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Networks With Two Additive Time-varying delay

components
Xingyuan Qu and Shouming Zhong

Abstract—In this paper, the problem of stability criteria of neural
networks (NNs) with two-additive time-varying delay compenents is
investigated. The relationship between the time-varying delay and its
lower and upper bounds is taken into account when estimating the
upper bound of the derivative of Lyapunov functional. As a result,
some improved delay stability criteria for NNs with two-additive
time-varying delay components are proposed. Finally, a numerical
example is given to illustrate the effectiveness of the proposed
method.
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I. INTRODUCTION

NEURAL networks(NNs) have been studied over the past
few decades extensively and have found many appli-

cations in many areas, such as pattern recognition, signal
processing, associative memory, static image processing, and
combinatorial optimization. And time-delay also often occurs
in many industrial and engineeering systems, such as manu-
facturing systems, telecommunication and economic systems,
and is a major cause of instability and poor performance. In
recent years, much efforts has been invested in the analysis of
time-delay systems, such as delayed stochastic system, delayed
stochastic genetic regulatory networks, delayed stochastic
complex networks [1]-[4]. Up to now, stability of NNs with
time delay has also received attention [5]-[14], since time
delay is frequently encountered in NNs, and it is often a
source of instability and oscillations in a system. Both delay-
independent [8]-[17] and delay-dependent [18]-[27] stability
criteria for NNs have been proposed in recent years. Since
delay-independent criteria tend to be conservative, especially
when the delay is small or it varies in an interval, much
attention has been paid to the delay-dependent type. But note
that the delay-dependent stability results mentioned above can
only provide stability conditions for neural networks with one
single delay in the state.

Recently, a new model for neural networks with two additive
time-varying delays has been considered in [6], [7]and [26].
By constructing a new Lyapunov functional and using some
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advanced techniques, a new asymptotic stability criterion for
neural networks with two successive delay components is
derived in [6]. By choosing a new class of Lyapunov func-
tional, some new delay-dependent asymptotic stability criteria
are derived to guaran tee the stability of the delayed neural
networks in [26].

In this paper, the problem of stability criteria of neural
networks (NNs) with two-additive time-varying delay com-
penents is investigated. The relationship between the time-
varying delay and its lower and upper bounds is taken into
account.When estimating the upper bound of the derivative
of Lyapunov functional. As a result, some improved delay
stability criteria for NNs with two-additive time-varying delay
components are proposed. Finally, a numerical example is
given to illustrate the effectiveness of the proposed method.

II. PROBLEM FORMULATION AND SOME PRELIMINARES

Consider the following delayed neural networks with two-
additive time-varying delays:

ẏ(t) = −Ay(t)+Bg(y(t))+Dg(y(t−d1(t)−d2(t)))+u (1)

where y(·) = [y1(·), y2(·), ..., yn(·)]T ∈ Rn is the neuron
state vector, g(y(·)) = [g1(y(t)), g2(y(t)), ..., gn(y(t))]T∈
Rn denotes the neuron activation function, and u =
[u1, u2, ..., un]T ∈ Rn is a constant input vector. B, D ∈
Rn×n are the connection weight matrix and the delayed con-
nection weight matrix, respectively. A = diag(a1, a2, ..., an)
with ai > 0, i = 1, 2, .., n. d1(t) and d2(t) are two time-
varying satisfying:

0 ≤ d11 ≤ d1(t) ≤ d12, 0 ≤ d21 ≤ d2(t) ≤ d22;

ḋ1(t) ≤ μ1, ḋ2(t) ≤ μ2 (2)

where d12 ≥ d11, d22 ≥ d21 and μ1, μ2 are constants. Note
that d11, d21 may not be equal to 0. We denote
d(t) = d1(t) + d2(t), d1 = d11 + d21, d2 = d12 + d22;

μ = μ1 + μ2, h1 = d12 − d11, h2 = d22 − d21 (3)

In addition, it is assumed that each neuron activation func-
tion in system (1), gi(·)(i = 1, 2, ..., n) is bounded and satisfies
the following condition:

0 ≤ gi(x) − gi(y)
x − y

≤ ki (4)

where ki (i = 1, 2, ..., n) are positive constants, x, y ∈ R.
Note that by using the Brouwers fixed-point theorem, it

can be proven that there at least exists one equilibrium
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point for system (1). In the following, the equilibrium point
y∗ = [y∗

1 , y∗
2 , ..., y∗

n]T of system (1) is shifted to the origin by
the transformation z(·) = y(·)−y∗, which converts the system
to the system:

ż(t) = −Az(t) + Bf(z(t)) + Df(z(t − d1(t) − d2(t))) (5)

where z(·) = [z1(·), z2(·), ..., zn(·)]T is the state
vector of the transformated system f(z(·)) =
[f1(z(·)), f2(z(·)), ..., fn(z(·))]T and fi(zi(·)) =
gi(zi(·) + y∗

i ) − gi(y∗
i ),(i = 1, 2, .., n). note that the

function fi(·) (i = 1, 2, .., n) satisfy the following condition:

0 ≤ fi(zi)
zi

≤ ki, i = 1, 2, ..., n (6)

which is equivalent to

fi(zi)[fi(zi) − kizi] ≤ 0, i = 1, 2, ..., n (7)

In this paper, we will present our practically stability criteria
for DNN in (6). Before giving our main result, we present the
Lemmas which are employed for future derivations.

Lemma 1. ([26]) For any constant matrix R ∈ Rn×n,R =
RT > 0, scalar d2 > d1 > 0, such that the following
integrations are well defined, then

(d2 − d1)
∫ t−d1

t−d2
yT (s)Ry(s)ds ≥ ∫ t−d1

t−d2
yT (s)dsR

∫ t−d1

t−d2
y(s)ds;

d2
2−d2

1
2

∫ −d1

−d2

∫ t

t+θ
yT (s)Ry(s)ds ≥ ∫ −d1

−d2

∫ t

t+θ
yT (s)dsR∫ −d1

−d2

∫ t

t+θ
y(s)ds

Lemma 2. ([27]) For any constant matrix R ∈ Rn×n, R =
RT > 0, scalar d > 0 and a vector-valued function y : [t −
d, t] → Rn, the following integrations is well defined:

−d
∫ t

t−d
ẏT (s)Rẏ(s)ds ≤

[
y(t)

y(t − d)

]T [ −R R
∗ −R

]
[

y(t)
y(t − d)

]

III. DELAY-DEPENDENT STABILITY CRITERIA

In this section, the following Lyapunov-Krasovskii
functional is constructed:

V (zt) =
∑7

i=1 Vi(zt)
where

V1(zt) = zT (t)Pz(t) + 2
n∑

i=1

λi

∫ zi(t)

0

fi(s)ds

V2(zt) =

[ ∫ t

t−d2
z(s)ds +

∫ t−d1

t−d2
z(s)ds∫ 0

−d2

∫ t

t+θ
ż(s)dsdθ +

∫ −d1

−d2

∫ t

t+θ
ż(s)dsdθ

]T

×
[

M11 M12

∗ M22

]

×
[ ∫ t

t−d2
z(s)ds +

∫ t−d1

t−d2
z(s)ds∫ 0

−d2

∫ t

t+θ
ż(s)dsdθ +

∫ −d1

−d2

∫ t

t+θ
ż(s)dsdθ

]

V3(zt) =
∫ t

t−d(t)

[zT (s)Q1z(s) + fT (z(s))Q2f(z(s))]ds

+
∫ t

t−d1(t)

zT (s)Q3z(s)ds +
∫ t

t−d2(t)

zT (s)Q4z(s)ds

+
∫ t

t−d1

zT (s)Q5z(s)ds +
∫ t

t−d2

zT (s)Q6z(s)ds

+
∫ t

t−d11

zT (s)Q7z(s)ds +
∫ t

t−d12

zT (s)Q8z(s)ds

V4(zt) =
∫ 0

−d12

∫ t

t+θ

żT (s)Z1ż(s)dsdθ +
∫ −d11

−d12

∫ t

t+θ

żT (s)

Z2ż(s)dsdθ +
∫ 0

−d22

∫ t

t+θ

żT (s)Z3ż(s)dsdθ

+
∫ −d21

−d22

∫ t

t+θ

żT (s)Z4ż(s)dsdθ

V5(zt) = d2

∫ 0

−d2

∫ t

t+θ

żT (s)Z5ż(s)dsdθ

+ (d2 − d1)
∫ −d1

−d2

∫ t

t+θ

żT (s)Z6ż(s)dsdθ

V6(zt) = d2

∫ 0

−d2

∫ t

t+θ

zT (s)Z7z(s)dsdθ

+ (d2 − d1)
∫ −d1

−d2

∫ t

t+θ

zT (s)Z8z(s)dsdθ

V7(zt) =
d2
2

2

∫ 0

−d2

∫ 0

θ

∫ t

t+λ

żT (s)Z9ż(s)dsdλdθ

+
d2
2 − d2

1

2

∫ −d1

−d2

∫ 0

θ

∫ t

t+λ

żT (s)Z10ż(s)dsdλdθ

(8)

Where P = PT > 0, Ql = QT
l > 0 (l = 1, 2, ..., 10), Zi =

ZT
i > 0 (i = 1, 2, ..., 10),

[
M11 M12

∗ M22

]
> 0 and Λ =

diag(λ1, λ2, ..., λn) ≥ 0 are to be determined.

Theorem 1: For given scalar dij (i = 1, 2; j = 1, 2), and
μi (i = 1, 2), the system described by (2), (3), (5) and
(6) is global asymptotically stable if there exist symmetric

positive matrices P , Qi, Zi (i = 1, 2, ..., 10)
[

M11 M12

∗ M22

]
,

positive diagonal matrices, Ti = diag(t1i, t2i, ..., tni), Λ =
diag(λ1, λ2, ..., λn)(i = 1, 2) and any matrices N , L, R, S,
T , U , V , W , P1, P2 with appropriate dimensions, such that
the following LMIs hold:

Π̂11 =

⎡
⎢⎢⎢⎢⎣

Π −d11N −h1L −d21S −h2T
∗ −d11Z1 0 0 0
∗ ∗ −h1Z12 0 0
∗ ∗ ∗ −d21Z3 0
∗ ∗ ∗ ∗ −h2Z34

⎤
⎥⎥⎥⎥⎦ < 0

(9)

Π̂12 =

⎡
⎢⎢⎢⎢⎣

Π −d11N −h1L −d22S −h2U
∗ −d11Z1 0 0 0
∗ ∗ −h1Z12 0 0
∗ ∗ ∗ −d22Z3 0
∗ ∗ ∗ ∗ −h2Z4

⎤
⎥⎥⎥⎥⎦ < 0

(10)
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Π̂21 =

⎡
⎢⎢⎢⎢⎣

Π −d12N −h1R −d21S −h2T
∗ −d12Z1 0 0 0
∗ ∗ −h1Z2 0 0
∗ ∗ ∗ −d21Z3 0
∗ ∗ ∗ ∗ −h2Z34

⎤
⎥⎥⎥⎥⎦ < 0

(11)

Π̂22 =

⎡
⎢⎢⎢⎢⎣

Π −d12N −h1R −d22S −h2U
∗ −d12Z1 0 0 0
∗ ∗ −h1Z2 0 0
∗ ∗ ∗ −d22Z3 0
∗ ∗ ∗ ∗ −h2Z4

⎤
⎥⎥⎥⎥⎦ < 0

(12)
where

Π =

⎡
⎢⎢⎣

Ξ11 O Ξ13 Ξ14

∗ Ξ22 O O
∗ ∗ Ξ33 Ξ34

∗ ∗ ∗ Ξ44

⎤
⎥⎥⎦

+
[

Υ1 + Υ1T Υ2 + Υ2T
]

Ξ11 =

⎡
⎢⎢⎢⎢⎣

Π11 0 0 0 Z5

∗ Φ22 0 0 0
∗ ∗ Φ33 0 Z6

∗ ∗ ∗ Φ44 0
∗∗ ∗ ∗ ∗ Φ55

⎤
⎥⎥⎥⎥⎦

Ξ22 =

⎡
⎢⎢⎢⎢⎣

Π66 0 0 0 0
∗ −Q7 0 0 0
∗ ∗ −Q8 0 0
∗ ∗ ∗ −Q9 0
∗∗ ∗ ∗ ∗ −Q10

⎤
⎥⎥⎥⎥⎦

Ξ33 =

⎡
⎣ Π11,11 Λ + P2B P2D

∗ Ω22 0
∗ ∗ Ω33

⎤
⎦

Ξ44 =

⎡
⎢⎢⎣

−Z7 0 0 0
∗ −Z7 0 0
∗ ∗ −Z7 0
∗ ∗ ∗ −Z7

⎤
⎥⎥⎦

Ξ13 =

⎡
⎢⎢⎢⎢⎣

Ψ11 Ψ12 −P1D
0 0 T2Σ
0 0 0
0 0 0
0 0 0

⎤
⎥⎥⎥⎥⎦

Ξ14 =

⎡
⎢⎢⎢⎢⎣

Ψ14 Ψ15 Ψ16 Ψ17

0 0 0 0
Ψ34 Ψ35 Ψ36 Ψ37

0 0 0 0
Ψ54 Ψ55 Ψ156 Ψ57

⎤
⎥⎥⎥⎥⎦

Υ1 =
[

Φ1 0 0 Φ2 0 Φ3 R −L U ]
Υ2 =

[ −T 0 0 0 −V −W −V −W ]
Π11 = Q1 + Q3 + Q4 + Q5 + Q6 + Q7 + Q8 + Q9 + Q10 +
d2
2Z7 + h2

21Z8 − Z5 − P1A − AT P1;
Π11,11 = d12Z1 + h1Z2 + d22Z3 + h2Z4 + d2

2Z5 + (d2 −
d1)2Z6 + d2

4
4 Z9 + (d2

2−d2
1)

2

4 Z10 − P2 − PT
2 ;

Φ22 = −(1 − μ)Q1; Φ33 = −Q5 − Z6; Φ44 = −(1 − μ1)Q3;
Φ55 = −Z5 − Z6 − Q6; Φ66 = −(1 − μ2)Q4;
Ω22 = Q2 − T1 − TT

1 ; Ω33 = −(1 − μ)Q2 − T2 − TT
2 ;

Ω14 = Ω15 = (d2 + h21)M12; Ω16 = Ω17 = (d2 + h21)M22;
Φ1 = N + S + d2V + h21W; Φ2 = L −N −R;
Φ3 = T − S − U ;

∑
= diag(k1, k2, ..., kn);

Ψ11 = P − P1 − AT P2; Ψ12 = P1B + T1Σ;

Ψ14 = Ψ15 = Ψ34 = Ψ35 = M11 − M12;
Ψ16 = Ψ17 = Ψ36 = Ψ37 = M12 − M22;
Ψ54 = Ψ55 = −M11 − MT

11 + M12 + MT
12;

Ψ56 = Ψ57 = −M12 − MT
12 + M22 + MT

22;
Proof:Calculating the derivatives of Vi(zt) (i = 1, 2, .., 7),
along the trajectories of system (5) yields.

V̇1(zt) = 2zT (t)P ż(t) + 2fT (z(t))Λż(t) (13)

V̇2(zt) = 2

[ ∫ t

t−d2
z(s)ds +

∫ t−d1

t−d2
z(s)ds∫ 0

−d2

∫ t

t+θ
ż(s)dsdθ +

∫ −d1

−d2

∫ t

t+θ
ż(s)dsdθ

]T

×
[

M11 M12

∗ M22

]

×
[

z(t) + z(t − d1) − 2z(t − d2)
(d2 + h21)ż(t) − (z(t) + z(t − d1) − 2z(t − d2))

]
(14)

V̇3(zt) ≤ zT (t)[Q1 + Q3 + Q4 + Q5 + Q6 + Q7 + Q8 + Q9

+ Q10]z(t) − (1 − μ)zT (t − d(t))Q1z(t − d(t))

− (1 − μ1)zT (t − d1(t))Q3z(t − d1(t))

− (1 − μ2)zT (t − d2(t))Q4z(t − d2(t))

− zT (t − d1)Q5z(t − d1) − zT (t − d2)Q6z(t − d2)

− zT (t − d11)Q7z(t − d11) − zT (t − d12)Q8z(t − d12)

− zT (t − d21)Q9z(t − d21) − zT (t − d22)Q10z(t − d22)

− (1 − μ)fT (z(t − d(t)))Q2f(z(t − d(t)))

+ fT (z(t))Q2f(z(t))
(15)

V̇4(zt) = żT (t)[d12Z1 + h1Z2 + d22Z3 + h2Z4]ż(t)

−
∫ t−d1(t)

t−d12

żT (s)(Z12)ż(s)ds −
∫ t

t−d1(t)

żT (s)Z1ż(s)ds

−
∫ t−d11

t−d1(t)

żT (s)Z2ż(s)ds −
∫ t−d2(t)

t−d22

żT (s)(Z34)ż(s)ds

−
∫ t

t−d2(t)

żT (s)Z3ż(s)ds −
∫ t−d21

t−d2(t)

żT (s)Z4ż(s)ds

Let
M1 = 1

d1(t)

∫ t

t−d1(t)
ż(s)ds,M2 = 1

d12−d1(t)

∫ t−d1(t)

t−d12
ż(s)ds,

M3 = 1
d1(t)−d11

∫ t−d11

t−d1(t)
ż(s)ds,M4 = 1

d2(t)

∫ t

t−d2(t)
ż(s)ds,

M5 = 1
d22−d2(t)

∫ t−d2(t)

t−d22
ż(s)ds,M6 = 1

d2(t)−d21

∫ t−d21

t−d2(t)
ż(s)

ds
Then

V̇4(zt) ≤ żT (t)[d12Z1 + h1Z2 + d22Z3 + h2Z4]ż(t)

− (d12 − d1(t))MT
2 Z12M2 − d1(t)MT

1 Z1M1

− (d1(t) − d11)MT
3 Z2M3 − (d22 − d2(t))MT

5 Z34M5

− d2(t)MT
4 Z3M4 − (d2(t) − d21)MT

6 Z4M6

(16)
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By the Lamma 2, we can obtain

V̇5(zt) ≤ d2
2ż

T (t)Z5ż(t) + (d2 − d1)2żT (t)Z6ż(t)

+
[

z(t)
z(t − d2)

]T [ −Z5 Z5

∗ −Z5

] [
z(t)

z(t − d2)

]

+
[

z(t − d1)
z(t − d2)

]T [ −Z6 Z6

∗ −Z6

] [
z(t − d1)
z(t − d2)

]
(17)

By the Lemma 1, we can obtain

V̇6(zt) ≤ d2
2z

T (t)Z7z(t) + (d2 − d1)2zT (t)Z8z(t)

−
∫ t

t−d2

zT (s)dsZ7

∫ t

t−d2

z(s)ds

−
∫ t−d1

t−d2

zT (s)dsZ8

∫ t−d1

t−d2

z(s)ds

(18)

V̇7(zt) ≤ d4
2

4
żT (t)Z9ż(t) +

(d2
2 − d2

1)
2

4
żT (t)Z10ż(t)

−
∫ 0

−d2

∫ t

t+θ

żT (s)dsdθZ9

∫ 0

−d2

∫ t

t+θ

ż(s)dsdθ

−
∫ −d1

−d2

∫ t

t+θ

żT (s)dsdθZ10

∫ −d1

−d2

∫ t

t+θ

ż(s)dsdθ

(19)

In addition, using the Leibniz-Newton formula, for any
appropriately dimensional matrices N ,L,R,S, T ,U ,V,W ,
the following equations are true:

2ζT (t)N [z(t) − z(t − d1(t)) − d1(t)M1] = 0 (20)

2ζT (t)L[z(t − d1(t)) − z(t − d12) − (d12 − d1(t))M2] = 0
(21)

2ζT (t)R[z(t − d11) − z(t − d1(t)) − (d1(t) − d11)M3] = 0
(22)

2ζT (t)S[z(t) − z(t − d2(t)) − d2(t)M4] = 0 (23)

2ζT (t)T [z(t − d2(t)) − z(t − d22) − (d22 − d2(t))M5] = 0
(24)

2ζT (t)U [z(t − d21) − z(t − d2(t)) − (d2(t) − d21)M6] = 0
(25)

2ζT (t)V[d2z(t) −
∫ t

t−d2

z(s)ds −
∫ 0

−d2

∫ t

t+θ

ż(s)dsdθ] = 0

(26)

2ζ(t)TW[h21z(t) −
∫ t−d1

t−d2

z(s)ds −
∫ −d1

−d2

∫ t

t+θ

ż(s)ds] = 0

(27)

2[z(t)T P1 + żT (t)P2][ − ż(t) − Az(t) + Bf(z(t))
+ Df(z(t − d(t)))] = 0

(28)

where ζT (t) = [zT (t) zT (t − d(t)) zT (t − d1) zT (t − d1(t))
zT (t−d2) zT (t−d2(t)) zT (t−d11) zT (t−d12) zT (t−d21)
zT (t − d22) żT (t) fT (z(t)) fT (z(t − d(t)))

∫ t

t−d2
zT (s)ds∫ t−d1

t−d2
zT (s)ds

∫ 0

−d2

∫ t

t+θ
żT (s)dsdθ

∫ −d1

−d2

∫ t

t+θ
żT (s)dsdθ]

Furthermore, there exsits positive diagonal matrices T1, T2,
such that the following inequalities hold based on (6)

0 ≤ −2fT (z(t))T1f(z(t)) + 2zT (t)T1Σf(z(t)) (29)

0 ≤ −2fT (z(t − d(t)))T2f(z(t − d(t)))

+2zT (t − d(t))T2Σf(z(t − d(t)))
(30)

Hence, according to (8) and (13)-(30), we can obtain

V̇ (zt) ≤ ξT (t)Π̃ξ(t) (31)

where ξT (t) = [ζT (t) MT
1 MT

2 MT
3 MT

4 MT
5 MT

6 ]

Π̃ =
[

Π̃1 Π̃2

∗ Π̃3

]

Π̃1 =

⎡
⎢⎢⎣

Π −d1(t)N −(d12 − d1(t))L −(d1(t) − d11)R
∗ −d1(t)Z1 0 0
∗ ∗ −(d12 − d1(t)Z12 0
∗ ∗ ∗ −(d1(t) − d11)Z2

⎤
⎥⎥⎦

Π̃2 =

⎡
⎢⎢⎣

−d2(t)S −(d22 − d2(t))T −(d2(t) − d21)U
0 0 0
0 0 0
0 0 0

⎤
⎥⎥⎦

Π̃3 =

⎡
⎣ −d2(t)Z3 0 0

∗ −(d22 − d2(t))Z34 0
∗ ∗ −(d2(t) − d21)Z4

⎤
⎦

where Z12 = Z1 + Z2, and Z34 = Z3 + Z4. If Π̃ < 0, then
there exists a scalar ε > 0, such that

V̇ (zt) ≤ −εξT (t)ξ(t) ≤ −εzT (t)z(t) (32)

According to the paper [26], we can know that when
d1(t) → d11, d1(t) → d12, d2(t) → d21 and d2(t) → d22,
the LMI Π̃ are equal to (9)-(12) which are define in Theorem
1, so we can conclude that the system described by (2), (3),
(5) and (6) is asymptotically stable if the LMIs (9)-(12) hold.

Remark 1: It is seen that d1(t), d2(t), d12 − d1(t) , d22 −
d2(t) and d1(t) − d11, d2(t) − d21 are not simple enlarged
as d12, d22, d12 − d11, d22 − d21, respectively. Instead, the
relationship that d1(t) + (d12 − d1(t)) = d12, d2(t) + (d22 −
d2(t)) = d22 and (d1(t) − d11) + (d12 − d1(t)) = d12 − d11,
(d2(t) − d21) + (d22 − d2(t)) = d22 − d21 are considered.

Remark 2: A novel term V2(zt) which noted in the paper
that is included in the Lyapunov functional V (zt), which plays
an important role in reducing conservativeness of our results.
In our paper, by taking the states

∫ t

t−d1
z(s)ds,

∫ t

t−d2
z(s)ds,∫ 0

−d2

∫ t

t+θ
ż(s)dsdθ and

∫ −d1

−d2

∫ t

t+θ
ż(s)dsdθ are augmented

variables, the atability in Theorem 1 utilizes more information
on state variables, which yield less conservation results.

Remark 3: To reduce the conservatism, the lemma 1
is used to deal with the derivative of the V̇7(zt), i.e.,
−d2

2
2

∫ 0

−d2

∫ t

t+θ
żT (s)Z9ż(s)dsdθ and −d2

2−d2
1

2

∫ −d1

−d2

∫ t

t+θ

żT (s)Z10ż(s)dsdθ are bounded with −(
∫ 0

−d2

∫ t

t+θ
żT (s)ds

dθ)T Z9

∫ 0

−d2

∫ t

t+θ
żT (s)dsdθ and −(

∫ −d1

−d2

∫ t

t+θ
żT (s)dsdθ)T

Z10

∫ −d1

−d2

∫ t

t+θ
żT (s)dsdθ and the − ∫ 0

−d2

∫ t

t+θ
żT (s)dsdθ,

− ∫ −d1

−d2

∫ t

t+θ
żT (s)dsdθ are not retained as augmented vari-

able, not replaced by d2z(t)−∫ t

t−d2
z(s)ds and (d2−d1)z(t)−∫ t−d1

t−d2
z(s)ds, which yield less conservative results.
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The case in which only two additive time-varying compo-
nents appear in the state has been considered, and the idea
in this paper can be easily extended to the following systems
with multiple additive delay components.

IV. EXAMPLES

In the section, a example is given to demonstrate the
benefits of the proposed method. Consider the system (5) with
parameters [26]:

A =
[

2 0
0 2

]
, B =

[
1 1
−1 −1

]
, D =

[
0.88 1
1 1

]

k1 = 0.4, k2 = 0.8
f1(s) = 0.2(|s + 1| − |s − 1|),f2(s) = 0.4(|s + 1| − |s − 1|).
when d11 = d21 = 0, d12 ≤ 0.8, d22 ≤ 2.2236, The
global asymptotic stability of (5) is listed in Table 1. The
corresponding upper bounds of d22 for various d12 derived
by Theorem 1 and methods in [6], [7], [25] and [26] are
listed in Table 1. It is chear that our results in this paper
are significant better than those in [6], [7], [25] and [26]. On
the other hand, the previous results cannot handle the case for
2.0164 ≤ d22 ≤ 2.2236. However, it is seen that we calculated
the value of d22 for d21 = d11 = 0.1 in this paper.

TABLE I
ALLOWABLE UPPER BOUND OF d22 FOR VARIOUS d12

d11 d21 Method d12 0.8 1.0 1.2
0 0 [25] d22 0.8831 0.6831 0.4831
0 0 [6] d22 0.8831 0.6832 0.4843
0 0 [7] d22 1.5666 1.3668 1.1664
0 0 [26] d22 2.0164 1.8203 1.6197
0 0 Theorem 1 d22 2.2236 2.0133 1.8894

0.1 0.1 Theorem 1 d22 2.2477 2.1886 2.0172

V. CONCLUTION

This paper has investigated the delay-dependent stability
problem for neural networks with two additive time-varying
delay components. Some less conservative stability criteria
have been obtained by considering the relationship between
the time-varying delay and its lower and upper bounds when
calculating the upper bound of the derivative of Lyapunov
functional. A numerical example has been given to demon-
strate the effectiveness of the presented criteria and their
improvement over the existing results.
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