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4-Transitivity and 6-Figures in Finite Klingenberg

Planes of Parameters (p

k=1 p)
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Abstract—In this paper, we carry over some of the results which
are valid on a certain class of Moufang-Klingenberg planes M (.A)
coordinatized by an local alternative ring A := A (¢) = A + Ae of
dual numbers to finite projective Klingenberg plane M (.A) obtained
by taking local ring Z, (where prime power g = p*) instead of A.
So, we show that the collineation group of M(.A) acts transitively
on 4-gons, and that any 6-figure corresponds to only one inversible
m e A
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[. INTRODUCTION

Projective Klingenberg and Hjelmslev planes (more briefly:
PK-planes and PH-planes, resp.) are generalizations of or-
dinary projective planes. These structures were introduced
by Klingenberg in [14], [15]. As for finite PK-planes, these
structures introduced by Drake and Lenz in [8] have been
studied in detail by Bacon in [2].

In our previous paper [6] we studied a certain class (which
we will denote by M(.A)) of Moufang-Klingenberg (briefly,
MK) planes coordinatized by an local alternative ring

A:=A(e)=A+Ac

of dual numbers (an alternative ring A, € ¢ A and €2 = 0)
introduced by Blunck in [5]. We showed that its collineation
group is transitive on quadrangles and the coordinatization
of these Moufang-Klingenberg planes is independent of the
choice of the coordinatization quadrangle. By extending the
concepts of 6—figure to these Moufang - Klingenberg planes,
we examined some properties of 6—figures.

In the present paper we deal with finite PK-plane M(.A)
obtained by taking local ring Z, (where ¢ is a prime power)
instead of A. So, we will carry the results that are well-known
for MK-planes from [6] M(A) to the finite PK-plane M(A).

II. PRELIMINARIES

Let M = (P,L,€,~) consist of an incidence structure
(P, L, €)(points, lines, incidence) and an equivalence relation
‘~’ (neighbour relation) on P and on L. Then M is called
a projective Klingenberg plane (PK-plane), if it satisfies the
following axioms:

(PK1) If P, are two non-neighbour points, then there is
a unique line PQ through P and Q.

(PK2) If g,h are two non-neighbour lines, then there is a
unique point g A h on both g and h.
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(PK3) There is a projective plane M* = (P*,L* €) and
incidence structure epimorphism ¥ : M — M, such that the
conditions

Y(P)=V(Q)=P~Q, V(g =¥(h)=g~h
hold for all P,Q € P, g,h € L.

PK-plane M is called a projective Hjelmslev plane (PH-
plane) If M furthermore provides the following axioms:

(PH1) If P,Q are two neighbour points, then there are at
least two lines through P and Q.

(PH2) If g, h are two neighbour lines, then there are at least
two points on both g and h.

A Moufang-Klingenberg plane (MK-plane) is a PK-plane
M that generalizes a Moufang plane, and for which M* is a
Moufang plane (for the details see [1]).

A point P € P is called near a line g € L iff there exists
a line h such that P € h for some line h ~ g.

An incidence structure automorphism preserving and re-
flecting the neighbour relation is called a collineation of M.

Now we give the definition of an n-gon, which is meaningful
when n > 3: An n-tuple of pairwise non-neighbour points is
called an (ordered) n-gon if no three of its elements are on
neighbour lines [6].

An alternative ring (field) R is a not necessarily associa-
tive ring (field) that satisfies the alternative laws a (ab) =
a®b, (ba)a = ba?, Ya,b € R. An alternative ring R with
identity element 1 is called local if the set I of its non-unit
elements is an ideal.

We summarize some basic concepts about the coordinatiza-
tion of MK-planes from [3].

Let R be a local alternative ring. Then

M(R) = (P,L, €,~)

is the incidence structure with neighbor relation defined as
follows:

P = {(z,y,1):z,ye R}U{(L,y,2): yeR, z€1}
U{(w,1,2) : w,z € I}
L = {[m,1,p]:m,peR}H[L,n,p]:peR, nel}

U{lg,n,1] : ¢,n € I}
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[m,1,p] = {(z,2m+p,1): 2 € R}
U{(l,zp+m,2):z €I}

[Ln,p] = {(yn+py1):yeR}
U{(zp+mn,1,2): z €1}

[g,n,1] = {(L,y,yn+q):y €R}

U{(w,l,wqg+n):w eI}
and also

P = (z1,22,23) ~ (y1,92,93) = Q
& z,—y €I (1=1,2,3),VP,QeP

(21,22, 23] ~ [y1,Y2,y3] = h
& x,—y €I (1=1,2,3)),Yg,h € L.

Baker et al. [1] use (O = (0,0,1),U = (1,0,0),V =
(0,1,0), F = (1,1,1)) as a coordinatization 4-gon. We stick
to this notation throughout this paper. For more detailed
information about the coordinatization see [1] and [3].

Now it is time to give the following theorem from [1].

Theorem 2.1: M(R) is an MK-plane, and each MK-plane
is isomorphic to some M(R).

Let A be an alternative field and ¢ ¢ A. Consider
A= A(e) = A+ Aes with componentwise addition and
multiplication as follows:

(a1 + age) (b1 + bae) = a1br + (a1be + azby) e,

where a;,b; € A, i =1,2. Then A is an alternative ring with
ideal I = Ae of non-units. For more detailed information
about A see the papers of [4], [5].

Theorem 2.2: If R is a (not necessarily commutative) local
ring then M(R) is a PK-plane (cf. [15] or [9, Theorem 4.1]).

Drake and Lenz [8, Proposition 2.5] or [12, Theorem 1.2]
observed that the following corollary is true for PK-planes.
This corollary is a generalization of results which are given
for PH-planes by Kleinfeld [13, Theorem 1] and Liineburg
[16, Satz 2.11].

Corollary 2.3: Let M(R) be PK-plane. Then there are
natural numbers ¢ and r which are called the parametres
of M(R) and they are uniquely determined by incidence
structure of a finite PK-plane [8, Proposition 2.7], with

1) every point (line) has t*> neighbours;

2) given a point P and a line | with P € I, there exist
exactly t points on 1l which are neighbours to P and
exactly t lines through P which are neighbours to l;

3) Let r be order of the projective plane M*. If ¢t # 1 we
have r < t (then M is called proper; we have t = 1 iff
M is an ordinary projective plane)

4) every point (line) is incident with t (r 4+ 1) lines (points);

S) |[P|=L|=¢2(r?+r+1).

Now consider ring Z, where prime power ¢ = p*. We can
state the elements of Z, as Z, = U’ U I where U’ is the set
of units of Z, and I is the set of non-units of Z,. Here it is
clear that

I={0p,1p,2p, -, (p"* = 1) p}

and so |I| = p*~!. Let ¢ ¢ Z,. Then A := Z, + Z,e with
componentwise addition and multiplication above is a local
ring with ideal I := I + Z,e of non-units, [I| = (p*~!) pk.
Note that the set of units of A is U := U’ + Z,e and

Ul = (p* —p* ) pk = (p—1)p* "

Since A is a proper local ring and A/I = Z,,, ¥ induces an

incidence structure epimorphism from finite PK-plane M (.A)

onto the Desarguesian projective plane (with order p) coor-

dinatized by the field Z, [9, page 169, above Theorem 4.1].

Because of this, M(.A) is called as Desarguesian PK-plane.
So, we have the following

Corollary 2.4: For finite PK-plane M(.A), the parameters ¢
and r in Corollary 2.3 are equal to p?*~! and p, respectively.

A local ring R is called a Hjelmslev ring (briefly, H-ring)
if it satisfies the following two conditions:

(HR1) I consists of two-sided zero divisor.

(HR2) For a,b € 1, one has a € bR or b € aR, and also
a € Rbor b e Ra.

By the last definition, we can say that A is not a H-ring.
For example, for elements a = 3 4 3¢ and b = ¢ of the ideal
I of local ring A = Z3> + Z32(¢), (HR2) is not valid.

From now on we restrict ourselves to PK-plane M(A) =
(P,L, €,~) coordinatized by the local ring A := Z, + Ze,
with neighbour relation defined above.

ITII. 4-TRANSITIVITY AND 6-FIGURES IN M(A).

In the final section, first of all, from [6] we start by giving
some collineations on M(.A) where w, z,¢,n € I as follows:

For any a,b € A, the collineation T, ; transforms points
and lines as follows:

(z,9,1) — (r+ay+b1)
(17y72) - (l,y—i—z(b—ay),z)
(w71,z) - (w+za,1,z)

and
[m,1,k] —
(1,n,p] —

[m,1,k+b—am)]
[1,n,p+ a— bn]
[q7 n7 1j| - [q7 n’ 1] N

For any «,f¢ I, the collineation S, g (here, it is enough
to give S, p instead of the collineations L, and F, in [6])
transforms points and lines as follows:

(,9,1) — (Bz,ay,1)

(Ly,z) — (Lap 'y, '2)

(w,1,2) — (a_lﬁw,l,oflz)
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and
[m,1,k] — [ozﬂ_lm7 1,ak]
[1an7p] - [17ailﬁnvﬂp]
[g.n,1] — [B'¢,a 'n,1].

The collineation I; transforms points and lines as follows:

(x,y.1) — (z7halyl) if a¢l
(z,9,1) — (Lyz) if zel
(Ly,z) — (zu,1)
(w,1,2) — (z,1,w)

and
[T)’L71,k] - [kvlam]
[1,n,p] — I[p,n,1] if pel
[anp] - I:L _np_lap_l] Zf p ¢ I
lg,n,1] — [L,n,q].

The collineation F' transforms points and lines as follows:

(z,9,1) = (y2,1)
(Ly,z) — (%LZ) if yel
(Ly,z) — (Ly hy'z) if y¢l
(w,1,2) — (1,w,2)
and

[m,1,k] — [L,mk] if mel

[m,1,k] — [m_l,l,—km_l] if m¢l
[L,n,p] — [n,1,p]

lg.n,1] — [n,q,1].

For any s € A, the collineation G, transforms points and
lines as follows:

(x,y,1) — (z,y—zs,1)
(1,y,2) - (17y_ 872)
(w7 172> - (w717Z)

and
[mvlvk] - [m—s,Lk]
(Ln,p] — [Lin,p+psn]
lg,n,1] — [g+sn,n,1].

The collineation I transforms points and lines as follows:

(z,y,1) — (y'zy 1) if y¢lI
(,y,1) — (171871,3?71@/) if yelnzel
(z,y,1) — (z,1,9) if yelnzel
(Ly,z) — (v 'y 'z1) if y¢l
(Ly,z) — (Lzy) if yel

(w,1,2) — (w,2z,1)

and
m,1,k] — [-mk " 1Lk™'] if k¢l
m,1,k] — [L—km ™' m "] if kelAm¢l
[m,1,k] — [m,k,1] if keIAmel
Ln,p] — [pL1,-np™'] if p¢l
[Ln,p] — [Lip,n] if pel
lg;n,1] — g,1,7n].

So, we can give the following theorem without proof. For,
its proof is same to Theorem 2 of [6]. Furthermore, this
theorem is proved by Lemma 4.15 in [11].

Theorem 3.1: The group G of collineations of M(.A) acts
transitively on 3-gons.

Now, we can state the analogue of the result given by [2,
Proposition 5.2.10 in Vol.I]. For the case of uniform H-rings
(for the definition of uniform see [10]), the result is also in
[7, Theorem 17]. Here, it is possible to give the proof of the
following theorem, as more shorthly than the proof of Theorem
3 in [6].

Theorem 3.2: G acts transitively on 4-gons of M(A).

Proof: Let (P,Q, R, S) be a 4-gon in M(A). It suffices
to show that the points P, @, R, S can be transformed by an
element of G to U, V,(1,1,1), O, respectively. From Theorem
3.1, there exists a collineation ¢ which transforms P, Q, R
to U, V, (0,1,1), respectively. Let E denote the intersection
point of the lines QR and PS. Then, since o (E) is non-
neighbour to the points ¢ (P), o (Q), o (R), it has the form
(0,b,1), where b—1 ¢ I, and so o (S) has the form (a, b, 1),
where a ¢ I. Therefore o transforms P, @, R, S to

(]‘70’0)7 (07 170)7 (07 17 1)’ (a7b7 1)’

respectively. Then the mapping T_, _; transforms these points
to

(1,0,0), (0,1,0), (—a,1—10,1), (0,0,1),
respectively and S(; _y-1 _,—1 transforms these points to
(1,0,0), (0,1,0), (1,1,1), (0,0,1),
respectively. ]

The following corollary is an obvious result of the last
theorem:

Corollary 3.3: The coordinatization of M(.A) is indepen-
dent of the choice of the coordinatization base.

From now on, we carry over some concepts related to 6-
figures to the M(.A), in view of the paper of [6].

A 6-figure is a sequence of six non-neighbour points
(ABC, A1B1C4) such that (A, B,C) is 3-gon, and A; €
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BC,B; € CA,Cy, € AB. The points A, B, C, Ay, By, Cy are
called vertices of this 6-figure. The 6-figures (ABC, A; B1C1)
and (DEF,D,E1Fy) are equivalent if there exists a
collineation of M(.A) which transforms A, B, C, A;, By,
Ci to D, E, F, Dy, E;, Fy respectively. Now, we give a
theorem from [6].

Theorem 3.4: Let u = (ABC, A1B1C) be a 6-figure in
M(A). Then, there is an m € U such that p is equivalent
to (UVO,(0,1,1)(1,0,1)(1,m,0)) where U = (1,0,0),V =
(0,1,0),0 = (0,0,1) are elements of the coordinatization
basis of M(A).

We again give a theorem from [6]. Note that the proof of
this theorem is more shorter.

Theorem 3.5: The 6-figures
(ABC, A1B,C4),(BCA, B,C1 A1), (CAB,C1 A1 By)

are equivalent.

Proof: By Theorem 3.4 we may without loss of generality
take (UV O, U1V101) instead of (ABC, A; B1C4), where

U, =(0,1,1),V; =(1,0,1),01 = (1,m,0)
with m € U. The collineation
h:=8n10l0l

transforms (UVO,U;V10;) to (VOU,V10,U;) and also
(VOU7‘/101U1) to (OUVY, 01U1V1). |
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