variants was
designed to fix these two drawbacks of TD strategy.

Now, the question is: did RED and its variants really fix
these two problems of TD strategy? If yes, what was the price
of the solution? This paper tries to answer this question.



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:9, 2011

1067

III. PREVIOUS WORK

A. Earlier Congestion Control Strategies

Traditional congestion control policies including; Source
Quench, Fair Queuing, No Gateway Policy and Congestion
Indication drop packets in the order they arrive. This is similar
to the TD strategy and causes similar problems to these
described in [8]. One of the TCP traffic characteristics is the
burstness. Bursty connections always need more buffer size to
absorb their traffic. In addition, they always try to monopolize
more than their permitted share of bandwidth and buffer size.
When a TCP window of n packets arrives at a TD congested
gateway, all the packets of this window will be dropped in
the order they arrive. Consequently, n congestion signals will
be sent to the same source which is kind of aggressiveness
against these types of traffics.

Random Drop (RD) was designed by IETF to avoid the
shortcomings of TD. The method of RD is to drop packets
randomly rather than from the tail of a queue. In RD, the
probability of a TCP flow losing a packet is proportional to the
percentage of packets currently occupying the buffer. However,
RD has some shortcomings as well. It chooses packets to
be dropped by inspecting the buffer distribution only at the
time of overflow, disregarding all previous history. Therefore,
it unfairly favors the connections with large packets [8].

Early Random Drop (ERD) strategy was designed to fix
the problems of RD [8]. At imminent congestion, the gateway
begins to drop packets at a rate that is derived from the current
network congestion level. If the queue length is greater than
the drop level – which is the threshold in RED – then ERD
chooses packets randomly. If the probability of this packet is
less than a preset drop probability then the packet is to be
dropped.

B. RED-Based Congestion Control Strategies

To avoid inspecting the buffer distribution only at the
time of overflow, which is a problem of RD, Random Early
Detection (RED) inspects the average queue size for the
previous history. Also, RED keeps two threshold parameters
rather than one in ERD. In addition, the drop probability
is dynamically adjusted during the network operation
time. For every packet that arrives at the gateway, RED
calculates the average queue size using (1). If the average
is between the minimum and the maximum thresholds then
the arriving packets will be dropped with probability pa
which is calculated in (3). If the average is greater than
the maximum threshold then every arriving packet will be
dropped with probability pa. Otherwise, the average is less
than the minimum threshold and no packet has to be dropped.
Equation (2) calculates the immediate dropping probability
pb which is a parameter used to calculate pa.

avg = (1− wq) ∗ avg + wq ∗ q (1)

pb = maxp(
avg −minth

maxth −minth
) (2)

pa = pb(
1

1− count ∗ pb ) (3)

Where:
avg : Average queue size.
wq : A weight parameter, 0 ≤ wq ≤ 1.
q : The current queue size.
pb : Immediately marking probability.
maxp : Maximum value of pb.
minth : Minimum threshold.
maxth : Maximum threshold.
pa : Accumulative drop probability.
count : Number of arrived packets since the last dropped one.

The network flows which react to congestion, such as TCP
flows, are responsive flows. Flows that do not adapt the
sending rate based on congestion conditions are unresponsive;
such as UDP flows [9]. Unresponsive flows can occupy more
than their allowed share of network resources.

Flow Random Early Detection (FRED) preferentially dis-
cards packets from responsive and unresponsive flows. RED-
DT is a per-flow strategy that distributes the buffer space
fairly between responsive and unresponsive flows [10]. Lo-
gest Queue Drop (LQD) [11] is a strategy that follows this
approach.

Dynamic And Self-Adaptive TCP-Friendly Congestion
Control Mechanism (DATFCC) adjusts the dropping probabil-
ity relating to the type of flow and the buffer usage ratio [12]. It
uses the TCP friendly approach [13], [14] to maintain fairness
between TCP flows and real-time UDP flows.

RED Optimized Dynamic Threshold (RED-ODT) uses the
DT Scheme for shared buffer management [15]. It adjusts the
maximum threshold and minimum threshold relating to the
actual queue size and the buffer size in multi-queue gateways.

Adaptive-RED (ARED) increases and decreases the maxp

parameter. When the average queue size is greater than the
maximum threshold, maxp is increased. When the average
queue size is less than the minimum threshold, maxp is
decreased [16].

IV. RTRED STRATEGY

In this section, we describe the approach and scenarios that
motivated the design of RTRED strategy.

A. RTRED Motivations

New congestion control policies tend to assign the con-
gestion level for traffic management and congestion recovery
processes. Rather than using the actual queue size as the
congestion level indication, like TD strategy does, RED and
RED-based strategies keep an Exponentially Weighted Moving
Average (EWMA) queue size to detect the congestion level.
If the average queue size avg exceeds the maxth parameter
then the gateway has reached an extreme congestion level and
all incoming packets are to be dropped with probability pa. If
avg is in-between the minth and maxth then the gateway is
experiencing congestion. Arriving packets are to be dropped
or marked with probability pa. If avg is less than the minth

then there is no congestion and no packet has to be dropped.



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:9, 2011

1068

RED was initially designed to minimize packet loss and
queuing delays. It was also designed to maintain high link
utilization and to remove biases against bursty traffic. Further-
more, it tries to avoid global synchronization which occurs
when all network resources reduce their sending rate at the
same time.

The problem with RED is the mismatch between the macro-
scopic and microscopic behaviors of queue length dynamics.
This malfunction occurs when a peak in the actual queue size
(microscopic behavior) exceeds the available buffer size. The
average queue size is still low (macroscopic behavior) whereas
the actual queue size is very high. This is caused by a small
weight parameter wq in (1). As a result, a congestion signal is
detected by network sources due to time outs caused by packet
drops in the router. This means that the TCP source algorithm,
such as Reno, is responsible for congestion handling, whereas
the network algorithm, which is a RED-based strategy, behaves
like TD. The authors in [1], describe this problem as the
mismatch between microscopic and macroscopic behavior of
queue length dynamics.

Fig. 1a and Fig. 1b illustrate the two possible scenarios of
this mismatch. In phase 1, packets will be dropped due to time
out signal. In phase 2 packets will be dropped unfairly because
of the high value of avg parameter whereas the actual queue
size is less than the minth.

Choosing the drop level and the drop probability is the
greatest challenge of RED and RED-based strategies. ARED
proposed to multiply the maxp parameter by another parame-
ter; alpha, when avg exceeds the maxth, and to divide it by
beta when avg is less than the minth parameter. An additional
strategy named Gentle RED proposed to vary the drop prob-
ability from maxp to 1 when the average queue size varies
from maxth to twice the maxth parameter [17], [18], [19].

Many RED variants have been proposed and the mismatch
between the microscopic and macroscopic behaviors persist.
In the next section, we propose the Risk Threshold RED
(RTRED) strategy which provides more timely congestion
indication. RTRED reduces the amount of unfairly dropped
or timed out packets.

B. RTRED Algorithm

The drop level defines the safe area of traffic fluctuation.
Hence, drop level should alert the aggressive connections to
slow down before the gateway is overloaded. It should be small
enough for sources to respond before gateway overflow. Con-
versely, small threshold values would cause false congestion
panic and unnecessary losses. Therefore, the threshold must
be dynamically readjusted depending on the current network
traffic.

The drop probability also, should be chosen carefully. It
should be large enough to detect the misbehaved connections
and small enough to protect the well behaved ones. Therefore,
the drop probability should be adjusted dynamically as well.

TD strategy defines the drop level depending on the actual
queue size. In addition to the global synchronization phe-
nomenon, this scenario would lead to another two problems
which are: the Lock Out and Full Queue phenomena. RED

(a) scenario I.

(b) scenario II.

strategy uses only the weighted average parameter to define
the drop level. This sometimes leads to unfairly dropped or
timed-out packets.

In order to remedy the shortcomings of RED and TD
strategies, RTRED uses both the actual and the average queue
sizes to define the drop level.

Fig. 2 illustrates our proposed RTRED algorithm. In this
algorithm, we add an extra drop level, which is the risk
threshold. If the actual queue size exceeds this risk threshold
then we use the initial maxp parameter to calculate the drop
probability. This will reduce the number of packets lost due to
timeout signals. If the actual queue size is less than the minth,
then maxp parameter is reduced five times the initial maxp.
This in turn will minimize the amount of unfairly dropped
packets at the gateway.

When the average and the actual queue sizes are in between
the maximum and the minimum thresholds, RTRED halves
the maxp parameter. This allows the queue to safely increase
without any risk of congestion. By doing so, RTRED reduces
packet losses and better utilizes the queue space. It also
removes aggressiveness against short lived bursty traffic.

V. NETWORK TOPOLOGY

In our simulator we use a network topology with six nodes
sharing the same bottleneck link. The start time for nodes
is uniformly distributed between 0 and 7 seconds with a
552 bytes packet size. The link between each node and the
gateway is a duplex link with 10Mb capacity and a uniformly
distributed delay between 1ms and 5ms. The bottleneck link
between the gateway and the sink is a duplex link with
0.7Mb capacity and 20ms delay. Fig. 3 illustrates this network
topology.

Fig. 1 Time out and unfair drop scenarios



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:9, 2011

1069

Scenario minth maxth maxp riskth Buf.

1 12 25 0.05 28 30
2 60 90 0.1 95 100
3 15 30 0.08 40 50

VI. SIMULATION AND ANALYSIS

In this work we use a NS-2 script to simulate three different
scenarios for RED, ARED and RTRED. Table I, illustrates the
parameter configuration for these scenarios.

In Fig. 2 we divide the gateway queue into four areas. The
white area in the table depicts the safe area in which the queue
can fluctuate safely without any congestion indicator to absorb
bursty traffic. The area between the riskth and the buffer limit
is the time out area in which the risk of a packet drop due to
time out signal is very high. The normal drop area is the area
between the minth and maxth. RED and its variants normally
start dropping packets in this area. Finally, any packet dropped
in the area between the empty queue and the minth is the
unfair drop area.

In Fig. 4 we trace the percentage of packets that have been
dropped in every area for each scenario separately. We see that
the majority of the packets have been dropped in the normal
area and the time out area. Also, a few packets have been
dropped in the unfair area. That explains why we defer using
the high initial maxp parameter until the actual queue size
exceeds the riskth. The bar chart in Fig. 5 depicts the average
percentage of packets dropped for the three scenarios.

To avoid the mismatch between the microscopic and macro-
scopic behaviors of queue dynamics, RTRED works as a

Scenario Strategy Ave Q
Size
(Packet)

Average
Delay
Time
(ms)

Loss
Rate
(Packet)

No. of
Prop-
agated
Packets

RED 20.292 122.85184 710 18158
1 Adaptive 16.469 123.83286 855 18303

RTRED 21.2004 122.594742 668 18120
RED 54.4667 119.340434 151 17639

2 Adaptive 60.9756 119.387794 147 17646
RTRED 62.1799 119.259245 136 17627
RED 21.0212 122.527085 651 18110

3 Adaptive 19.8217 122.80448 698 18151
RTRED 24.8899 121.816685 548 18005

compromise between TD and RED strategies. It only checks
the actual queue size in the Timeout and Unfair areas to avoid
buffer overflow and unfair packet losses respectively. In order
to reduce the drop rate and avoid wasting the queue space, it
checks the average and the actual queue sizes in the normal
area, controlling congestion by reducing maxp to half of the
initial parameter.

Table II, illustrates the network performance for the three
scenarios. It is clear from the table that RTRED strategy has
outperformed RED and ARED strategies. It maintains a higher
average queue size; increasing the gateway queue utilization.
In response, this will reduce the packet loss rate which is
not conflicted with the small average delay time values for
RTRED. This technique reduces the total amount of packets
propagated by the source nodes which in turn reduces the
overhead of packet retransmission. The average delay time
is calculated for the actual amount of packets queued at the
gateway rather than the average queue size value.

Fig. 6 and Fig. 7 illustrate scenario one simulation results.
Fig. 6, depicts the drop probability and maxp parameters
for the three strategies. In this figure we see how maxp

parameter for RTRED fluctuates between the initial maxp

parameter and maxp/5 value, depending on the queue size
dynamics. In response, the drop probability increases and
decreases dynamically to fit the current congestion level. On
the other hand, ARED keeps high maxp parameter which is
unresponsive to the current congestion level. This is illustrated
in Fig. 6a. RED also keeps a fixed maxp parameter, which is
unresponsive to the queue dynamics as Fig. 6c shows.

Fig. 7 plots the average and the actual queue sizes for the
three strategies. In Fig. 7b, we see how RTRED strategy allows
the queue to increase with less dropping rate. It stabilizes

Fig. 2 RTRED algorithm Fig. 5 Total percentage of packets dropped for each drop area

Fig. 3 Network topology.

TABLE I Parameter configuration.

TABLE II Network performance for the three scenarios.



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:9, 2011

1070

(a) Adaptive-RED. (b) RTRED. (c) RED.

Fig. 6: Drop probability and maxp parameters for scenario I.

(a) Adaptive-RED. (b) RTRED. (c) RED.

Fig. 7: Average and actual queue sizes for scenario I.

the queue size at the safe area with no risk of unnecessarily
drop due to time out signal. Fig. 7a and Fig. 7c are the
figures of ARED and RED queue dynamics respectively. The
figures show how aggressively and unfairly these strategies
drop packets to avoid buffer overflow and to minimize the
average queue size.

In this scenario, RTRED provides accurate calculation of
the drop level and the drop probability. In fact, it reflects
high trustworthy congestion indication before network starts
recovering.

RED gateways are full of tradeoffs. The tradeoff between
decreasing delay and increasing throughput is one of the

major problems that appears at the time of configuring the
drop thresholds. Another tradeoff between link utilization and
average delay time will make the problem worst. Larger
minth values will increase link utilization which is a good
performance behavior, but in [7] it is suggested to set maxth

twice the minth which will increase delay.
The idea of small queues is proposed by [7] to avoid long

delays. RTRED shows that this is not always right, because,
the desirable queue size is the size that helps the gateway re-
duces the drop rate and the overhead of packet retransmission.
The average and actual queue sizes of RTRED are higher than
RED and ARED. The actual end-to-end delays of RTRED,

(a) Scenario I. (b) Scenario II. (c) Scenario III.

Fig. 4: Percentage values for packets dropped in each drop area.



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:9, 2011

1071

(a) Adaptive-RED. (b) RTRED. (c) RED.

Fig. 8: Drop probability and maxp parameters for scenario II.

(a) Adaptive-RED. (b) RTRED. (c) RED.

Fig. 9: Average and actual queue sizes for scenario II.

(a) Adaptive-RED (b) RTRED. (c) RED.

p

shown in table 2, are lower due to fewer retransmissions.

Fig. 8 – Fig. 11 illustrate how RTRED outperforms RED
and ARED for scenarios II and III respectively. The figures
show the drop probability and the queue dynamics for each
strategy. RTRED provides the most stable queue length with
lower packet drops. It also maintains very dynamic maxp

parameter and drop probability which are more responsive to
the queue dynamics. RTRED would not increase the drop rate
unless a strong signal of congestion is detected. Regardless
of having a dynamic maxp parameter in ARED, the strategy
has a problem in adjusting this parameter to accommodate the
queue size fluctuations.

Fig. 10: Drop probability and max parameters for scenario III.



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:9, 2011

1072

(a) Adaptive-RED. (b) RTRED. (c) RED.

VII. CONCLUSION

This work proposes a novel RED-based strategy; Risk
Threshold RED (RTRED), which is designed to avoid the
mismatch between the microscopic and macroscopic behaviors
of queue length dynamics. The proposal is a compromise
between the TD and RED strategies for congestion handling
in TCP networks.

TD uses the actual queue size to define the congestion level.
RED uses the Exponentially Weighted Moving Average to
define the congestion level. RTRED uses both the actual and
the average queue sizes to calculate the drop probability and
the congestion level. These calculations operate in conjunction
with a third drop level; the risk threshold.

Using an NS-2 simulation, The results suggest that RTRED
outperformed competing strategies; reducing the unnecessary
packet loss rate, the average delay time and the overhead of
packet retransmission. Furthermore, RTRED avoids wasting
the gateway buffer size and increases the buffer utilization.

REFERENCES

[1] S. Ryu, C. Rump and C. Qaio, “Advances in Internet Congestion Control,
IEEE Communications Surveys,” The Electronic Magazine of Original
Peer Reviewed Survey Articals, vol. 5, 2003.

[2] V. Jacobson, “Congestion avoidance and control,” SIGCOMM ’88:
Symposium proceedings on Communications architectures and pro-
tocols, 1988, pp.314–329, Stanford, California, United States,
http://doi.acm.org/10.1145/52324.52356, ACM, New York, NY, USA.

[3] M. Allman, V. Paxson and W. Stevens, “TCP Congestion Control,”, IETF
RFC 2414, September 1998.

[4] W. Stevens, “TCP Slow Start, Congestion Avoidance, Fast Retransmit,
and Fast Recovery Algorithms,” IETF RFC2001, 1997.

[5] L. Brakmo, and L. Peterson, “TCP Vegas: End to End Congestion
Avoidance on a Global Internet,” IEEE Journal on Selected Areas in
Communication, vol. 13, no. 8, pp. 1465-1480, October 1995.

[6] B. Braden, D. Clark, J. Crowcroft, B. Davie, S. Deering, D. Estrin, et al,
“Recommendations on Queue Management and Congestion Avoidance
in internet,” IETF RFC2309, 1998.

[7] S. Floyed and V. Jacobson, “Random Early Detection Gateways for
Congestion Avoidance,” IEEE/ACM Transaction on Networking, vol. 1,
no. 4, pp. 397 – 413, 1993.

[8] E. Hashem, “Analysis of Random Drop for Gateway Congestion Con-
trol,” M.I.T Laboratory for Computer Science 465, 1989.

[9] L. Vukadinovic and L. Trajkovic, “RED With Dynamic Thresholds For
Improved Fairness,” ACM Symposium on Applied Computing, 2004.

[10] D. Lin, and R. Morris, Dynamics of Random Early Detection, in ACM
SIGCOMM ’97, pp. 127-137, Cannes, France, 1997.

[11] B. Suter, T. V. Lakshman, D. Stiliadis, and A. K. Choundhury, “Design
Considerations for Supporting TCP with Per-flow Queuing,” INFOCOM
’98. Seventeenth Annual Joint Conference of the IEEE Computer and
Communications Societies, Proceedings, pp. 299 - 306 vol.1, San
Francisco, CA, 1998.

[12] L. Wei-yan, Z. Xue-lan, L. Tao, and L. Bin, “A Dynamic and
Self-Adaptive TCP Friendly Congestion Control Mechanism in Next-
Generation Networks,” Intelligent Systems and Applications ISA, Inter-
national Workshop, pp. 1-4, Wuhan, 2009.

[13] J. Padhye, V. Firoiu, D.F. Towsley, and J. F. Kurose, “Modeling TCP
Reno Performance: a Simple Model and its Empirical Validation,”
Networking, IEEE/ACM Transactions, pp. 133 - 145, vol. 8 no. 2, 2000.

[14] D. Bansal, and H. Balakrishnan, “Bionomial Congestion Control Al-
gorithms,” INFOCOM 2001. Twentieth Annual Joint Conference of the
IEEE Computer and Communications Societies, Proceedings, pp. 631 -
640, vol. 2, Anchorage, AK, 2001.

[15] H. Chengchen, and L. Bin, “RED With Optimized Dynamic Threshold
Deployment on Shered Buffer,” Advanced Information Networking and
Applications AINA, 18th International Conference, pp. 451 - 454, 2004.

[16] W.-C. Feng, D.D. Kandlur, D. Saha, and K. G. Shin, “A Self-Configuring
RED Gateway,” INFOCOM ’99. Eighteenth Annual Joint Conference of
the IEEE Computer and Communications Societies, Proceedings, pp.
1320 - 1328, vol. 3, New York, NY, 1999.

[17] S. Floyd, Recommendation on using the gentle-variant of RED,
http://icir.org/floyd/red/gentle.html, 2000.

[18] V. Rosolen, O. Bonaventure, and G. Leduc, “A RED discard strategy
for ATM networks and its performance evaluation with TCP/IP traffic,”
SIGCOMM Comput. Commun. Rev. ACM, pp. 23-43, vol. 29, no. 3, New
York, NY, USA, 1999.

[19] V. Rosolen, O. Bonaventure, and G. Leduc, “Impact of cell discard
strategies on TCP/IP in ATM UBR networks,” 6th Workshop on Perfor-
mance Modelling and Evaluation of ATM Networks (ATM’98), Ilkley,
UK, 1998.

Fig. 11 Average and actual queue sizes for scenario III


