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Abstract—In this paper a comprehensive model of a fossil fueled 

power plant (FFPP) is developed in order to evaluate the 
performance of a newly designed turbine follower controller. 
Considering the drawbacks of previous works, an overall model is 
developed to minimize the error between each subsystem model 
output and the experimental data obtained at the actual power plant. 
The developed model is organized in two main subsystems namely; 
Boiler and Turbine. Considering each FFPP subsystem 
characteristics, different modeling approaches are developed. For 
economizer, evaporator, superheater and reheater, first order models 
are determined based on principles of mass and energy conservation. 
Simulations verify the accuracy of the developed models. Due to the 
nonlinear characteristics of attemperator, a new model, based on a 
genetic-fuzzy systems utilizing Pittsburgh approach is developed 
showing a promising performance vis-à-vis those derived with other 
methods like ANFIS. The optimization constraints are handled 
utilizing penalty functions. The effect of increasing the number of 
rules and membership functions on the performance of the proposed 
model is also studied and evaluated. The turbine model is developed 
based on the equation of adiabatic expansion. Parameters of all 
evaluated models are tuned by means of evolutionary algorithms. 
Based on the developed model a fuzzy PI controller is developed. It 
is then successfully implemented in the turbine follower control 
strategy of the plant. In this control strategy instead of keeping 
control parameters constant, they are adjusted on-line with regard to 
the error and the error rate. It is shown that the response of the 
system improves significantly. It is also shown that fuel consumption 
decreases considerably. 
 

Keywords—Attemperator, Evolutionary algorithms, Fossil 
fuelled power plant (FFPP), Fuzzy set theory, Gain scheduling 

I. INTRODUCTION 
UE to the increasing demand for energy, a great number 
of - mostly fossil fueled - power plants have been built 

all over the world during the recent years. Besides these newly 
established power plants, there are lots of old power plants 
working in full-load conditions. Considering large amount of 
fuel consumption by these power plants, a slight increase in 
efficiency will decrease fuel consumption by great deal. 
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Consequently lots of current efforts have been devoted to the 
refinement of existing control philosophies. The operating 
characteristics of these plants have to be fully understood in 
order to be able to design an optimal control strategy to meet 
the specific operational requirements, and to ensure maximum 
safety and lifetime of such large capitalized investment. 
However, due to financial considerations, time constraints and 
the potential risks involved, it is not feasible or safe to do 
comprehensive tests at a real plant for new designs and 
investigations. Consequently, simulation has been increasingly 
used to analyze and justify the use of newly proposed 
controlling strategies. Many modeling efforts have been made 
recently, ranging from complicated codes based on finite 
elements to nonlinear models. Bell & Ǻström developed a 
nonlinear model for a drum type 160 MW power plant in the 
form of state space whose sates are drum steam pressure, 
electrical output, density of the fluid and its controlling inputs 
are fuel actuator position, control valve and feed water 
actuator position [1]. Based on the proposed model by Bell & 
Ǻström, habbi et al developed a TSK model by means of 
linearizing Ǻström’s model in different operating ranges, and 
putting each linearized state space model at a rule 
consequence to reach an accurate model in wide range of 
operation [2]. Maffezzoni et al. developed a model 
considering each subsystem having lumped characteristics to 
discuss various control objectives such as drum level control, 
temperature control and combustion control [3]. Rovnak and 
Corlis developed a thorough model for a once-through power 
plant based on data from [4] to simulate dynamic matrix based 
controller response [5]. The main objective of all previous 
works is not only to minimize the steady state error of 
proposed model, but also to mimic transient response of the 
real plant [6-8].  In what follows , a comprehensive model of a 
once-through FFPP  will be developed, trying to avoid the 
deficiency in [5] that attemperator is not modeled and its 
effect is not considered and the drawback of [3] that in spite 
of attemperator nonlinear characteristics a linear model has 
been established. In this paper a fuzzy structure is proposed to 
mimic the behavior of the attemperator. Genetic algorithm is 
presented as optimization method to find the optimum 
parameters of fuzzy structure. The objectives of the 
optimization are to minimize root mean square error and 
maximum error between the model output and real data. The 
model is developed based on the experimental data gathered 
from the second unit of a 440 MW power plant. Based on the 
developed model a new control strategy utilizing fuzzy 
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reasoning is proposed and its effect on the generated power 
and the fuel consumption is studied.  

II. MODEL 
A power generating plant consists of two main subsystems 
namely; boiler and turbine. Once-through boilers have various 
subsystems like economizer, evaporator and reheater. 
Different modeling approaches have been developed to model 
each subsystem. Due to almost linear characteristics of 
economizer, evaporator, superheater and reheater, linear 
thermodynamic laws are utilized to develop their models. But 
for attemperator which its task is to regulate outgoing steam 
temperature from superheater, this approach does not show 
good results; therefore, a genetic fuzzy system is used to 
develop its model. Turbine model has been developed based 
on the adiabatic expansion and accumulation laws. 

A. Boiler 
In case of preheater, economizer, evaporator, superheater and 
reheater, it is assumed that in every moment, in the process, 
the state of the control volume - the volume considered as the 
boundary of each subsystem - is consistent, in the other words, 
it is the same all over the control volume. It is possible that the 
state changes with time, but the change should be consistent 
[9]. Regarding this assumption, the laws of conservation of 
mass and energy could be stated as follows: 

ei ww =                                                                                  (1) 

∑∑ −+−= )( 1122 uwuwhwhwQ iiee                                (2) 
Where wi and we are entering and outgoing fluid flow 
respectively. The input Q is the transferred heat to the control 
volume, hi and he are entering and outgoing fluid enthalpy 
respectively. The quantities u1 and u2 are the fluid internal 
energy at first and second instant respectively. Doing some 
mathematical manipulation, a first order model which gives 
output temperature of each subsystem in terms of input 
temperature, water flow and fuel rate consumption is derived 

4

5

4

3
21 ,)(

1
1

kw
k

kw
kf

kkT
s

T ie +
=

+
+

++
⋅+

= τ
τ

&
               (3) 

Where w denotes the fluid flow through each subsystem, Ti 
and Te are entering and outgoing fluid temperature, f& is fuel 
consumption rate and k1, k2, k3, k4 and k5 are constants that are 
determined based on experimental data. Position of 
subsystems relative to burner, effective surface and thermal 
efficiency of each subsystem are important factors which have 
great effects on the magnitude of parameters for each 
subsystem.  There are various methods to tune constants and 
parameters. The objective of all of these methods is to 
minimize the error between model output and experimental 
data. Table 1 shows tuned parameters for boiler subsystems. 
 

 
 
After tuning aforementioned parameters for each subsystem of 
the boiler the validity of the model should be verified. To 
demonstrate the performance of the proposed first order 
model, figure 1 compares the output temperature of the 
economizer model and the experimental data.  

 
This figure indicates that a first order transfer function can 
model characteristics of boiler subsystems with a satisfactory 
accuracy. 

B. Turbine 
Writing the adiabatic expansion and accumulation equation 
for turbine, the output temperature of the turbine is determined 
by (4). [9, 11] 
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where Ti and Te are entering and outgoing steam temperature 
to and from turbine respectively. Pi is the entering steam to the 
turbine and k1, k2, k3 and k4 are the parameters which are 
determined based on the experimental data. Entering steam 
pressure to the turbine is [9, 11] 
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where w is the steam flow through governor valve and k5, k6, 
and k7 are the parameters which are determined based on the 

TABLE I 
BOILER SUBSYSTEMS PARAMETERS VALUE 

Subsystem k1 k2 k3 k4 k5 
Preheater 14.5 0.1 0 2*103 105 

Economizer 12 0.3 1.3*104 0 1.4*105 

Evaporator -10 2.5 0 2*103 105 

Superheater 12 -577 8 0 0 0.8*105 

Superheater 3-1 -369 6 0 0 105 

Superheater 3-2 -381 6 0 0 105 

Superheater 3-3 -369 6 0 0 105 

Superheater 3-4 -409 6.4 0 0 105 

Superheater 4-1 -407 6.4 0 0 0.8*105 

Superheater 4-2 -387 6.4 0 0 0.8*105 

Superheater 4-3 -297 6.4 0 0 0.8*105 

Superheater 4-4 -372 6 0 0 0.8*105 

Reheater A-1 49 2.1 0 2*103 1.2*105 

Reheater A-2 51.5 2 0 2*103 1.2*105 

Reheater A-3 49 2.1 0 2*103 1.2*105 

Reheater A-4 49 2.1 0 2*103 1.2*105 

Reheater B-1 81.5 0.4 0 2*103 0.8*105 

Reheater B-2 71.5 0.8 0 2*103 0.8*105 

Reheater B-3 71.5 0.8 0 2*103 0.8*105 

Reheater B-4 71.5 0.8 0 2*103 0.8*105 
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Fig. 1 Economizer output temperature
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experimental data. Generated power is determined by (6). 
)(8 ei TTwkGP −⋅⋅=                                                             (6) 

where GP denotes the generated power and k8 is determined 
by the experimental data. Table 2 shows the values of 
parameters. 

 

III. ATTEMPERATOR 
Attemperator is a subsystem which needs careful 
consideration in developing power plant simulators and 
overall models. Its task is to regulate the temperature of the 
entering gas to the high and intermediate pressure turbines. 
Superheated gas almost reaches to its highest temperature at 
this point, so temperature fluctuations at this stage can cause 
harmful damages and reduce the plant life. Consequently, 
maintaining fixed temperature at this point is vital. In order to 
develop a suitable controller, we should develop an accurate 
model first.   
Considering small volume for attemperator, steam storage in it 
is negligible. Consequently writing its steady-state mass and 
energy balance equations, the linear model derived in [3] for 
attemperator output temperature is  
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Where the superscript (-) denotes the steady state of 
linearization. ∆wds is the control variable which directly 
modulates temperature Te and ∆we and ∆Tv represent 
disturbances to the temperature. In order to derive a model for 
the available data, coefficients of (7) should be tuned. 
Equation (8) shows the linear model whose coefficients are 
tuned by GA. 

0.16w2.18 T0.93w0.0704T dsiee −⋅−⋅+⋅=                      (8) 
Figure 2 shows the model output and the experimental data for 
the linear thermodynamic model. 

 

Due to the static characteristic of the proposed model and 
neglecting vapor storage ability of the subsystem, ripples are 
present in the output temperature of the model. Besides, 
differences between model output and experimental data are 
due to the nonlinear characteristics of attemperator. In order to 
consider the nonlinearities, it is preferred to exploit methods 
of data mapping instead of thermodynamic linear modeling. It 
can be proved that fuzzy set theory could be utilized to map 
every set of input data to every set of output data to model 
nonlinear plants. Inputs of the nonlinear model of the 
attemperator are considered to be as follows 
Input temperature of attemperator at sampling time k (oC) 
Cooling water flow at sampling time k (t/h) 
Steam flow at sampling time k (t/h) 
Output steam temperature at sampling time k-1 (oC) 
And the output of the model is 
Output steam temperature at sampling time k (oC) 
The approach is first to decide the structure of the fuzzy 
model and then optimize its parameters utilizing evolutionary 
algorithms.  
 

A. Fuzzy Model Structure 
Based on several criteria like expert knowledge about the 
system and the availability and completeness of input/output 
data, artificial evolution can be applied in different stages of 
the fuzzy parameters search. Three fuzzy parameters are 
optimized by means of the evolutionary algorithms: 
operational parameters, connective parameters and structural 
parameters [10]. 
1. Operational Parameters: The evolutionary algorithm is used 
to tune the knowledge contained in the fuzzy system by 
finding membership-function values. 
2. Connective Parameters: The evolutionary algorithm is used 
to find the rule consequences in order to form the rule base. 
3. Structural Parameters: In this case, evolution has to deal 
with the simultaneous design of rules, and membership 
function parameters.  
In many cases interpretability is the matter of concern but here 
small number of rules and small number of variables are 
highly valued. Since there are twelve attemperators, twelve 
Fuzzy Inference Systems (FIS) should be run simultaneously 
to run the overall model. Consequently if the FIS has great 
number of rules and variables, the computational cost will be 
too high. Besides, instead of utilizing Mamdani inference 
system whose defuzzification process is time consuming, TSK 
inference system is used to minimize the computation and 
consequently the time of simulation. Based on these 
explanations, minimum number of fuzzy parameters and 
variables are considered and then the performance of the 
model will be evaluated; if not in the acceptable range, the 
number of fuzzy rules and membership functions will be 
increased till reaching an acceptable accuracy. Parameters of 
attemperator fuzzy modeling problem based on minimum 
number of fuzzy parameters and variables are defined bellow.  
1. Structural parameters: two membership functions (NE and 

TABLE II 
TURBINE MODEL PARAMETERS VALUE 

Parameter Value 

k1 0.6 
k2 3.5 
k3 2 
k4 -358 
k5 0.013 
k6 0.1 

k7 553 
k8 4.59*10-4 
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Fig. 2 Output temperature for linear thermodynamic 
model   (checking data) 
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PS) for each input; five output singleton membership function 
(NB and NE and ZR and PS and PB); two rules.  
2. Connective parameters: the antecedents and the consequent 
along with rules’ weight are searched by GA.  
3. Operational parameters: the input and output membership 
function values are to be found by GA. 

B. Optimization Problem Formulation 
Defining fuzzy parameters, the next step is to find the 
optimum values of parameters. The first important 
characteristic of this design optimization problem is that the 
objective function has a large number of local optimums. 
Moreover the problem involves discrete design variables and 
nonlinear constraints; therefore, gradient based optimization 
methods may not converge to a global solution and can run 
into trouble because of inaccurate gradient information used to 
determine search directions and convergence. GAs is gradient 
free, parallel optimization algorithms that use a performance 
criterion for evaluation and a population of possible solutions 
to search for a global optimum. These structured random 
search techniques are capable of handling complex and 
irregular complex spaces. Consequently, first GAs is used to 
determine the unknown parameters and then the results are 
compared with those derived by NNs.  
In order to use GAs algorithm, unknown parameters are coded 
in a string of variables called chromosome.  Some methods 
use a fixed-length genome encoding a fixed number of fuzzy 
rules along with the membership-function values. Other 
methods use variable-length genomes to allow evolution to 
discover the optimal size of the rule base. Tuning structural 
and connective parameters are both related to the tuning of the 
rule base. In evolutionary algorithms there are two major 
approaches to evolve such a rule system. 
Michigan Approach: Each individual represents a single rule. 
The fuzzy inference system is represented by the entire 
population. Since several rules participate in the inference 
process, the rules are in constant competition for the best 
action to be proposed and cooperate to form an efficient fuzzy 
system. The cooperative-competitive nature of this approach 
renders difficult the decision of which rules are ultimately 
responsible for a proper system behavior. It necessitates an 
effective credit-assignment policy to ascribe fitness values to 
individual rules [10]. 
Pittsburgh Approach: The evolutionary algorithm maintains a 
population of candidate fuzzy systems, each individual 
representing an entire fuzzy system. Selection and genetic 
operators are used to produce new generations of fuzzy 
systems. Since evaluation is applied to the entire system, the 
credit assignment problem is eschewed. This approach allows 
including additional optimization criteria in the fitness 
function, thus affording the implementation of multi-objective 
optimization. The main shortcoming of this approach is its 
computational cost, since a population of full-fledged fuzzy 
systems has to be evaluated each generation [10]. 
Since Pittsburgh approach is used, each chromosome defines a 
possible FIS. For instance a part of a chromosome which 

entails the information about one fuzzy rule is implied as 
follows 

WOIIII 4321  
where the values of I1, I2, I3, and I4 denote the corresponding 
membership functions of first, second, third and fourth inputs 
respectively. The value designated to O represents the 
corresponding membership function of the output. The 
corresponding value of W represents rule weight which is 
between zero and one. For example the following variables 
values 

152112  
represents the following rule with the rule weight of unity. 
 
If  I1 is PS and  I2 is NE and I3 is NE and I4 is PS  Then O is 
PB 
 
After defining a fixed lengths chromosome, it is the GA task 
to determine chromosome’s value to optimize the modeling 
objectives. The optimization is aimed at several simultaneous 
targets such as minimization of root mean square of error and 
maximum of error between model output and experimental 
data. Besides aforementioned targets, there are some 
constraints which must be considered. For example the 
maximum values which could be assigned to I1, I2, I3, and I4 
are the corresponding number of membership function for 
each input. Since GA is directly applicable only to the 
unconstrained optimization problem, it is proposed to handle 
constraints by using penalty functions which penalize 
infeasible solutions by reducing their fitness values [12, 13]. 
Using this approach, the performance constraints are handled 
by adding a penalty value into the violating solutions,   
considering the number of violated constraints and their 
distance from feasibility. In this case, the fitness function has 
the following form 

∑
=

⋅+=
NC

i iPii
PeF eO

1
),( )( α                                             (9) 

where O(e) is the objective function determined by (10), Pi is 
the penalty function related to the i-th constraint and αi  is a 
positive constant determine the degree to which the i-th 
constraint is penalized, normally called penalty factor. These 
factors are treated as constant here and their values are 
obtained by trial and error. The objective function for the 
evolutionary algorithm is 

)max(
11)( eeeO ⋅+= β                                                     (10) 

where e denotes the error between model output and the 
experimental data and β is a constant value which is chosen to 
be 10. The evolutionary algorithm stops when change of error 
in four consecutive generations is less than 0.001. 

C. Simulation Results 
3923 sec of input/output data have been used to train the FIS. 
To ease the calculation, the data have been normalized around 
zero. After 1265 iteration the evolutionary algorithm stopped 
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with regard to the stopping criterion. Decoding the best 
chromosome, the membership functions are as depicted in 
figure 3. 

 
As it is seen in figure 3, due to the shape of their membership 
functions I1, I2 and I4 has the most effect on the output. 
Further scrutiny reveals that at those working instants the 
variations of steam flow were subtle; therefore, its 
membership functions values are near to one in all points of 
the input range. Figure 4 shows the experimental data and 
model output for the training data. 

 
The performance of the model has been evaluated by 1400 s 
of checking data. Figure 5 shows the experimental data and 
model output for the checking data. 

 
Maximum error of the proposed model is 1.6 oC which is 
much greater than the sensors’ accuracy. To improve the 
performance of the model, keeping fuzzy structure fixed, 
number of input membership functions and rules are increased 
to three. Figure 6 shows the experimental data and model 
output for the training data of this FIS. 

 
Again the performance of the model has been evaluated by 
1400 s of checking data. Figure 7 shows the experimental data 
and model output for the checking data. 

 
Maximum error of the proposed model is 0.5 oC which is an 
outstanding result in comparison with the sensors accuracy. 
Consequently this will be a suitable model for the 
attemperator which has nonlinear characteristics. In order to 
depict the performance of the proposed model, a model has 
been developed and tuned by means of NN with 4 rules and 3 
MFs for each input. Figure 8 shows the experimental data and 
output of this model for the checking data. 
 

 
Table 3 summarizes accuracy of the fuzzy models optimized 
by GA and NN and also that derived by linear 
thermodynamics laws. 
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Fig. 3 Membership functions for 4 inputs of FIS 
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Fig. 4 Output temperature for the FIS with 2 rules and MFs for 
each input (training data) 
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Fig. 5 Output temperature for the FIS with 2 rules and MFs for 
each input (checking data) 
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Fig. 6 Output temperature for the FIS with 3 rules and MFs for 
each input (training data) 
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Fig. 7 Output temperature for the FIS with 3 rules and MFs for 
each input (checking data) 
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Fig. 8 FIS optimized by neural networks (checking data) 
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IV. OVERALL MODEL VALIDATION 
In order to validate the performance of the FFPP model, the 
generated power of the model is compared with that of the 
real plant. Figure 9 compares model generated power and the 
actual generated power of the plant. 

 

V. CONTROL STRATEGY 
In this section based on the developed overall model in the 
previous section, a new control strategy is developed and the 
performance of newly designed controller is evaluated. 

 
As it is shown in figure 10, combustion controller which is 
called master controller is in charge of determining fuel valve 
position which itself determines the air valve position and also 
determines the set point for feed water controller. 
Consequently it is the most important controller in the plant. 
Due to simple use and robust performance in wide range of 
operating conditions, linear controllers have been widely used 
in power plant industry for many years. Because of varying 
characteristics of power plants, development of model-based 
control strategies has not been successful in replacement of 
conventional PID controllers. For PID controllers all to do is 
to tune proportional gain, integral time constant and derivative 
time constant. However, in some cases this task is really time-

consuming. The approach which has been taken into 
consideration is to tune the parameters of the PID controller to 
obtain an optimized performance. PI controller is represented 
as (11). 

)()11()( sE
sT

ksU
i

p +=                                                       (11) 

Remark- Due to the presence of noise in the subsystem 
outputs, it is not applicable to implement derivative controller. 
Consequently, kd has been set to zero. 
 

A. Fuzzy Parameter Auto tuning  
The objective is to adjust kp and Ti with regard to error and 
error rate utilizing fuzzy reasoning. Tomizuka et al. developed 
a method for on-line adjustment of controller parameters by 
means of fuzzy reasoning [14]. In our research similar 
approach is utilized to tune the FFPP master controller 
parameters .In this method, variation range of controller 
parameters are adjusted by numerous simulations; besides its 
median may be determined through Ziegler-Nichols method 
which gives us an initial guess for the parameters [15]. Ziegler 
and Nichols recommended magnitudes are  

TTKk ip 85.0,45.0 ==                                                 (12) 
where K is the gain which puts the feedback loop on the verge 
of instability and T is the period of oscillation. However, since 
nonlinearity is present in the transfer function of the plant, 
mostly in attemperators and Turbines, Ziegler-Nichols method 
may not be used effectively. Therefore the recommended 
magnitudes by the manufacturer have been taken as the 
median. For convenience kp and Ti are normalized by the 
following equations 

)/()( min,max,min, ppppp kkkkk −−=′                                   (13) 

)/()( min,max,min, iiiii TTTTT −−=′                                        (14) 

The general form of fuzzy rules adjusting pk ′ and iT ′  are  

If e is Aj and e-dot is Bj Then pk ′  is Cj and iT ′  is Dj                   

j=1,2, …, n 
 
where Aj , Bj , Cj  and Dj  are fuzzy sets . Aj and Bj are 
triangular membership functions and Cj are Π-type 
membership functions and Dj are singleton membership 
fuctions. Figure 11 shows Aj and Bj membership function and 
figure 12 shows Cj membership functions. 

 

TABLE III 
COMPARISON BETWEEN THE PERFORMANCES OF THE MODELS 

Method No. of 
rules 

No. of 
MFs Max. error(oC) RMSE 

(oC) 
Linear Model - - 1.4 0.042 

ANFIS 4 3 1.5 0.030 
Proposed Model 3 3 0.5 0.011 
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Fig. 9 Generated power of the actual plant and the model 
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Fig. 11 Aj and Bj membership functions 

 
Fig. 10 Control diagram of fossil fuelled power plant with 
Benson type boiler 
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Fuzzy rules are determined based on the expert knowledge. 
According to our previous knowledge, an increase in 
proportional gain increases overshoot and decreases rise time. 
In other words, the response of the system becomes faster. 
Increasing integral time constant results in decreased rise time, 
consequently the response will be slower. Based on this 
information, rule base could be determined. For example 
when error is large and error rate is small, in order to have a 
faster response, proportional gain must have a large 
magnitude. The schematic diagram of the fuzzy controller is 
shown in figure 13. 
 

 
Desired power signal is subtracted from the generated power 
after going through a filter and makes the error signal. This is 
a first order filter with time constant equal to L. Figure 14 
shows schematic diagram of the filter with L=20. 

 
After defining rule base on the basis of the expert knowledge, 
it is time to reach the desired response by tuning membership 
functions of the premise and consequence of the variables and 
also changing rules in the rule base. After several times of 
iteration, a proper rule base has been reached as shown in 
table 4 and 5.  

 
 

 
 

B. Simulation Results 
Since the model is derived based on data in the range of 250 
to 400 MW, the performance of the new controller should be 
assessed in this region. 
To evaluate the performance of the controller, the step 
response of the system with the amplitude of 50 MW and 
initial value of 250 MW has been used. Figure 15 shows both 
the response of the proposed fuzzy controller and also the 
conventional controller.  

 
Under/overshoot and settling time are two of the most 
important objectives which are concerned to assess the 
performance of the new controller. Table 6 compares the 
characteristics of the proposed controller with the 
conventional one. 

 

TABLE VI 
MODEL PERFORMANCES 

Controller Type Settling 
time (s) 

Over/Undershoot 
(MW) 

Conventional PI 1035 5.5 
Proposed Controller 475 1.8 

 

TABLE V 
RULE BASE DETERMINIG iT ′  

    e&     
e  

NB NM NS ZR PS PM PB 

NB VS VS VS VS VS VS VS 
NM S S VS VS VS S S 
NS B S S VS S S B 
ZR VB B B B B B VB 
PS B S S VS S S B 
PM S S VS VS VS S S 
PB VS VS VS VS VS VS VS 

 

TABLE IV 

RULE BASE DETERMINIG pk ′  

   e&      
e  

NB NM NS ZR PS PM PB 

NB M B B B B B M 
NM S M B B B M S 
NS S S M B M S S 
ZR S S S M S S S 
PS S S M B M S S 
PM S M B B B M S 
PB M B B B B B M 
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Fig. 12 Cj membership functions 

 
Fig. 13 Schematic diagram of proposed controller 

 
 

Fig. 14 Filter block diagram 
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Another consequential objective of this research is to reduce 
the fuel consumption. By implementing the new controller, 
the overall fuel consumption for plant under control of 
proposed controller is considerably smaller than that of 
conventional PI controller. Figure 16 shows fuel consumption 
of the plant under control of these two controllers. 

 
During the rise time, fuel consumption of proposed controller 
is higher than that of the conventional controller and it is due 
to fast response of the system, but the overall fuel 
consumption has been decreased by 4.185 * 103 Nm3/hr of 
LNG. 
Figures 17 and 18 show pk ′  and iT ′  variations during the 

process. 
 
 
 
   

 

 
The effect of disturbances is considered as a Gaussian noise 
with mean value of zero and variance of 1 MW. The effect of 
adding Gaussian noise is clear in the output of fuzzy system 

which is depicted in figures 17 and 18. As it is clear there are 
lots of irregularities in the output of FIS. The irregularities in 
controller parameters have an extremely devastating effect on 
each subsystem which makes the proposed controller 
impractical. The generated power under the control of 
proposed controller with noisy parameters is shown in figure 
19.

 
Due to the presence of noise in the controller parameters, 
amplitude of disturbances reaches to 3 MW. To eliminate 
effects of noisy parameters, output of FIS must go through a 
first order filter. Smoothed outputs of FIS are depicted in 
figures 20 and 21. 
  
 
 

 
The performance of newly designed controller is evaluated 
with step desired power. Performance of model must also be 
evaluated in the case that load demand is determined by 
dispatching system. Figure 22 compares the model output with 
the actual generated power obtained from experimental data. 
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The root mean square error for the actual generated power is 
0.195 MW and for the plant under the proposed control 
system is 0.096 MW.  

VI. CONCLUSION 
In this paper a comprehensive model of fossil fuelled power 

plant for control strategy studies has been developed. 
Considering the deficiencies in the previous works, a new 
model for attemperator has been developed. GA is used to 
optimize fuzzy structure parameters, while the constraints are 
handled by penalty functions. The proposed model presents an 
outstanding accuracy in comparison with the existing models. 
Besides, due to the dynamic characteristics of the new model, 
ripples in the simulated output temperature vanish.  A new 
control scheme is also developed in which controller 
parameters are not constant; instead, they are tuned on-line 
with regard to error and error rate. Utilizing this control 
scheme, the overshoot and settling time of the generated 
power decreases significantly. Besides, the fuel consumption 
decreased considerably. Similar controlling scheme could be 
implemented in other power plants where the control 
parameters are fixed, regardless of being hardware type or 
software ones.  

REFERENCES   
[1] R. D. Bell, and .K. J.  Ǻström, “Dynamic models for boiler–turbine-

alternator units: Data logs and parameter estimation for a 160 MW unit.” 
Report TFRT-3192, Lund Institute of Technology, Sweden, 1987 

[2] H. Habbi, M. Zelmat, and B. Ould Bouamama, , “A dynamic fuzzy 
model for a drum–boiler–turbine system” , Automatica 39 ,1213 – 1219 , 
2003 

[3] H.G. Kwatny, and C. Maffezzoni, “Control of Electrical Power”, 
Control system applications, 281-311, CRC press, 2000 

[4] R. Woo and G. R. Anderson, “Dynamic Response of a super critical 
Power plant”, Instrumentation technology, 1969 

[5] J.A. Rovnak, and R. Corlis, “Dynamic matrix based control of fossil 
power plants”, IEEE Transaction on energy conversion, Vol. 6, No. 2, 
1991 

[6] F.P. De Mello, “Boiler Models For System Dynamic Performance 
Studies” IEEE Transaction on Power Systems, Vol.6, No. 1, February 
1991 

[7] C.K Weng,, A. Ray, and X. Dai, “Modeling of Power Plant Dynamics 
and Uncertainties for Robust Control Synthesis”, Application of 
Mathematical Modeling, Vol. 20, Elsevier Science Inc, July 1996 

[8] L. Changliang, L. Jizhen, and N. Yuguang, and Weiping, L.“Nonlinear 
Boiler Model of 300MW Power Unit for System Dynamic Performance 
Studies”, IEEE, 0-7803-7090-2/01, 2001 

[9] Y.A. Cengel, and M.A. Boles, ”Thermodynamics-an engineering 
approach”, McGraw-Hill, 4th edition 

[10] C.A. Peña-Reyes, and M. Sipper, “Fuzzy CoCo: A Cooperative-
Coevolutionary Approach to Fuzzy Modeling”, IEEE Transactions on 
fuzzy systems, Vol. 9, No. 5, 2001 

[11] D. Živkoviæ, “Nonlinear Model of the Condensing Steam Turbine”, 
FACTA Universities Series, Mechanical Engineering, Vol.1, No.7, 
2000, pp. 871 – 878 

[12] Z. Michalewicz, “Genetic Algorithms + Data Structures = Evolution 
Programs”, third ed. Heidelberg: Springer-Verlag, 1996 

[13] J. Richardson, M. Palmer, G. Liepins, and M. Hilliard, 1989, “Some 
Guidelines for Genetic Algorithms with Penalty Functions”, Proc. of the 
Third International Conference on Genetic Algorithms 

[14] Z. Zhao, M. Tomizuka, and S. Isaka “Fuzzy gain scheduling of PID 
controllers”, IEEE Transaction on system man and cybernetics. Vol. 23, 
No. 5, 1993 

[15] JG. Zeigler, NB. Nichols, “Optimum settings for automatic controllers”, 
Trans ASME, 1942, 64:11 

1000 2000 3000 4000 5000 6000
200

250

300

350

400

450

Time(s)

Po
w

er
(M

W
)

P1: Smoothed Desired Power
P2: Proposed Controller
P3: Experimental DataP1

P2

P3


