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Autonomous Virtual Agent Navigation in Virtual
Environments

Jafreezal Jaafar and Eric McKenzie

Abstract—This paper presents a solution for the behavioural
animation of autonomous virtual agent navigation in virtual envi-
ronments. We focus on using Dempster-Shafer’s Theory of Evidence
in developing visual sensor for virtual agent. The role of the visual
sensor is to capture the information about the virtual environment
or identifie which part of an obstacle can be seen from the position
of the virtual agent. This information is require for vitual agent to
coordinate navigation in virtual environment. The virual agent uses
fuzzy controller as a navigation system and Fuzzy α − level for
the action selection method. The result clearly demonstrates the path
produced is reasonably smooth even though there is some sharp turn
and also still not diverted too far from the potential shortest path.
This had indicated the benefit of our method, where more reliable
and accurate paths produced during navigation task.
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I. INTRODUCTION

Navigation is the process where people control their move-
ment using environment cues and artificial aids such as maps
so that they can achieve their goal without getting lost [1].
Autonomous virtual agent navigation in a virtual environ-
ment can be described as the ability of a virtual agent to
move purposefully without user intervention. The navigation
task may be decomposed into three sub-tasks: mapping and
modeling the environment; path planning and selection; path
following and collision avoidance [2]. Virtual agent navigation
can occur in known and unknown environments. For a known
environment, the virtual agent will have knowledge about
the environment and can generate the navigation path. The
methods used are based on optimization and computational
intelligence. In contrast, in an unknown environment in which
the virtual agent does not have any knowledge about the
environment, the navigation path is generated according to
user specifications and the virtual agent cannot be prepared
ahead of time [3].

II. PREVIOUS WORK

The basic problem of navigation is moving from one place
to another by the coordination of planning, sensing and
control. The challenge is generating an optimal traversing
sequence through the user-specified locations of interests and
computation of a collision free path. [3] had shown an example
of a path traversing through all user-specified locations . In
order to navigate in an unknown environment, a virtual agent
needs to deal with the environment in a timely manner.

Jafrezal Jaafar is a lecturer with Computer and Information
Sciences Department, Universiti Teknologi PETRONAS, Malaysia
(email: jafreez@petronas.com.my).

Eric McKenzie is a Senior Lecturer at School of Informtics, University of
Edinburgh

Approaches such as discrete grid based [4], central path
computation [5] and roadmap with tactical information ap-
proaches [6] have been used for collisions free path planning.
For example [7] studied navigation among static and movable
obstacles. The planner takes advantage of the navigational
structure through state-space decomposition and a heuristic
search. The planning complexity is reduced to the difficulty
of the specific navigation task, rather than the dimensionality
of the multi-object domain.

Inspired by studies in human behaviour, [8] proposed a
general model to simulate the navigation process inside indoor
and outdoor environments. Techniques such as set hierarchy,
regular graph, artificial potential field and corner graph have
been used but are only suitable for 2D environments. One
of the reasons is those algorithm require high computational
resource in 3D environments. For a 3D environment, naviga-
tion mesh and waypoint graph techniques are very popular.
A navigation mesh technique is a representation that covers
the walkable surface of the world with convex polygons [9].
Waypoint is a set of points in the 3D environment with
reachability links between them [10], where we can place a
waypoint at any point in 3D space. The disadvantages of these
two techniques are large memory usage, and they require a
powerful processor. Even though some of these techniques
have been used in computer games, it is still not clear that
these approaches have been used in autonomous navigation in
virtual environments [11].

Artificial intelligence techniques, for example neural net-
works [12], genetic algorithms [13] and reinforcement learning
[14] have been used. [15] presented a multi-agent based evolu-
tionary artificial neural network (ANN) for general navigation.
The virtual creature explores unknown environments as far as
possible with obstacle avoidance. Through constant interaction
with the environment, the virtual agent systems co-decide and
consult with each other for the move decision. [12] have
integrated attention and navigation skills in a 3D virtual agent.
They divided their neural model into two main phases. First
of all, the environment categorization phase, online pattern
recognition and categorization of the virtual agent current
input sensor data is carried out by an adaptive resonance driven
self organizing neural network. Then, the model must learn
how and when to map the current short term memory state
into navigation and the attention of the virtual agent. However
the majority of 3D virtual agents focus on low cost global
techniques to solve navigation problems and attention is less
frequently considered in virtual worlds.

The reactive virtual agent [16] is capable of carrying out
autonomous navigation. The virtual agent extends the artifi-
cial potential field approach, used for trajectory formation,
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to environment exploration and symbolic feature detection.
The virtual agent’s capabilities range from obstacle avoidance
to maze navigation, carried out autonomously or under the
supervision of higher cognitive levels. Other methods by [11]
have been used in a known environment. On the other hand,
in an unknown environment, methods such as sensor based
control in [2] use Adaptive Dynamic Points of Visibility
(ADPV) for moving virtual agents in dynamical unconfigured
environments.

III. NAVIGATION SYSTEM

The navigation system can be divided into three main
components, which are the fuzzy navigator, virtual agent and
the environment, as in Figure 1. The main component of the
navigation system is the virtual agent itself. The virtual agent
should be able to make its own decisions; does not require
any information about the virtual environment; and does not
require any training or learning before the navigation task.

Virtual 
Agent

Sleft

Sfront

Sright
Sright-front

Sleft-front

dl, dlf, df, drf, dr

Fig. 1. Navigation System

The fuzzy navigator is the main engine for the virtual agent.
It comprises of three main components:

1) Fuzzy Logic Controller (FLC) - using a behaviour-
based architecture which comprises of Path-Planning
Behaviour (PP), Goal-Seeking Behaviour (GS) and
Obstacle-Avoidance Behaviour (OA).

2) Local Minima Solver (LMS) - responsible for helping
the virtual agent escape from dead-ends.

3) Fuzzy Action Selection Mechanism (Fuzzy-ASM) - to
make the final decision in selecting the possible action
required by the virtual agent to reach the goal.

The fuzzy navigator receives input from the visual sensor and
produces the final action needed to be executed by the virtual
agent. Each component in the fuzzy navigator is integrated
and works independently.

A. Visual Sensor

The main information between environment and virtual
agent is retrieved using a visual sensor. This visual sensor
differs from vision systems in robotics, since all information
about pattern recognition and noisy images can be ignored
[17]. The visual sensor captures the information about the
virtual environment or identifies which part of an obstacle can

be seen from the position of the virtual agent as in Figure 2.
Also, the visual sensor only identifies whether a square (cell)
in the vision range is occupied by an obstacle or not. The
assumption has been made that all objects are opaque.

Fig. 2. Example of Vision Field and Sensor’s Region based on location.

The visual sensor field of the vision range is 180o. The
vision field is divided into eight main sectors which are
represented as S0, S1, S2, S3, S4, S5, S6 and S7. Hence,
there is a probability that the cells located in the proximity
may be occupied. Cells well inside the vision field sector are
likely to be empty. An occupancy grid is essentially a data
structure that indicates the certainty that a specific part of
space is occupied by an obstacle. It is a representation of an
environment as a two-dimensional array. Each element of the
array corresponds to a specific square on the surface of the
actual world, and its value shows the certainty that there is
some obstacle there.

The visual sensor in [18] has been modified by using
Dempster-Shafer evidence theory [19]. Whenever the virtual
agent moves, it catches new information about the environment
and updates the map. To facilitate building an occupancy map
[13] of the environment, a grid representing the whole space
needs to be constructed. Every discrete region of the map
(each cell) may be in two states, Empty is (E) and Full
is (F ). Then, a frame of discernment, κ, is defined by the set
κ = {E,F}, where E and F represent the possibility that a
cell is Empty or Full. The advantage of this technique is that
the building of occupancy maps is well suited to path planning
and obstacle avoidance [20].

Review of [20] Use of Dempster-Shafer’s Theory of Ev-
idence: A basic probability assignment is a function m :
κ → [0, 1], where Γ is a set of all subsets of κ. In our case,
Γ = 2κ = {φ, {E} , {F} , {E,F}}. The state of each cell
is described by assigning a basic probability number to each
label in Γ. For each cell (i, j) in the grid, it is required that:

mi,j(φ) = 0 (1)

∑

A⊂Γ

{mi,j} (A) = mi,j(φ) +mi,j {E}
+mi,j {F} +mi,j{E,F}

= 1

(2)

Every cell in the environment is initialized as follows:

mi,j {E} = mi,j {F} = 0 (3)
mi,j{E,F} = 1 (4)
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Then, the virtual agent moves and scans the environment. If
n cells exist in the vision field sector, the basic probability
assignment for the vision field sector is as follows:

mi,j(F ) =
1
n
,mi,j(E) = 0, ∀cells(i, j) ∈ sector (5)

mi,j(F ) = 0,mi,j(E) = 0, ∀cells(i, j) /∈ sector (6)

By adding subscripts S and M to basic probability masses m,
we can describe the basic probability assignment of the sensor
as equations 8 and 9:

K = 1 −mM (E)mS(F ) −mM (F )mS(E) (7)

mM ⊕ms(E) =
{mM (E)ms(E)+mM (E)ms({E,F})+mM ({E,F})ms(E)}

K

(8)

mM ⊕ms(F ) =
{mM (F )ms(F )+mM (F )ms({E,F})+mM ({E,F})ms(F )}

K

(9)

However, the number of states can be reduced to two
(mi,j(E),mi,j(F )), assuming that mi,j(φ) = 0 and applying
equation 2. The state (0, 0) means total ignorance, and so
mi,j({E,F}) = 1. When the virtual agent is sure about cell
occupancy, mi,j(F ) = 1, the other labels are made equal to
zero. On the other hand, mi,j(E) = 1 when the virtual agent
is sure that the cell is empty.

The input value Θ of the virtual agent, which is a real
number normalized in the interval [0, 1], then results from a
weighted sum of all the points in the visual field.

Θ =
∑

x
(2−2d(x)μ(x))

summed over all x in visual field
(10)

where d(x) is the distance of a point x from the current
position of the virtual agent, and μ(x) indicates the availability
of the point x. Since the visual sensor is related to availability
of spaces in the visual field, it is independent of specific
environments and objects. The result is that the occupancy
of cells is increased. This process will be carried on until the
virtual agent reaches the goal.

B. Fuzzy Controller

A Fuzzy Associative Memory (FAM) is used as a pro-
cess of encoding and mapping the input fuzzy sets to the
output fuzzy set [21]. The fuzzy controller is based on our
proposed method [22], [23]. Consider a set of fuzzy rules,
R = {R1, R2, . . . , Ri, . . . , Rk}, where Rm is the mth rule of
the fuzzy controller. The rule Rm is given as follows:

IF X1 is A
m
1 AND X2 is A

m
2 AND

. . .AND Xn is A
m
n THEN Z is Cm

n
(11)

The following fuzzy relation will implement Ri:

Rm

⎛

⎝

X1, X2,
. . . , Xn, Z

⎞

⎠=

⎡

⎣

Am
1 (X1) ∧Am

2 (X2)
∧ . . . ∧Am

n (Xn)

⎤

⎦→Cm
n (Z) (12)

where X1, X2, . . . , Xn are input variables which are the sensor
data of the virtual agent, Am

1 , A
m
2 , . . . , A

m
n are the input fuzzy

sets, Cm
n is the output fuzzy set, Z is the output variable, n

is the dimension of the input vector.

The weighted sum C for each individual membership can
be defined by using minmax aggregation [24] operators as
given below:

C =

k
∑

m=1

UmC
′
m

=

k
∑

m=1

U

([

Am
1 (X1) ∧ Am

2 (X2)∧
. . . ∧ Am

n (Xm
n )

]

⇒ Cm (Z)

)

(13)

where the non-negative weight Um, summarises the strength
of the mth FAM rule for the mth FAM entry and n×m is the
number of rules in the system. In order to relate the nth fuzzy
set of the mth fuzzy rule, the fuzzy implication model using
the Mamdani min operator [25] interprets the logical rules for
rule firing. we obtain the final defuzzification response for a
k output membership function μC (z) is defined as:

μC (z) =
k

max
m=1
X=U

[

n

min
m=1

[

μAm
n

(Xn) , μRm (X1, X2, . . . , Xn, Z)
]

]

(14)
Equations (12) and (14) are used to derive the FAM model
and the output fuzzy system, respectively.

C. Action Selection Method

In the decision making process multiple conflicting objec-
tives should be considered simultaneously, subject to certain
constraints dictated by the virtual agent limitations [26]. A
major issue in the design of systems for controlling an
autonomous virtual agent is the formulation of an effective
mechanism for the combination of multiple objectives into
strategies for rational and coherent behaviour [26]. For ex-
ample, given a set of actions, X = {x1, x2, . . . , xn}, the
virtual agent has to decide which is the most appropriate or
the most relevant next action to take at a particular moment,
when facing a particular situation [27].

The fuzzy action selection method is inspired by the ranking
method of [28], [29] and [30] and uses α − level and fuzzy
subtraction operations to calculate the area of a new fuzzy
number, which is produced by the comparison of two fuzzy
numbers. If there are m fuzzy numbers, then m (m− 1) /2
pairs of fuzzy numbers must be compared to determine overall
rank. Our proposed method will reduce the redundancy of
calculating m (m− 1) /2 pairwise comparisons to m pairwise
comparisons by the fuzzy subtraction operation.

In general, when comparing m different fuzzy numbers
produced by each behaviour the height and common max-
imizing and minimizing barriers are used. Let μ

˜X (x) be
the membership function of a fuzzy number, ˜X (behaviour
output), defined on R. Unlike convexity, assumptions about
the normality of μ

˜X (x) are made.
In Figure 3, an arbitrary, bounded fuzzy number ˜X has

given. Suppose ˜Xα0 ,
˜Xα1 , . . . ,

˜Xαn
are the α− level interval

numbers of ˜X and they have the following properties:
1) ˜Xαi

= [li, ri], i = 0, 1, . . . , n, where li is the left spread
of ˜Xαi

, and ri is the right spread of ˜Xαi
.

2) α0 = 0, αn = 1 and α0, α1, . . . , αn is strictly increasing
sequence.
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3) The distance between each two ad-
jacent α − level values are equal,
i.e. αi − αi−l = αi − αk−l, ∀i, k ∈ {1, 2, . . . , n}.

Xn h ~ XL ~

)(~ xX

R~ XU ~

)(~ xL
X

i

1i

00

XL ~ )(~ xR
X XU ~

nlil1il0* lCc nr ir 1ir *0 dr d
x

Fig. 3. Trapezoidal fuzzy number

Based on [31], the loci of the left or right spreads and
the maximum and minimum barriers of the α − cut of the
fuzzy number, ˜X , are μL

˜Xα
(x) and μR

˜Xα
(x), 0 ≤ α ≤ h

˜X ,

respectively, where h
˜X is the height. If ˜Xα is denumerable or

connected, then:

μL
˜Xα

(x) = min
α

{

x|x ∈ ˜Xα

}

, 0 ≤ α ≤ h
˜X , and

μR
˜Xα

(x) = max
α

{

x|x ∈ ˜Xα

}

, 0 ≤ α ≤ h
˜X (15)

In addition the maximixing and minimizing barriers can be
defined as:

• The crisp maximizing barrier, UX̃ , of the membership
function for the fuzzy number X̃ is defined as μUX̃

(x) =
hX̃

d , where max
α

{

μR
X̃n

(x)
}

= d∗ ≤ d ≤ ∞.
• The crisp minimizing barrier, LX̃ , of the membership fuc-

tion for the fuzzy number X̃ is defined as μLX̃
(x) = hX̃

c

where 0 ≤ α ≤ α∗ = min
α

{

μL
X̃α

(x)
}

.

The height, maximizing and minimizing barriers are set to:

h
˜X(x) = max

i

{

μ
˜Xi
|i = 1, 2, . . . ,m

}

,

c = min
α

{

μL
˜Xα

(x) |i = 1, 2, . . . ,m; 0 ≤ α ≤ h
˜X

}

,(16)

d = min
α

{

μR
˜Xα

(x) |i = 1, 2, . . . ,m; 0 ≤ α ≤ h
˜X

}

.

Based on equation 16, h
˜X(x) is the maximum value of

the height of all m fuzzy numbers. The variables c and d
are at the minimum value of the left spread and the minimum
right spread of all fuzzy numbers, respectively. To simplify the
fuzzy subtraction between the fuzzy number ˜X and referential
rectangle ˜R, at αi level, interval subtraction is used:

˜Xαi
〈−〉 ˜R = [li, ri] [−] [c, d]

= [li − d, ri − c] , i = 1, 2, . . . , n (17)

then, the behaviour weight, ω of equation (17) becomes:

ω
(

˜Xi, ˜R
)

=

n
∑

i=0

(ri − c)

n
∑

i=0

(ri − c) −
n

∑

i=0

(li − d)

(18)

where n is the number of α− levels. A n approaches to ∞,
the summation becomes the area measurement.

In equation (18),
n

∑

i=0

(ri − c) is a positive value and

n
∑

i=0

(li − d) is a negative value. Here, the denominator rep-

resents the total area as n approaches ∞. In addition, if all
of the aggregated fuzzy numbers are normal and within the
unit interval, then h

˜X = 1, c = 0, d = 1, and equation (18)
becomes:

ω
(

˜Xi, ˜R
)

=

n
∑

i=0

ri

n
∑

i=0

ri −
n

∑

i=0

(li − 1)

, and n = ∞ (19)

In our case, the behaviour weight value ω from equation
(19) will be used. For every ω, we use the Hurwicz criterion,
which selects the lowest value from each behaviour as δ1; and
then selects the highest value from each behaviour as δ2. The
index of optimism [32],σ, is used to represent the level of
optimism of the virtual environment.

When selecting one particular action from a range of pos-
sible actions, the selection is based on the Hurwicz criterion
[31] which is defined as:

η = σ · (minm
i=1ωij0) + (1 − σ) · (maxm

i=1ωij0) (20)

where η =

⎧

⎨

⎩

σ = 0 → max-min criterion
0 < σ < 1 → compromise opinion
σ = 1 → max-max criterion

(21)

Based on the above discussion, the following algorithm has
been developed. Let ˜X1, ˜X2, . . . , ˜Xj , . . . , ˜Xm be m arbitrary
bounded fuzzy numbers produced by each behaviour.

Step 1: Set the height h
˜X (x), common maximizing barrier

d and minimizing barrier c for referential rectangle
˜R.

Step 2: Determine the subtracted interval numbers
[l − d, r − c], i = 1, 2, . . . , n by calculating the
n α-levels for each fuzzy number ˜Xj 〈−〉 ˜R,
j = 1, 2, . . . ,m.

Step 3: Determine the behaviour weight, ω for each ˜Xj , by
equation (19).

Step 4: Repeat Steps 2 and 3, for every j, j = 1, 2, . . . ,m
and the m behaviour weights for fuzzy numbers are
obtained.

Step 5: For every ω, use the minimax (maximin) criterion,
which selects the lowest value from each behaviour
as δ1 and selects the highest value from each be-
haviour as δ2.

Step 6: Determine the index of optimism σ. The final action
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is selected based on the Hurwicz criterion using
equation (20).

IV. RESULTS

Experiments were also conducted to observe the effect of
using different degrees of optimism, σ, by the virtual agent to
navigate in complex environments. Figure 4 shows the result
of the experiment conducted in a cluttered environment using
different degrees of optimism, σ, which are (a), σ = 0.9
and (b) σ = 0.4. The environments contain different sizes of
obstacle and narrow passages. The virtual agent in Figure 4(a)
has produced a shorter path compared to the virtual agent in
Figure 4(b). However the number of steps is higher compared
to Figure 4(b). The main reason is that the virtual agent is
required to go through a narrow passage in order to produce
the shortest path. In Figure 4(b), the virtual agent has made
a sharp turn and high number of time steps at this point. As
a result the virtual agent take a big turn to the wider passage
before turning and reaching the goal. Time steps at the rest
of the path are consistent since there is no complex obstacle
to avoid. The results show that the decision process by the
virtual agent is affected by the degree of optimism. Using a
higher value of σ makes the virtual agent enter the narrow
passage compare to a low value of σ which makes the agent
prefer to select the wider passage. However the number of
decisions and steps might vary depending on the complexity
of the environment.

Further experiments with complex environments have been
conducted. The environments contain a combination of maze
and cluttered obstacles and three random goals have been
selected. The degree of optimism, σ = 0.5, was used for the
first trial. Unfortunately this value did not give a very promis-
ing result as in Figure 5. The virtual agent had successfully
reached the goal, but paths produced are long with many sharp
turns and a high number of time steps.

Fig. 4. Different Degrees of Optimism (a) σ = 0.9 and (b) σ = 0.4.

Fig. 5. Navigating in combination of cluttered and maze environment (σ =
0.5).

Fig. 6. Navigating in combination of cluttered and maze environment (σ =
0.8).

Based on result in Figure 4, using a higher value of σ will
give a better result. A new value of σ = 0.8 has been selected.
Figure 6(a) and (c) produce smooth and short paths compared
to the results in Figure 5(a) and (c). In Figure 6(b), the virtual
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agent follows a similar path compared to Figure 5(b) but with
a small number of sharp turns. From the figures, we also notice
that the virtual agent does not take the narrow path at X. One
probable is that the passage is too narrow and might require
a higher value of σ. However having a higher value of σ, the
virtual agent might follow a longer and unsafe path.

Also in Figure 5(b) and Figure 6(b), notice that the virtual
agent does not produce the shortest path. The virtual agent
moves forward to the goal even though there are a walls
and a dead-end. Then the virtual agent makes a left turn to
escape from dead-end and follow the wall toward the goal.
The virtual agent tried to reach the goal by moving straight
ahead towards the goal by having a high value for Goal-
Seeking behaviour. The virtual agent starts to switch to Path-
Planning behaviour and Obstacle-Avoidence behaviour when
it encounters an obstacle and needs to make a turn to reach
the goal. This shows that the virtual agent has imitated how
a human might make decisions during a navigation task in an
unknown environment by making a good assumption that the
path to the goal is ahead of them even though they cannot see
the goal.

The experiment has shown that the σ value might vary
depending on complexity of the environment. This is because
some environments might have many narrow passages or two
walls. With a high value of σ, the virtual agent can go through
the narrow passage. Alternatively, with a low value of σ,
the virtual agent might look for a wider passage. The paths
produced might not be the shortest paths but they are safe
paths (no collision). This is due to the ability of the virtual
agent to identify its goal and the capability of the visual sensor
in detecting potential obstacles.

A central issue in the design of reactive control architectures
for autonomous virtual agents is the formulation of effective
action selection mechanisms (ASMs) to coordinate the be-
haviours. Experiments will evaluate the Fuzzy-ASM method
and compare the results with the behaviour fusion method
(FBF) by Cang [33].

Four test cases have been used which are the virtual agent
being moved from the same start point to different target points
as in Figure 7 to 10 (Test Case 1, 2, 3 and 4). Figure 10 shows
the example of the path produced by the virtual agent in Test
Case 4. Figure 10(a) is the path produced by Cang’s Method
and Figure 10(b) shows the path produced by our Fuzzy-ASM.
The path produced by the Fuzzy-ASM is shorter than Cang’s
method even though the smoothness of the path is similar.

Further testing has also been conducted with nine different
goal locations. Figure 11 shows the result of (a) Time (tn),
(b) Distance (dt), and (c) Decisions (K) taken by the virtual
agent for all nine goal locations. The results show that Fuzzy-
ASM has taken less time and a shorter distance to complete
the task. The average percentages of �tn and �dt are 16%
and 17.4%, respectively. When we compare the number of
decisions made by each method, Fuzzy-ASM has made fewer
decisions. The average number of decisions is 8.04% less than
Wang’s method. Fewer decisions leads to a faster and more
reliable decision making process.

Our tests also show that the success rate for the Fuzzy-ASM
is higher than Wang’s method, as shown in Figure 12. Success

Fig. 7. Test Case 1

Fig. 8. Test Case 2

rate refers to the percentage of test runs (total of 25 runs) for
each test where the virtual agent successfully reached the goal.
In test 1 to test 4, the fuzzy ASM had a 100% success rate.
Wang’s method starts to decrease at test 2. The lowest success
rate is 90% compared to Wang’s method at 70%. This suggests
that the Fuzzy-ASM is more reliable.

V. CONCLUSIONS

Our visual sensor had show that how information is captures
in virtual environment and identifies which part of an obstacle
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Fig. 9. Test Case 3

Fig. 10. Test Case 4

can be seen from the position of the virtual agent. Also,
the visual sensor only identifies whether a square (cell) in
the vision range is occupied by an obstacle or not. This
information is critical for virtual agent in coordination its
navigation task. The visual sensor also easy to integrate
with our fuzzy controller. The evaluation results show that
the virtual agent has deviated with minimum distance when
avoiding the obstacles. The results also clearly demonstrate the
mapping of inputs to output with a smooth path in a navigation
task. This presents a natural way of dealing with a virtual
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environment without having to use a complex mathematical
model.
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