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Abstract—This paper presents three-phase evolution search 

methodology to automatically design fuzzy logic controllers (FLCs) 
that can work in a wide range of operating conditions. These include 
varying load, parameter variations, and unknown external 
disturbances. The three-phase scheme consists of an exploration 
phase, an exploitation phase and a robustness phase. The first two 
phases search for FLC with high accuracy performances while the 
last phase aims at obtaining FLC providing the best compromise 
between the accuracy and robustness performances. Simulations 
were performed for direct-drive two-axis robot arm. The evolved 
FLC with the proposed design technique found to provide a very 
satisfactory performance under the wide range of operation 
conditions and to overcome problem associated with coupling and 
nonlinearities characteristics inherent to robot arms. 
 

Keywords—Fuzzy logic control, evolutionary algorithms, 
robustness, exploration/exploitation phase 

I. INTRODUCTION 
NE of the key issues in the design of control system is its 
robustness with respect to the plant uncertainties both 

structured and unstructured. Robustness property of control 
system consists in small sensitivity of control performance 
(stability, accuracy, dynamic performance, etc) to inaccurate 
model, changes and perturbations. It is common those fuzzy 
controllers (FLC) are robust to plant uncertainties. As stated in 
[1-2], this feature arises from the fact that the fuzzy sets allow 
to an input data with perturbation to belong to the same fuzzy 
set as the same data without perturbation but with different 
membership function value. The support's length of 
membership function associated to fuzzy sets determines the 
perturbation level affecting the input data that will be accepted 
as element of the same fuzzy set. Thus, widening the 
membership function's support can increase the robustness to 
perturbation. However, the accuracy decreases due to the 
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wider partitioning of the input and output universe of 
discourse. Therefore, a balance must be found during the 
design between robustness and accuracy. This problem in 
general is not computationally tractable with conventional 
design technique. Robust evolutionary algorithms (EAs) [3-4] 
are the most suitable candidate to tackle such optimization 
design problems. However, it was noticed that, in some cases, 
the EAs could locate the region in which the global optimum 
exists but they don’t converge to this optimum. To alleviate 
this problem, hybrid algorithms were proposed [5-6]. In these 
algorithms, EAs are combined with other specific 
optimization techniques in the way that the EA finds the hills 
and the specific optimization technique climbs them. An 
alternative solution without EA hybridization to reach the 
optimal solution consists in making the exploitation effects 
dominant once we are in the near optimal region. There are 
several factors that promote exploitation, for example, the use 
of creep mutation; the use of elitism strategy with low 
replacement rate; allowing for significant mutation. 

In [7] we introduced an exploration phase and an 
exploitation phase in the EA to overcome the above-
mentioned problem. In the exploration phase, the standard 
genetic process is performed to explore globally the overall 
search space. The EA in the exploration phase, performs 
exploitation of favorable regions of the search space around 
the neighborhood of the near optimum solution found by the 
former phase.  

It is well known that EA used for fuzzy logic system design 
need model of the plant to be controlled which can be 
quantitative or qualitative (neural, or fuzzy or neuro-fuzzy 
model). This model in general constitutes a nominal model. 
However, the controller designed once set to work has to deal 
with the plant affected by structured and unstructured 
disturbances. The latter are usually modeled as error model. 
To take into account these disturbances during the design, one 
can think to use the whole model, i.e., nominal model and 
error model in the evolutionary design phase. Nevertheless, 
Introducing error model in earlier generations yields to 
deterioration of convergence performance. The solution 
proposed is to add a third phase to the EA to search for the 
FLC in the vicinity of the optimal FLC issued from the 
previous phases that can maintain a satisfactory accuracy 
performance under a wide range of operation  conditions. 

In this paper, we investigate the use of Integer-coded EA 
for simultaneous optimization of the Fuzzy Rule Base (FRB) 
and the Fuzzy Data Base (FDB) for a robust FLC. The choice 
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of integer coding is done because it has the advantage in 
reducing the Hamming Cliff effects [8] associated with binary 
coding and reduces the convergence time since the length of 
the chromosome is further reduced compared to the binary 
one [9]. 

Most of the proposed encoding strategies in the literature 
restrict adjacent membership function to fully overlap, 
because allowing partial overlaps during evolution requires 
the test of the existence of an overlapping between the 
adjacent membership functions in all the chromosomes. If 
there is no overlapping in a considered chromosome, then the 
latter is discarded, repaired or a penalty value is associated to 
it. In our encoding strategy, the overlaps are coded in the 
chromosome and evolved by the EA. This fact enforces the 
partial overlapping between the memberships functions, so 
that all chromosomes represent valid solutions and there is no 
need to discard, repair, or penalize invalid chromosomes.  

The genetic design of the two joint fuzzy controllers is done 
simultaneously by considering the input-output pairs of a 
simulated robot manipulator. In so doing, the coupling effects 
are considered as an inherent aspect in the robot arm behavior 
similar to the separate joint motions. 

To sum up, the FLC design problem and its robustness 
enhancement is considered as the problem of fuzzy knowledge 
base optimization, where we seek to minimize the tracking 
error and alleviate chattering or avoid drastic changes in the 
control signal that leads to high stress of the actuators to be 
controlled. A multi-objective EA is used with weighted-sum 
approach. 

The remainder of this paper is organized as follows. First, a 
background of robust optimization design is outlined in 
section II. The application of three-phase EA to FLCs robust 
optimization design is described in section III. Finally, 
simulation results and discussions are given in section IV.   

II. ROBUST OPTIMIZATION DESIGN  
Engineering design methods can often be cast in terms of 

optimization design, where the objective function is 
maximized or minimized by altering the design parameters 
while meeting various constraints. However, such approaches 
suffer from the presence of uncertainties as almost all the 
other disciplines related to engineering. Sources of 
uncertainties include, to name but a few, physical 
measurement limitations, the use of stochastic simulation 
models, complexity of the phenomena to handle, and 
implementation effects (discretization, quantization). As 
consequences of these practically inevitable uncertainties, the 
optimization design technique yield to a solution design not at 
the precise point in the design space but somewhere in a 
neighborhood of the nominal point of interest. Since the 
practical optimization problems may be very ill conditioned, 
the resultant design solution can have disastrous consequences 
once put to work in real world. 

Robust optimization design is one way to effectively and 
efficiently deal with these uncertainties. It is a powerful tool 

that has already proven its capabilities in several application 
areas, to minimize the effect of uncertainties in a design 
solution without eliminating the source of the uncertainties, 
which is difficult, if not impossible task [10-13]. 

III. EVOLUTIONARY ALGORITHM FOR ROBUST OPTIMIZATION 
DESIGN OF A FLC 

Evolutionary algorithms (EAs) are frequently reported to be 
able to cope well with noisy environments. In fact, the latter's 
are considered as a prime application domain for EAs, and 
that noise can even be helpful in evolutionary search. Indeed, 
design solutions that are far apart in the design space may 
have similar objective function values but may have 
significantly different sensitivities with respect to 
uncertainties. Thus, allowing for perturbations and parameter 
variations in the plant during optimization design is 
potentially the best means of influencing the robust character 
of the design. 

Fig. 1 shows the structure of the robust evolutionary fuzzy 
control system for robot manipulators that includes a fuzzy 
control system (FLS) and a three-phase EA. 

 

 

A. Dynamic model of the robot arm 
To validate the proposed control scheme for control of 

robot arms a direct-drive two-axis robot, with two degrees of 
freedom in the rotational angles q1 and q2, is selected as an 
example problem. Each of its axes is driven by a DC servo-
motor which can be described by the following equations: 

 

qK
dt

dILIRE b
a

aaaa &.. ++=  (1) 

aim IKT .=  (2) 
 
Where Ea is the input voltage, Ia the rotor current, q&  the 

angular velocity of the joint, and Tm the generated torque. The 
other parameters and their numerical values are given on table 
I.  

The dynamic equations of motion of the robot are 
represented by the following coupled nonlinear differential 
equations: 

FLS Robot

3-phase EA

Control
inputs

State
variables

Fitness
function FKBs

Reference
signals

+

-

 
Fig. 1 Configuration of the evolutionary fuzzy control system 
for robot manipulator
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where iq  is the angular position of joint i; iq&  and iq&&  are the 

velocity and acceleration of the joint i respectively; Tl i  is load 
torque on joint i; Tmi  is the torque generated by the DC servo-

motor; and a1, ...., a5  are constant parameters depending on 
the mechanical parameters illustrated on table II. 

 
 
 
 
 
 
 
 
 
 
 
 
In fact, this example problem is prototypical problem in 

literature due to the fact that many nonlinear systems of 
practical interest (such as flexible space structures, twin-lift 
helicopter systems, power systems consisting of generators, 
turbine/governor dynamics, and hypersonic flight vehicles) 
have dynamical equations similar to that of a robot arm, and 
therefore it seems a suitable example to explore the potentials 
and limitations of the proposed approach. 

It’s well worthy to note that the mathematical model 
described above is used to simulate the dynamic behavior of 
the robot arm, not to generate the control actions. 

B. Fuzzy Logic Controller 
The SFLC to be evolved by the proposed EA is a MIMO 

control system including two MISO FLCs. As almost all FLCs 
set to work nowadays, we have chosen the inputs of our FLCs 
to be the error x1 and the change error x2, on the concerned 
joint position. At the output, the FLC provides the input 
voltage y to be applied to the DC actuator to bring the 
corresponding joint in the desired position.    

The FLC used in our application can be viewed as a 

mapping from crisp inputs x = (x1,x2)
T
∈U⊂ IR

2
 to crisp output 

y∈V⊂ IR, and this mapping can be expressed quantitatively as 
y=f(x) where f is non-linear. Let the universe of discourse be 
U=U1×U2, where U1=U2= [-0.05, 0.05], and V=[-24, 24]. 

The FLC consists of the following components: 
A singleton fuzzifier that converts a crisp value x∈U into a 

fuzzy singleton Ax within U such that: 
 

xxifxAx =′=′μ 1)(   (5) 

xxifxAx ≠′=′μ 0)(  (6) 
 
The fuzzy data base: The space of x1 is partitioned into 

three triangular and symmetric membership functions 
associated to the following labels: negative (N), zero (Z) and 
positive (P).  The space of the second input x2 and the output 
y are partitioned into seven membership functions associated 
to the following labels: negative big (NB), negative medium 
(NM), negative small (NS), zero (Z), positive big (PB), 
positive medium (PM), and positive small (PS). 

The fuzzy rule base consists of a collection of fuzzy IF-
THEN rules expressed as:  

 
lR :  IF (u1 is lA1  and u2 is lA2

  
) THEN ( v is lC )  (7) 

 
where, ui and v are linguistic variables; l

iA  and lC are terms 

associated to the fuzzy sets l
iF and lG defined in Ui and V, 

respectively, with l = 1,2,....., M. M is the number of rules in 
the FRB. Here we have chosen M = 3x7 = 21 to account for 
every possible combination of input fuzzy sets. 

  Each fuzzy IF-THEN rule defines a fuzzy implication: 
 

R
l
  = F1

l
 x F2

l
  → G

l
  (8) 

     = { ((u,v), lR
μ (u,v))  |   u ∈U,v∈V } (9) 

 
  where lR

μ (u,v) is defined by the following Larsen’s fuzzy 

implication rule: 
 
lR

μ (u,v) = µ
F1

l
xF2

l (u) . µ
G

l (v) (10) 

            = ( µ
F1

l (u1) . µF2
l (u2) ) . µG

l (v)    (11) 
 
The fuzzy inference engine derives from each fuzzy rule of 

the FRB an output fuzzy set, in the following way:  
Each fuzzy rule of (3), described by a fuzzy implication lR , 

determines a fuzzy set lll RAxB ο= in V such that: 
 
 

lB
μ (v)=µ

Ax ο R
l(v)  (12) 

              =sup
u ∈ U

{ Axμ (u) . lR
μ (u,v) } (13) 

 
The defuzzifier used in our fuzzy controller is the modified 

height defuzzifier. 

TABLE I 
DC SERVO-MOTOR  PARAMETERS 

Parameter Notation Joint1 Joint2 Unit 
Torque constant Ki 0.54 0.41 N. m/A 
Voltage constant Kb 5.44 4.19 V/rad/s 
Stator resistance Ra 2.8 10.8 Ω 
Stator inductance La 1.1 2.2 mH 

TABLE II 
MECHANICAL PARAMETERS OF THE ROBOT 

Parameter Notation Joint1 Joint2 Unit 
Axis length l 0.29 0.1 M 

Distance from 
the joint to the 
gravity center 

r 0.1 0.04 M 

Axis weight m 1 0.6 Kg 
Axis inertia 

moment 
I 0.0974 0.0155 N.m.s2/rad 

Viscous 
friction 
constant

D 1.74 0.52 N.m.s/rad 
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Let lv denote the center of gravity of the fuzzy set B
l
, which 

is associated with the activation of the lth fuzzy rule. This 
defuzzifier evaluates lB

μ ( lv ) at lv , then computes the output 

of the FLC as: 

∑
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  (14) 

 
where lδ  is the support’s length of the triangular 

membership function of the consequent for the lth fuzzy rule. 
With this components, the FLC is called “fuzzy system as 

expansion of FBF: Fuzzy Basis Function” [14].  
 

C. FLC Parameters to be evolved  
Usually EAs are initialized randomly, but if we want to 

incorporate some knowledge about the problem, we need to 
introduce that in the initial population of the EA. In our 
application, we have the following implicit knowledge about 
the joint FLC design: 

The fuzzy partitions along the universe of discourse for the 
input and output variables are symmetric; 

If the inputs are zero, the output should be zero too; 
If the inputs of the two fuzzy rules are symmetric, the 

outputs of these rules should also be symmetric.  
Instead of incorporating all of these in the initial population, 

we propose to make use of them in reducing the chromosome 
size and hence the convergence time. 

Using the first piece of knowledge about the symmetrical 
aspect of the fuzzy partitions, just the membership functions 
located in either the positive or negative part of the universe 
of discourse and the membership function centered at zero 
need to be coded in the chromosome. Furthermore, it is 
obvious that the membership function associated to the zero 
term for each variable must have the center fixed at zero.  

The second knowledge give already one fuzzy rule –if x1 is 
Z and x2 is Z then y is Z– which must be discarded from 
evolution. So there’s no need to encode it in the chromosome. 
From the last fact, we imply that we have to search only the 
half of the FRB and then deduce the other half by symmetry. 

To sum up, by taking into account the knowledge about the 
joint FLC specifications, the chromosome size is reduced to 
less than a half. In such way the genetic FLC design for robot 
manipulator with high degree of freedom is possible in a 
reasonable convergence time.  

D. Genotype  
With a multi-parameter, concatenated and integer encoding 

the FKB parameters including those of FRB and FDB of the 
two joint FLC are coded on the same chromosome “Ch” of 60 
alleles, Fig 2. Each 30 alleles of the chromosome encode one 
FKB. The first ten alleles of each such fragment of 
chromosome encode a FRB. The remaining fragment alleles 

are used to compute the membership function parameters. The 
alleles reserved for the fuzzy rules of the FRB are elements of 
{1,2,….,7} and correspond to the fuzzy sets associated to the 
output variable. This encoding correspondence is illustrated 
on table III with gray background and the decoding mapping 
is given in table IV. 

 

 
Fig. 2 Schematic representation of the FKB parameters on 

a chromosome 
 

 
 
 
 
 
 

Since the membership functions used are triangular and 
symmetric, we need only two parameters for their description. 
These parameters are elements of {center, ecart, or overlap 
left}, Fig. 3. The elements used for each membership function 
are given on table V and coded on two digits that take the 
values from 1 to 9. 

 
 
 
 
 
 
 
 

Fig. 3 Description of membership function parameters 

E. Genetic Operators  
Our algorithm uses tournament selection with replacement 

to select parents for reproduction and two-point crossover. As 
mentioned in the above section, the chromosome is integer 
based instead of binary based and each allele of this 
chromosome has an integer range according to which FLC 
parameter it is representing. For example, alleles representing 
FRB have an integer range from 1 to 7, and those encoding 
the membership function parameters have an integer range 

overlap center 

ecart

µ(u) 

u

NM NS NB

TABLE III 
 THE ENCODING STRATEGY OF THE FRB 

x1\x2 NB NM NS Z PS PM PB 
N Ch1 Ch2 Ch3 Ch4 8-Ch10 8-Ch9 8-Ch8 
Z Ch5 Ch6 Ch7 Z 8-Ch7 8-Ch6 8-Ch5 
P Ch8 Ch9 Ch10 8-Ch4 8-Ch3 8-Ch2 8-Ch1 

TABLE IV 
FRB DECODING 

Allele (Chi, i=1,….10) 1 2 3 4 5 6 7 
Fuzzy Term  NB NM NS Z PB PM PB 

 

 Ch1                    Ch30 Ch31                 Ch60 

FKB of SFLC for joint 1 FKB of SFLC for joint 2 

 Ch1           Ch10   Ch11                          Ch30 

FRB
FDB  
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from 1 to 9. The mutation operator thus changes the allele 
randomly inside its range. 
 

TABLE V 
MEMBERSHIP FUNCTION PARAMETERS TO BE EVOLVED 

Variables Linguistic terms Parameters 

Error (x1) 
N 
Z 

Center, ecart 
overlap 

Change-error  (x2) &  
Input voltage (y) 

NB 
NM 
NS 
Z 

Center, ecart 
Center, overlap 
Center, overlap 

overlap 

 

F. Fitness Function  
The control design problem is formulated as least-squares 

problem where we seek the controller to minimize the 
quadratic error while avoiding the drastic changes of the input 
voltage variable. That’s why the fitness function is chosen to 
have two components: sum of quadratic error and sum of 
variance of the input voltage variable. These measures are 
weighted and summed up so that they form a final quality 
value. 

G. Three-Phase EA 
The three-phase scheme in an EA consists of an exploration 

phase, an exploitation phase and a robustness phase. In the 
exploration phase, the initial population is generated randomly 
and the standard genetic process is performed to explore 
globally the search space. The exploitation phase is proposed 
to improve the smooth and tracking performances of the 
motion control and ensure fast convergence of the EA. In this 
phase, the initial population is generated by creep mutating the 
best chromosome obtained from the exploration phase. A 
creep genetic search is proceeded after that (i.e., apply the 
genetic operators: selection, crossover and creep mutation) 
until a new best chromosome is found. In this case we 
initialize the population with the same manner as described 
above but using the new best chromosome. We repeat this 
process until the satisfaction of the termination criterion. In 
the sake of obtaining FLC providing the best tradeoff between 
the two conflicting performances; accuracy and robustness, 
we introduced a third evolutionary phase named robustness 
phase. This later work as an exploitation phase but using the 
robot arm subjected to wide range of uncertainties and free of 
uncertainties. Doing so, the proposed EA try to evolve FLC to 
be at the same time accurate and robust toward varying load, 
unknown external disturbances and parameter variations.  

IV. SIMULATION RESULTS 
In this section, we  investigate the proposed three‐phase EA 

in the SFLC design for tracking control of direct‐drive two‐axis 
robot arm described in section III.A. 

The population size, the mutation rate, and the crossover 
probability were set at 50, 0.03, and 0.8, respectively. The EA 

was run ten times using different random number generator 
seeds producing in such a way different initial populations. 

The control task is to track the following trajectories:   
 

qd  1 =qd  2 = 0.75(1-cos( 0.5π t) ) [rad] (15) 
 
with the initial states:  q1=0 rad, q2=0 rad, 1q& =0 rad.s-1  and 

2q& =0 rad.s-1 

The uncertainties are considered to be originated from 
varying load, parameter variations, and unknown load torque.
 During robustness phase, the load increases by 4kg at t=1.5 
s while the robot is in motion. In a robot arm we distinguish 
between mechanical parameters and electrical parameters. The 
mechanical parameters can not always be obtained accurately 
and they may also vary during the manipulation. However, the 
uncertainties on the mechanical parameters can be handled as 
if they were due to unknown load torque. Thus, in the 
simulations, only the robustness against electrical variations is 
considered by using stator resistances as an example. At the 
beginning, the stator resistances have its nominal values and 
they change to Ra1=4.5Ω for the first axis and Ra2=20.1Ω for 
the second one when t=2.5s. They are assumed to have 100% 
uncertainty during robust optimization design.  It is common 
that in many cases DC motors may be operated with unknown 
load torque. Thus, the performance of the robustness of the 
evolved FLC against the external load torque is enhanced. In 
the robustness phase, the external load torqueses are set to: 

 
Tl1 = 1.47 sin( 1q& ) + 1.3 sin( 2q& ) + 0.2 sin(t) (16) 
Tl2 = 0.6 sin( 1q& ) + 0.26 sin( 2q& ) + 0.09 sin(t) (17) 
 

It is of interest to note that these uncertainties constitute an 
extreme critical operating conditions. 

In order to provide a basis for comparison the tracking error 
and control activities under enhanced FLCs (FLCs evolved by 
three-phase EA) are plotted against those of non-enhanced 
FLCs (FLCs evolved by bi-phase EA) which experiences 
similar operating conditions. 

The FKBs that produce the best final objective values are 
used to get the input voltage with the corresponding tracking 
error illustrated in Fig. 4, respectively. Obviously, the tracking 
performance obtained under both controllers was at an 
excellent level. 

The enhanced robustness of the control system resultant 
from the robust EA was validated by introducing uncertainties 
different than those used during optimization design. Strictly 
speaking, The load mass changes as 4.(1-cos(0.2π t)), the 
stator resistances change to Ra1=3.5Ω and Ra2=15.2Ω at t=3s 
and the external load torques were set to :  

 
Tl1 = 0.37 sin( 1q& ) + 1.4 sin( 2q& ) + 0.156 sin(t)  (18) 
Tl2 = 0.4 sin( 1q& ) + 0.36 sin( 2q& ) + 0.056 sin(t) (19) 
 

Typical results, shown in Fig. 5, illustrate the good 
performance of the evolved controllers compared to those 
non-enhanced, when induced with uncertainties.  
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Additional simulations were performed to determine the 
influence of the coupling among the joints on the tracking 
control performance. We set to the robot manipulator other 
trajectories, where the coupling effects are prominent. These 
trajectories are described by: 

 qd  1 =
⎩
⎨
⎧

>
≤π−

40
4)).5.0cos(1(75.0

t
tt  (20) 

 qd  2 = -0.75 (1- cos (0.5π t))         t ≥ 0 (21) 
 

The simulation of the FLCs evolved by the robust EA yield 
to the results illustrated in Fig. 6, where we can realize that the 
tracking performances are still at an excellent level. 

The simulation results, under the same severe conditions as 
for the previous trajectories, are presented in Fig. 7. 
While the added uncertainties and the coupling effects are 
clearly evident in the angular position errors, the joint 
controllers successfully maintain the position errors in 
acceptable tolerances and without significant chattering in the 
control inputs. 

    Apparently, both enhanced and non-enhanced FLCs 
succeed to follow the desired trajectory in free and noisy 
environment, but what is of interest to note is the waterbed 
effect. Indeed when the robustness performance increases the 
accuracy decreases and vice-versa. 

V. CONCLUSION 
As mentioned earlier, the FLCs are known to be robust 

enough to tolerate plant uncertainties. In the sake of widening 
its operating conditions, we have proposed a robust 
optimization design methodology of FLC for robotic 
manipulator based on a novel three-phase evolutionary 
algorithm. Robust design search accommodating presence of 
uncertainty is possible in this algorithm through the third 
phase termed as robustness phase. Specifically, the robustness 
to be enhanced is toward varying load, parameter variations 
and unknown external load torque. Other uncertainty sources 
have to be investigated in future work. 

The enhanced FLC with the proposed EA was found to 
provide a very satisfactory, if not excellent, performances 
under a very sever operating conditions and to overcome 
successfully problems associated with the complex and 
nonlinearities characteristics inherent to robot arm 
applications. 

By considering the variance of the input voltage of the DC 
actuators as components of the fitness function, we get a 
satisfactory smooth behavior at the evolved FLC output.  

Future work will focus on two points. The first one is on 
extending the enhancement of robustness against further 
uncertainty sources, eg., standstill and stall, measurement 
noise and startup. The second one consist in using pareto 
multiobjective approach instead of weighted-sum approach to 
produce a good set of FLCs that populate the pareto solution 
set, allowing the controller designer the freedom to choose 
one controller against others to achieve the desired 
performance. 
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Fig. 4 A Comparison of tracking  and smoothness performances of the evolved FLCs 
using three-phase EA (solid line ) and bi-phase EA (dashed line ) 

 
 

Fig. 5 A Comparison of tracking  and smoothness performances of the evolved FLCs under uncertainties  
using three-phase EA (solid line ) and bi-phase EA (dashed line )  



International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:7, 2007

1066

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
       
 

 
 
 
 
 

 
 

Fig. 6 A Comparison of tracking and smoothness performances of the evolved FLCs with prominent coupling effects using 
three-phase EA (solid line ) and bi-phase EA (dashed line )  

 
 

Fig. 7 A Comparison of tracking and smoothness performances of the evolved FLCs under uncertainties and prominent 
coupling effects 


