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Abstract—In this paper, Lattice Boltzmann Method (LBM) is 

used to study laminar flow with mixed convection heat transfer 
inside a two-dimensional inclined lid-driven rectangular cavity with 
aspect ratio AR = 3. Bottom wall of the cavity is maintained at lower 
temperature than the top lid, and its vertical walls are assumed 
insulated. Top lid motion results in fluid motion inside the cavity. 
Inclination of the cavity causes horizontal and vertical components of 
velocity to be affected by buoyancy force. To include this effect, 
calculation procedure of macroscopic properties by LBM is changed 
and collision term of Boltzmann equation is modified. A computer 
program is developed to simulate this problem using BGK model of 
lattice Boltzmann method. The effects of the variations of 
Richardson number and inclination angle on the thermal and flow 
behavior of the fluid inside the cavity are investigated. The results 
are presented as velocity and temperature profiles, stream function 
contours and isotherms. It is concluded that LBM has good potential 
to simulate mixed convection heat transfer problems. 
 

Keywords—gravity, inclined lid driven cavity, lattice Boltzmann 
method, mixed convection.   

I. INTRODUCTION 
HE lattice Boltzmann Equation (LBE) is a minimal form 
of the Boltzmann kinetic equation and has gained much 
attention for its ability to simulate fluid flows, and for its 

potential advantages over conventional numerical solution of 
the Navier–Stokes (NS) equations. The key advantages of 
LBE are: (1) suitability for parallel computations, (2) absence 
of the need to solve the time-consuming Poisson equation for 
pressure, and (3) ease with which multiphase flows, complex 
geometries and interfacial flows may be treated [1, 2]. More 
details about LBE may be found in Refs. [3] to [8].  
The lattice Boltzmann BGK (LBGK) method is a new 
numerical scheme for simulating viscous compressible flows 
in the subsonic regime. Guo et al [9] designed a LBGK model 
to simulate incompressible flows.  
Some researchers have used lattice Boltzmann method to 
investigate fluid flow inside a cavity. Hou et al [10] used 
lattice Boltzmann BGK model (LBGK) to solve viscous flows 
in square two-dimensional cavity driven by shear from a 
moving wall for Reynolds numbers up to 10,000. They 
concluded that boundary conditions, lattice size and 
compressibility effects are important when the method is 
applied to other problems.Wu and Shao [11] simulated the 
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hydrodynamics of a two-dimensional near-incompressible 
steady lid-driven cavity flows (Re = 100 – 7,500) using multi-
relaxation-time (MRT) model in the parallel lattice Boltzmann 
BGK Bhatnager–Gross–Krook method (LBGK). Having 
studied hydrodynamics of fluid flows using LBE method, 
researchers tried to use it to model thermo-hydrodynamics of 
fluid flows. He et al [12] proposed a thermal model for the 
lattice Boltzmann method. They claimed that it greatly 
improved the previous LBE thermal models. They introduced 
a new variable g, denoting the internal energy density 
distribution function, to simulate thermal behavior of fluid 
flows. Eggels and Somers [13] incorporated convective and 
diffusive scalar transport into the lattice Boltzmann 
discretization scheme to solve steady flow in a square cavity 
with heated and cooled side walls and descried the flow in the 
thin vertical boundary layers. They compared their results in 
detail with numerical results obtained using different 
numerical techniques. 

Following previous efforts, researchers decided to 
investigate the capabilities of lattice Boltzmann method to 
solve free convections inside the cavities at high Ra. Dixit and 
Babu in 2004 [14] simulated high Rayleigh numbers natural 
convection in a square cavity using LBM. Barrios et al [15] 
used the lattice Boltzmann equation method in two 
dimensions to solve natural convective flow in an open cavity 
which the lower part of one of the vertical walls was 
conductive and its upper part and all other walls were 
adiabatic. They validated the results obtained from LBM with 
related experimental results.  

Kao and Yang [16] employed a simple thermal LB model 
with the Boussinesq approximation to simulate the oscillatory 
flows of the secondary instability in 2D Rayleigh– Benard 
convection. Convection heat transfer in cavities has already 
been considered extensively, because of its wide applications 
in manufacturing of solar collectors and heat exchangers, or 
designing of cooling systems of electronic devices. Among 
them, mixed convection in a cavity with moving top lid has 
attracted more attention to be investigated.Most investigations 
have already been dedicated to horizontal cavities, in which 
gravitational acceleration is parallel to their sidewalls. 
However, in many cases it is necessary to use inclined 
cavities, in which, according to inclination angle of the 
cavities, the shear stress applied by lid on the flow increases 
or decreases the buoyancy force, hence, influence flow and 
thermal behavior of the fluid inside the cavity. Therefore, it is 
necessary to investigate the effect of the inclination angle on 
the flow and heat transfer in these cavities.  

A few investigations of forced convection in a horizontal 
cavity with moving lid, using LBM, are found in the literature, 
but to the authors’ knowledge, mixed convection in an 
inclined cavity with moving top lid has not been investigated 
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yet by this method. Therefore, in this paper, using LBM, 
laminar mixed convection in a two-dimensional rectangular 
inclined cavity with moving top lid, according to its 
importance, is investigated numerically, including the effects 
of the variations of Ri and inclination angle on fluid flow and 
heat transfer.  
 

II. MATHEMATICAL FORMULATION 
A. Problem Statement 

In this paper, laminar mixed convection of a fluid inside a 
rectangular cavity with moving top lid and aspect ratio 
AR = L / H = 3, in which L and H are shown in Fig. 1, is 
studied numerically using lattice Boltzmann method. 
Temperature of the bottom wall is less than that of the top lid, 
and vertical walls are assumed insulated. Top lid moves with 
constant velocity U0, and thus generates fluid flow inside the 
cavity. Using lattice Boltzmann BGK and internal energy 
density distribution models, a computer program is developed 
to simulate fluid flow and heat transfer of an incompressible 
fluid inside the cavity. In this method, hydrodynamic and 
thermal macroscopic parameters of fluid flow are calculated 
using density distribution function, f, and internal energy 
density distribution function, g, respectively. In the following 
sections, Pr = 0.7 and Re = 200 are assumed, and then the 
effects of the variations of Ri (Ri = Gr / Re2 = 0.1, 1, 10) and 
inclination angle (γ = 0° to 90°) on fluid flow and heat transfer 
are studied.  

Inclination of the cavity causes horizontal and vertical 
components of velocity to be affected by buoyancy force, 
leading to the changing of the calculation procedure of 
macroscopic properties by LBM and the modifying of the 
collision term of Boltzmann equation. 
B. Lattice Boltzmann Method 

The evolution of the single-particle density distribution in a 
fluid system obeys the Boltzmann equation, [12]:  

t f ( . ) f ( f )Ω∂ + ∇ =ξ  (1) 
where f is the density distribution function, ξ is the 
microscopic velocity, and Ω is the collision term. Since 
collision term in lattice Boltzmann equation is very complex, 
for practical calculations, it is simplified and replaced with 
single relaxation time BGK model [16, 17] as follows: 

( )
e

t
f

f ff . f
τ
−

∂ + ∇ = −ξ  (2) 

where τf is the relaxation time and f e is the Maxwell–
Boltzmann equilibrium distribution defined as 

( )
( )2

e
D / 2f exp

2RT2 RT

ρ

π

⎡ ⎤−
⎢ ⎥= −
⎢ ⎥⎣ ⎦

ξ u
 (3) 

Here R is the gas constant and D is a dimension. f carries 
mass and momentum according to the standard kinetic 
moments: 

( ,t ) f ( , ,t )dρ = ∫x x ξ ξ  (4) 

( ,t ) ( ,t ) f ( , ,t )dρ = ∫x u x ξ x ξ ξ  (5) 

where ρ is density and u is fluid velocity.   
 

 
Fig.  1 Geometry and boundary conditions of the inclined cavity 

 
C. Thermal LBM 
In thermal energy distribution model, LBE with double 
populations is used [12, 24] that is in addition to f, a new 
function named internal energy density distribution function, 
g, is used to simulate fluid heat transfer and macroscopic 
properties such as density and velocity are calculated using f, 
as stated in Eqs. (4) and (5), while temperature and heat flux is 
calculated using internal energy density distribution function, 
g, as stated in Eqs. (6) and (7). 

e( ,t ) g( , ,t )dρ = ∫x x ξ ξ  (6) 

( ,t ) g( , ,t )d′= ∫q x v x ξ ξ  (7) 

e = DRT / 2 is the internal energy and ν  = ξ − u is the 
molecular peculiar speed relative to the flow speed. For real 
gas, the following relationship must hold: 
 

2g( , ,t ) 0.5 f ( , ,t )′=x ξ v x ξ  (8) 
More specifically [2]: 

2
t

t

g ( . )g 0.5 ( f )

f ( ) ( . )

Ω′∂ + ∇ = −

− × ∂ + ∇⎡ ⎤⎣ ⎦

ξ v

ξ u u ξ u
 (9) 

where Ω ( f ) is the collision operator and the viscous heating 
term can be defined as: 

tf ( ). ( . ) fZ− − ∂ + ∇ = −⎡ ⎤⎣ ⎦ξ u u ξ u  (10) 
Using BGK model and single relaxation time and local 

equilibrium, the collision term is defined as follows: 
e

2

g

g g0.5 ( f ) ( g )Ω Ω
τ
−′ = = −v  (11) 

( )
( )

( )2 2
e

D / 2g exp
2RT2 2 RT

ρ

π

⎡ ⎤− −
⎢ ⎥= −
⎢ ⎥⎣ ⎦

ξ u ξ u
 (12) 

 
D. Discretization of Thermal and Hydrodynamic LBM 

In order to avoid the implicitness of the scheme, new 
discrete distribution functions if%  and ig% are introduced as 
[12]:  
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( )
2

e
i i i i

f

dtf f f f
τ

= + −%  (13) 

( )
2 2

e
i i i i i i

g

dt dtg g g g f Z
τ

= + − +%  (14) 

i i iZ ( ).D= −c u u  and i t iD .= ∂ + ∇c  (15) 
The term Zi represents the effects of viscous heating. Details 

about discretization of the microscopic velocity space using 
Gaussian-Hermite quadrature, for satisfying continuity, 
momentum and Navier-Stokes equations, can be found in Refs 
[12, 18, 19]. if%  and ig% obey a set of lattice BGK equations in 
the form: 

( , ) ( , )

0.5

i i i

e
i i

f

f dt t dt f t
dt f f

dtτ

+ + − =

⎡ ⎤− −⎣ ⎦+

x c x% %

%  (16) 

i i i

ge
i i i i

g g

g ( dt ,t dt ) g ( ,t )
dtdt g g f Z

0.5dt 0.5dt
τ

τ τ

+ + − =

⎡ ⎤− − −⎣ ⎦+ +

x c x% %

%
 (17) 

where τf and τg are relaxations times and fi
e and gi

e are the 
equilibrium distribution functions. Throughout of this work, 
9-Bit square lattice [2], as shown in Fig. 2, is used. The 
discrete particle lattice speed is:  

( ) ( )

( )

i

i

0
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2 2
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2 4 2 4
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=

c c
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 (18) 

The equilibrium density distributions are defined as [2]: 
2 2 2

e i i
i i 2 4 2

3 9( ) 3( u v )f 1
c 2c 2c

ω ρ
⎡ ⎤⋅ ⋅ +

= + + −⎢ ⎥
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where u = (u , v) and ρe = ρRT (in 2 dimensional geometry). 
The weights of the different populations are as ω0 = 4 / 9 and 
ωi = 1 / 9, i = 1, 2, 3, 4 and ωi = 1 / 36, i = 5, 6, 7, 8. 
Finally, using if%  and ig% , hydrodynamic and thermal variables 
are calculated as follows [2]: 

i
i

fρ = ∑ , i
i

e gρ = ∑ , i i
i

fρ = ∑u c ,

i i
i

( )g= −∑q c u  
(23) 

, , ,

,
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2 0.5
g

i i i i i
i i g

dtg e f Z
dt

τ
ρ

τ
⎛ ⎞= − −⎜ ⎟ +⎝ ⎠
∑ ∑q c u c%  (25) 

2c 3RT=  (26) 
The kinematic viscosity and the thermal diffusivity in the two-
dimensional geometry are given by [12]: 

f RTυ τ= ,   2 g RTα τ=  (27) 
III. EFFECTS OF GRAVITY AND LID MOTION 

In this problem shear stress applied by moving lid on the fluid 
layers results in fluid motion, thus creating suitable 
temperature gradient that enhances buoyancy forces. 
Therefore, mixed convection is produced in the fluid confined 
in the cavity. To calculate buoyancy forces, Boussinesq 
approximation is used and density is written as 

1 (T T )ρ ρ β⎡ ⎤= − −⎣ ⎦ , in which β is volumetric expansion 

coefficient, ρ is average density and T is average temperature. 
One of the main parameters controlling natural convection 
flows is Rayleigh number defined as Ra = βgΔTH3Pr / υ2 in 
which ΔT is temperature difference between bottom wall and 
top lid of the cavity, and Pr denotes Prandtl number defined as 
Pr = υ / α. Ιn order to simulate the mixed convection of nearly 
incompressible flows, buoyancy force is defined as 
G (T T )β= −g . Considering inclination angle, coordinate 
axis and gravity acceleration direction, shown in Fig. 1, all of 
the aforementioned relations are maintained and used except 
those that are modified below:  

2
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According to Eq. (13), we have:  
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(29) 

 
Fig. 2 Nine-speed square lattice 
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In this case hydrodynamic macroscopic variables are 
calculated as follows: 

i
i

fρ = ∑ %  

( ) i ix
i

dtu 1 / f c G.sin
2

ρ γ= +∑ %  

( ) i iy
i

dtv 1 / f c G.cos
2

ρ γ= +∑ %  

(30) 

where ci = (cix , ciy) denotes discrete particle speeds. 
Lid of cavity moves with velocity U0, If H denotes cavity 
height, Reynolds number, Grashof number and Raleigh 
number are defined as Re = U0H / υ, Gr = gβH3(Th – Tc ) / υ2 
and Ra = Gr.Pr, respectively .Characteristic dimensionless 
number in the analysis of mixed convection problems is 
Richardson number defined as Ri = Gr / Re2. As stated before, 
lattice Boltzman method is used for near-incompressible 
flows; therefore, mach number is assumed as 
Ma = U* / cs << 1, where U* is characteristic velocity and cs is 
the lattice sound speed. 
 

IV. BOUNDARY CONDITIONS 
A. Hydrodynamic and Thermal Boundary Conditions 

On the fixed walls of the cavity by using bounce back 
condition [2, 20-22] and on the cavity lid by equalizing 
density distribution function of the particle and its equilibrium 
state, no slip boundary condition is applied [10]. In addition, 
on the cavity lid and bottom wall, constant temperature 
condition is applied. For example, for the north wall, 
temperature is constant and equal as T = TN , so the unknowns 

4 8 7g , g and g % % %  are chosen as follows [2, 23]: 

( )i Ng e e

corresponding form for equilbrium

where i 4,8,7

ρ ′= + ×

⎡ ⎤
⎣ ⎦

=

%

 (31) 

By definition:  

i N i i
i i

dtg e f Z
2

ρ= +∑ ∑%  (32) 

which yields to: 

N i i
i

N 2
f f

2

dte f Z K
2

e e
V V1 1 1

3 2 c 2 c

ρ
ρ ρ

+ −

′+ =

− +

∑
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where Vf is a flow velocity component normal to the wall, K is 
the sum of the six known populations, eN denotes the imposed 
thermal energy density at the north wall. At the insulated 
walls, the constraint on the heat flux is obtained by imposing 
qx = 0 in Eq. (25), for example for the west wall, we have [2]: 

ix i ix i i W f
i i

c g 0.5dt c f Z e Uρ= +∑ ∑%  (34) 

The unknown populations 1 5 8g , g and g % % % , are chosen as 

( )i Wg e e

corresponding form for equilbrium

where i 1,5,8

ρ ′= + ×

⎡ ⎤
⎣ ⎦

=

%

 (35) 

and become as 

i 2
f f

2
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i i i W
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1g
U U1 1 1

3 2 c 2 c
Ucdtg Z f e

2 c c

corresponding form for equilbrium

where i 1,5,8

ρ

⎡ ⎤
⎢ ⎥
⎢ ⎥= ×⎢ ⎥
⎢ ⎥+ +
⎢ ⎥⎣ ⎦

⎡ ⎤
+ + ×⎢ ⎥

⎢ ⎥⎣ ⎦
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⎣ ⎦

=

∑ ∑

%

%
 (36) 

where Uf  is a horizontal flow velocity component on the wall.  
 
B. Macroscopic Boundary Conditions 
In this work the macroscopic variables of fluid flow are made 
dimensionless as follows:  
Dimensionless coordinates: Y y / H , X x / H= =  
Dimensionless velocity components: 0 0V v / U ,U u / U= =  
Dimensionless temperature: c h c( T T ) /( T T )θ = − −

Dimensionless time: 0tU
H

τ =  

(37) 

Therefore, dimensionless local and average Nusselt numbers 
along the lid and bottom wall are calculated using following 
relations. 

X
Y 0,1

Nu
Y
θ

=

∂⎛ ⎞= −⎜ ⎟∂⎝ ⎠
 

AR
m X

0

1Nu Nu dX
AR

= ∫  

(38) 

In addition, dimensionless macroscopic boundary conditions 
are defined as follows: 

U V 0, for X 0 or 3; 0 Y 1
X

U V 0, for Y 0; 0 X 3

U 1, V 0, for Y 1; 0 X 3

θ

θ

θ

∂
= = = = ≤ ≤

∂
= = = = ≤ ≤

= = = = ≤ ≤

  (39) 

 
C. Initial Conditions 

The velocities of all nodes inside the cavity are taken as 
zero initially. The initial density is set to a value of 2.7 [10]. 
The initial equilibrium distribution functions are evaluated 
correspondingly. The initial distribution functions are taken as 
the corresponding equilibrium values [1]. 
 
D. Grid Independency and Validation of the Computer 
Program 

The grid independency is studied for flow in the cavity 
shown in Fig. 1 for Ri = 0.1, Re = 200, γ = 0° and Pr = 0.7. 
Three grids including 300 × 100, 450 × 150 and 600 × 200 
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lattice nodes are used to perform the numerical solution. Table 
1 shows the average Nu on the lid, and the values of U, V, and 
θ  at X = 1.5 and Y = 0.5, obtained for the three different grid 
sizes. Due to small difference between the results of the last 
two grid sizes, the 450 × 150 grid size is chosen as a suitable 
one in this work.  
 

TABLE  I  
AVERAGE NU ON THE LID AND U, V, θ AT X = 1.5 AND Y = 0.5 
 Grid sizes 

600 × 200 450 × 150 300 × 100 Parameters 
-0.194-0.195 -0.197 U 
0.0670.066 0.063 V 
0.567 0.564 0.560 θ 
2.382 2.367 2.331 Num 

 
To validate a mixed convection problem which in ref. [25] 

is examined. It is a square cavity with a top lid moving with 
constant velocity in horizontal direction and its temperature is 
higher than that of the bottom wall of the enclosure. In Table 
2 the average Nu on the hot wall are given for different Re and 
Gr. The results show good agreement with those of ref. [25]. 

 
TABLE  II 

AVERAGE NU ON THE HOT WALL FOR DIFFERENT RE AND GR 

 Gr 

106

 

104
 

 
Re Difference 

% 
Ref. 
[25] 

Present 
work 

Difference 
% 

Ref. 
[25] 

Present 
work 

4.27 1.22 1.17 1.97 3.62 3.55 400 
4.731.771.69 2.94 6.29 6.11 1000 

 
V. RESULTS AND DISCUSSIONS 

In this paper, laminar flow with mixed convection heat 
transfer inside a two-dimensional inclined rectangular cavity 
with AR = 3 is studied numerically by using LBM for Pr = 0.7 
and Re = 200 are assumed and the effects of the variations of 
the Ri and inclination angle on the flow and heat transfer are 
studied. Inclination angle varies from zero degree, horizontal 
cavity, to 90º, vertical cavity. To avoid ambiguity, the cavity’s 
walls are referred to according to the coordinates shown in 
Fig.1. The top lid is the hot moving wall at Y = 1, the bottom 
wall is the cold wall at Y = 0, and two insulated side walls are 
at X = 0 and   X = 3. Figs. 3 and 4 show streamlines and 
isotherms at inclination angles γ = 0, 30, 60 and 90° for the 
cases Ri = 0.1 and 10. The figures show the effect of 
inclination angles on the flow field and heat transfer. The 
motion of the cavity lid causes the fluid motion in the cavity 
and produces a strong clockwise rotational flow in the right 
side of the cavity. This motion transfers hot fluid to the lower 
parts of the cavity, and enhances favorable pressure gradient 
along the vertical direction, leading to the generating 
buoyancy motions and transferring hot fluid from lower parts 
to the upper parts of the cavity. Hot fluid moves upward due 
to the forces resulted from the free convection in the middle 
and left side of the cavity. Therefore, the combination of free 
and forced motions, called “mixed convection”, consisted of a 
large clockwise vortex is produced inside the cavity. In all 

cases, a thin hydrodynamic and thermal boundary layer is seen 
near the moving lid. Three regimes of the flow inside the 
cavity are identified corresponding to different Ri. For Ri < 1, 
forced convention, and for Ri > 1 free convection dominate 
the mechanism of heat transfer. For Ri around one, there will 
be mixed convection. 
 

 
Fig 3 Streamlines and isotherms for Ri = 0.1, at γ = 0, 30, 60 and 90° 

 

 
Fig. 4 Streamlines and isotherms for Ri = 10, at γ = 0, 30, 60 and 90° 
 

In Fig. 3, Ri is 0.1, so forced convection is dominant the 
problem. In this case a large clockwise vortex with dense lines 
near the moving lid affects the whole space of the cavity. The 
center of this vortex is located near the right wall of the 
cavity. In this region, fluid is pushed strongly downward. In 
addition, in the left side and lower parts of the cavity the 
rotational power and density of the streamlines of the vortex is 
reduced. Fig. 3 shows that by increasing the inclination angle, 
the rotational power of the vortex in the center of the cavity 
increases slightly and it does not affect significantly the other 
moving and thermal behavior of the fluid. By increasing the 
inclination angle, the rotational power of the large vortex at 
Ri = 1 increases more, compared to that at Ri = 0.1. 
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Fig. 5 U and θ along the vertical centerline and V along the 

horizontal centerline for Ri = 0.1 at different γ  
 

In Fig. 4, Ri = 10 and free convection is the main 
mechanism of heat transfer. In this case, the motion of the lid 
causes the motion of the hot fluid from upper to lower parts of 
the cavity, leading to a vertical favorable temperature gradient 
and, thus, creation of buoyancy forces. When buoyancy forces 
dominate the problem, inclination angle has significant effect 
on the flow and heat transfer, for γ = 0, isotherms in the lower 
half of the cavity are straight lines and perpendicular to the 
side walls, indicating that conduction heat transfer is dominant 
in this region. As inclination angle increases, the curvature of 
isotherms increases, indicating the enhancement of the 
convection. Fig. 5 shows the variations of horizontal 
component of dimensionless velocity, U, and temperature, θ, 
along the vertical centerline of the cavity; and vertical 

component of dimensionless velocity, V, along the horizontal 
centerline of the cavity at different inclination angles for 
Ri = 0.1.It is seen that along the vertical centerline of the 
cavity, the component of velocity in X direction, U, is zero at 
Y = 0 and it decreases as Y increases, so that it becomes 
negative at 0 < Y < 0.7. For higher values of Y, U increases 
and approaches to the velocity of moving lid at Y = 1. In 
addition, Fig. 5 shows that flow direction in upper part is in 
the same direction of the moving lid and it is opposite of the 
moving lid direction in the lower part of the cavity. Therefore, 
flow direction in the right side of the cavity must be from top 
to bottom.  Moreover, Fig. 5 shows that along horizontal 
centerline of the cavity at 2.5 < X < 3, the flow with high 
velocity is pushed downward, and then from middle and left 
side of the cavity moves upward with lower velocity.  In this 
case, the increase of inclination angle increases the limit of U, 
but it does not have a significant effect on the vertical 
component of the velocity. It is also observed that temperature 
is zero at Y = 0 and increases strongly and linearly with Y. At 
0.7 < Y < 0.8 temperature variation is reduced, and after that 
it increases strongly and linearly, so that at Y = 1, it reaches to 
its maximum value. The increase of cavity inclination angle, 
increases the inclination of temperature profile at 
0.5 < Y < 0.8, so that at γ = 90, cavity is vertical, and in the 
range 0.7 < Y < 0.75 temperature profile becomes almost a 
vertical line, showing no temperature variation in this case. 
The high variations of temperature adjacent to the moving lid 
and bottom wall indicate the existence of thin thermal 
boundary layers along these walls at Ri = 0.1.  Figs. 6, 7 show 
variations of horizontal component of dimensionless velocity, 
U, and  temperature, θ, along the vertical centerline of the 
cavity and vertical component of dimensionless velocity, V, 
along the horizontal centerline of the cavity at different 
inclination angles for Ri = 1, 10. Increasing the inclination 
angle from 30º to higher values, causes the increase of the 
absolute value of U in the lower parts of the cavity, as shown 
in Fig. 6. Fig. 7 shows when γ = 0, the velocity U is 
approximately zero in the range 0 < Y < 0.5. Moreover, as Y 
increases, first it becomes negative and then it increases and 
approaches to its maximum value at the lid. It is observed that 
by increasing of the inclination angle, the velocity profile U 
stretches toward negative X axis in the lower parts of the 
cavity and toward positive X axis in the upper parts. Previous 
investigations have shown that in a horizontal cavity with top 
moving lid, the maximum value of horizontal velocity of flow 
is equal to the moving lid speed and occurs in the fluid 
adjacent to it [25, 26]. However, in this case, the increasing of 
the inclination angle leads to the increase of free convection 
heat transfer, which adds the forced motions, and thus 
increases the fluid U velocity to the higher value than the lid 
velocity.  
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Fig. 6 U and θ along the vertical centerline and V along the 

horizontal centerline for Ri = 1 at different γ 
Fig. 8 shows the variations of average Nusselt number. It is 

observed that when Ri = 0.1, the forced convection heat 
transfer is dominant and Num increases slightly with the 
increase of inclination angle.At Ri ≥ 1, Num is increased more 
intensively. In fact at Ri = 10, it is increased by a factor of 6 
when inclination angle varies from 0 to 90°, indicating that in 
this case free convection effect is enhanced and added to the 
forced convection effect. In addition, the most increasing rate 
of Num occurs when inclination angle increases from 0° to 30° 
and after that the slope decreases slightly. When γ = 0, Num is 
maximum at Ri = 0.1, indicating that forced convection causes 
maximum heat transfer in the horizontal cavity. 

               

                 

               
Fig. 7 U and θ along the vertical centerline and V along the 

horizontal centerline for Ri = 10 at different γ 

            
Fig. 8  Num on the hot surface versus inclination angle 
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However, as inclination angle increases, free convection is 
enhanced relative to forced convection, so that for γ = 30, 60, 
90°, free convection is the main factor of heat transfer and 
maximum Num occurs at Ri = 10. 
 

VII. CONCLUSION 
A thermal lattice Boltzmann BGK model was used to study 

numerically laminar two-dimensional mixed convection heat 
transfer inside an inclined rectangular cavity. This method 
enhances the numerical stability and is able to include the 
viscous heating effects. The inclination of the cavity enhances 
the buoyancy force, which affects the velocity components of 
the flow. Therefore, the relations used by previous researchers 
to calculate collision term in the lattice Boltzmann equation 
and to calculate macroscopic properties of flow were modified 
in this paper, as shown in Eqs. (28), (29) and (30). In addition, 
the effects of the inclination angle of the cavity and the 
variations of Ri, which changes the heat transfer regimes of 
the flow, forced, mixed or free convection, were studied.  
At Ri = 0.1, when γ = 0 (horizontal cavity), a large and strong 
vortex is formed in the right side of the cavity and affects the 
whole flow field. In this case, by increasing the inclination 
angle, the rotational power of the vortex increases slightly. At 
Ri = 10, when γ = 0, a vortex affects the upper half of the 
cavity and another vortex affects the lower half, and when 
γ  increases, the two vortices gradually merge, so that at γ = 90 
(vertical cavity) a large, strong and symmetrical vortex affects 
the whole flow field. As Ri increases, free convection heat 
transfer is enhanced relative to forced convection. As a result, 
by increasing the inclination angle, the flow parameters affects 
more, so that at Ri = 10, when γ = 60°  and γ = 90° , the 
absolute U component of fluid velocity near the moving lid 
and bottom wall becomes greater than the lid velocity.At 
Ri = 0.1 (dominance of forced convection), by increasing the 
inclination angle, the average Nusselt number increases 
slightly. However, at Ri ≥ 1, by increasing the inclination 
angle, Num increases more intensively, so that at Ri = 10 
(where free convection is dominant), Num is increased by a 
factor of 6 as inclination angle is increased from 0 to 90°. It 
shows that the flow parameters are more sensitive to the 
variations of inclination angle for free convection domination 
case compared with the case of forced convection domination. 
When γ = 0, Num is maximum at Ri = 0.1, indicating that 
forced convection causes maximum heat transfer in the 
horizontal cavity. However, as inclination angle increases, 
free convection is enhanced relative to forced convection, so 
that at γ = 30, 60, 90°, the free convection heat transfer is the 
main mechanism of heat transfer and maximum Num occurs at 
Ri = 10.This study shows that lattice Boltzmann BGK model 
is capable of simulating mixed convection for wide range of 
flow parameters and gives reliable and accurate results.  
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