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Abstract—As data to be stored in storage subsystems
tremendously increases, data protection techniques have become more
important than ever, to provide data availability and reliability. In this
paper, we present the file system-based data protection (WOWSnap)
that has been implemented using WORM (Write-Once-Read-Many)
scheme. In the WOWSnap, once WORM files have been created, only
the privileged read requests to them are allowed to protect data against
any intentional/accidental intrusions. Furthermore, all WORM files
are related to their protection cycle that is a time period during which
WORM files should securely be protected. Once their protection cycle
is expired, the WORM files are automatically moved to the
general-purpose data section without any user interference. This
prevents the WORM data section from being consumed by
unnecessary files. We evaluated the performance of WOWSnap on
Linux cluster.
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I. INTRODUCTION

S data to be stored in storage subsystems tremendously
increases, data protection techniques have become more

important than ever, to provide data availability and reliability.
A simple way to protect data securely is to store them in a
read-only CD (Compact Disk) or OD (Optical Disk). However,
those storage media can be lost and even be broken, thus storing
sensitive data in such devices cannot guarantee data integrity
and availability. Another way is to have a separate data storage
device where only those sensitive data are stored and then to
permit only privileged read requests. Unfortunately, this method
causes high price to provide such storage devices.

To overcome these problems, some file systems use WORM
[1-3,15] to integrate data protection with file operations. In the
WORM method, once files have been created, those are used for
read requests, rejecting the requests for data modification or
deletion. However, the existing WORM method suffers from
three major drawbacks.

The first problem is that it requires to maintain a separate disk
device to enforce data security, resulting in the burden of buying
additional disk devices. The second problem is that, once they
have been created, the WORM files are considered to be
protected permanently. However, a large amount of WORM
files have their own WORM protection cycle that is a time
period during which the WORM file should securely be
protected. When the protection cycle is expired, the WORM
files should be treated as an ordinary file, by releasing the
associated WORM characteristics.
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In this paper, we present file system-based data protection
mechanism, which is called WOWSnap (WORM-based
Snapshot). One of our objectives in developing the WOWSnap
is to provide a secure access process for WORM files.
Moreover, we attempt to reduce the cost of data protection, by
not using complicated cryptographic operations. Our second
objective is to optimize the disk space by storing both the
WORM files and the general-purpose files together, even
though in the different disk section. In the WOWSnap, the disk
partition to be allocated for file system is divided into two
sections: one for storing WORM files, and the other for storing
general-purpose files. The files to be allocated in the WORM
disk section are written only once at the file creation time. Once
the WORM files have been created, only the privileged read
requests to them are allowed, to protect data against any
malicious intrusions.

All WORM files in WOWSnap are associated with their
protection cycle. The protection cycle would be a finite value if
the associated WORM file needs to be protected for a certain
time. To optimize the disk space for the WORM files, the
WORM daemon periodically checks files to see if there may
exist the WORM files whose protection cycle has already been
expired. If so, the daemon moves those files to the
general-purpose disk partition, to reuse the occupied WORM
disk space.

In the remaining part of this paper, we describe our snapshot
mechanism integrated with the WOWSnap. There are several
file systems supporting journaling [12-14] or snapshot [10,11],
to enhance reliability and availability. For example, WAFL[9]
provides a read-only snapshot to protect data blocks. In WAFL,
all data blocks are organized in a tree, and snapshot is
performed by duplicating the root node. Since WAFL snapshot
was implemented based on cow(copy-on-write), update
operations cause the modified block and its parents to be copied
to a backup area. Another example is Ext3cow[6,7,8] that has
been implemented on top of Ext3, to support file system
snapshot and individual file versioning by using time-shifting
interface. Like WAFL, the data modification in Ext3cow is
performed based on cow, allocating new data blocks to hold the
modified data while preserving a copy of old block.

Unlike WAFL or Ext3cow, the snapshot of WOWSnap has
been built based on row(redirect-on-write) because row-based
snapshot does not incur the copy cost to preserve the old data.
Besides, by pre-allocating inode and data blocks for the
following snapshot image, we attempted to minimize I/O
processing overhead to take a picture. Furthermore, by using the
snapshot spatial algorithm implemented in the WOWSnap, we
tried to maintain the disk space allocated for snapshot images as
small as possible.
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The rest of this paper is organized as follows: Section II and
III describe the implementation detail of the WORM and
snapshot structures of the WOWSnap, respectively. In Section
IV, the performance evaluations obtained on the Linux cluster
are shown. We conclude in Section V.

II.WORM STRUCTURE

A. Overview

Fig. 1 illustrates the WORM structure of the WOWSnap. The
disk space where the WOWSnap is mounted is divided into two
sections: general-purpose disk section and WORM disk section.
User could either install both sections on the different partition
of the same disk, or could use different disks for two sections.
As a future work, we plan to use non-volatile memory, such as
SSD (Solid-State Disk), for the WORM section because we
expect that the high-speed read performance of SSD may
contribute to provide a fast service for accessing the WORM
files. In the WOWSnap, besides creating WORM files to
protect data, users can also protect general files by converting
them to WORM data. Once they are converted to WORM, these
files are hidden to unauthorized users by make them invisible.
This is performed by skipping the WORM directory entry
traversal when authorized users execute the pathname lookup
operations. The WORM file creation is performed by calling
worm_commit. This system call is also used to convert general
directories or files to WORMs. In case of converting a directory
to WORM, all the directories and files in the sub-level are also
converted to WORMs and are moved to the WORM disk
section. In such a case, the corresponding data blocks are
eliminated from the general disk section, but the hierarchical
pathname in the general disk section is stored in database. This
information is used to restore the data to the general disk section,
in case of expiration of the WORM protection cycle.

Fig. 1 WORM structure

Fig. 1 shows the directory table, file table, inode table and
WORM table to maintain the hierarchy. All the attributes

related to WORM are inserted in the WORM table. The WORM
protection cycle is a protection time period of the WORM file.
If the WORM file is supposed to be protected permanently, then
the protection cycle is set to zero. The option flag is used to
represent how to handle the associated WORM file, in case of
the expiration of its protection cycle. If the value is set to 1, then
the associated WORM file becomes a general file, while being
moved to the general disk section by using the hierarchical
pathname in database. Otherwise, the file will either be
permanently deleted with the value of 2, or will be backed up
with the value of 3. When a directory located at the middle level
is converted to WORM, this directory is re-installed in the root
directory of the WORM section because its ancestors should not
be moved to the WORM section.

On the expiration of the protection cycle, a WORM file or
directory is moved to the general disk section, to save the costly
WORM disk space. In such a case, all the files and directories in
the sub-level are also moved to the general disk section. Also,
by using the hierarchical pathname stored in database, its
original hierarchy in the general section will be restored. If a
WORM file does not have the original hierarchical pathname in
the general section because it has been created as WORM, then
it is moved to the root directory of the general disk section.

B. Protection Cycle

Fig. 2 WORM protection cycle

The WORM protection cycle is given as input when
performing worm_commit. The cycle value of a directory
affects the cycle value of its successors. Each file in a directory
can be given the different cycle value. When a certain cycle
value is given to its parent, the WOWSnap first compares the
new cycle value with all cycle values of its child files. The
earliest starting date and the latest ending date among the parent
and its descendents are chosen and assigned to them as the new
protection cycle. By doing this way, a directory and its
descendents in the hierarchy can have the same WORM
characteristics, and thus the cost of managing the WORM
structure can significantly be minimized.
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Fig. 2 illustrates an example of propagating the protection
cycle. When the first worm_commit is performed with the cycle
value, the files D, E and F take the arguments and the WORM
attributes are inserted into database. With the second
worm_commit call, the files G and H also take the input
arguments without any modification. However, when the third
worm_commit is called to convert B and C to WORMs, with the
cycle value of 20090101 and 20131231, the WOWSnap
chooses the earliest starting date and the latest ending date
among the input and the cycle value of descendents. Then the
chosen value, 20080720 and 20131231, are assigned as the new
protection cycle and the WORM attributes in database are
modified to reflect this change.

III. SNAPSHOT STRUCTURE

A. Overview

Fig. 3 An overview of snapshot structure

We implemented the snapshot structure in the WOWSnap, to
protect files against data crash. Since the WOWSnap divides the
disk space into two sections based on the protection level, the
snapshot policy for two sections can be setup differently. For
example, if one of user’s goals is to save the WORM section,
then user can limit the number of snapshot images for each
WORM file to be one, while the number of snapshots for the
general files to be a larger value than one.

To group snapshot images for an active file, the WOWSnap
uses two pointers, prev_core_snap and next_core_snap. By
using these two pointers, the snapshot daemon can traverse the
history link to verify snapshot integrity. The file linked by the
prev_core_snap is a preceding snapshot image, and the file
linked with the next_core_snap is either a following snapshot
image or an active file.

When the inode of an active file is created, an additional
inode is also pre-allocated and is linked with the active inode
using prev_snap_ino. If the next snapshot is taken, then there is
no need to allocate and to replicate the inode of the active file

because duplicating the inode attributes has already been
performed when the extra inode has been pre-allocated. The
only thing to be performed at that moment is to adjust two
pointers, prev_core_snap and next_core_snap, and to setup the
bitmap value of the extent to indicate the sharing of data blocks.
In the WOWSnap, the snapshot daemon periodically issues a
snapshot call to check snapshot integrity.

The WOWSnap assigns a bitmap value to each extent
structure to indicate the sharing of data blocks, as shown in Fig.
3(a). If the bitmap value is zero, it then means that the data
blocks of the extent cannot be modified because those blocks
must be shared with other files. Otherwise, the blocks of the
extent can be modified. Fig. 3(a) shows an example of the
snapshot structure. The file is composed of five data blocks, B0
through B4, and its extent includes three components: the
starting block number, block count, and bitmap value. The
initial value of the bitmap value is one, meaning that no other
file currently shares the data blocks belonging to this file.

Fig. 3(b) illustrates the steps involved in taking the first
snapshot. The file located at the left side denotes an active file
and the file at the right side denotes its point-in-time snapshot
image. As can be seen in the figure, the bitmap value of the
active file is changed from one to zero because the data blocks
of the active file are shared with the first snapshot.

Changing the bitmap value has significant performance
impact on data modification and deletion, because by checking
the current bitmap value, the WOWSnap can easily determine
whether the data blocks can be updated, or not. If the
WOWSnap finds out that the data blocks cannot be modified
due to the sharing among multiple files, then it allocates new
data blocks to receive the up-to-date value. Also, the extent
associated with the data blocks is split to separate the new
blocks. Fig. 3(c) shows an example where update process is
occurred after the first snapshot has been taken.

In Fig. 3(c), the update requires two blocks, B3 and B4, to be
modified. Since these two blocks are shared between the active
file and the first snapshot, two new blocks, B5 and B6, are
allocated and the update process is performed on these two
blocks. Also, to reflect the new block allocation for update, an
additional extent is created and its bitmap value is initially set to
one, because no other file currently shares these new blocks
with the active file.

B. Snapshot Spatial Algorithm
In the WOWSnap, we provide a snapshot spatial algorithm

for consistently maintaining the snapshot history. The spatial
algorithm is periodically performed by the snapshot daemon
that is responsible for deleting snapshot images that have been
corrupted or that have been backup-ed to other disk. Fig. 4(a)
and (b) show the steps involved in the snapshot spatial
algorithm. Fig. 4(a) shows a snapshot overview before
eliminating snapshot 2.

In the figure, the first snapshot image, snapshot 1, includes an
extent indicating that four data blocks, B0 to B3, are allocated to
this image. The second snapshot image, snapshot 2, takes over
four blocks from snapshot 1, while changing the bitmap value
from one to zero. It is noted that when snapshot 2 was the active
file, there existed a write operation requesting three new data
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blocks, B4 to B6, to be allocated. At that moment, the
WOWSnap allocated a new extent for these blocks and assigned
the bitmap value to one because no block sharing happened yet.

Fig. 4 Snapshot spatial algorithm

Suppose that the snapshot daemon finds out that the second
snapshot image, snapshot 2, has been corrupted. The
elimination process of the spatial algorithm requires the daemon
to traverse prev_core_snap and next_core_snap, to determine if
the data blocks belonging to snapshot 2 can be de-allocated.
With the bitmap value of zero, the blocks belonging to this
extent cannot be modified since these blocks are shared with
other files linked by the prev_core_snap. On the other hand,
with the bitmap value of one, the blocks belonging to this extent
are not shared with the preceding snapshots. However, these
data blocks might be shared with other following snapshots
linked to the next_core_snap. Therefore, the snapshot images
linked to the next_core_snap should be checked before
de-allocating the data blocks belonging to snapshot 2.

In Fig. 4(b), snapshot 2 has two extents to manage the
associated data blocks. Since the bitmap value of the first extent
is zero, the corresponding data blocks cannot be de-allocated,
thus the spatial algorithm simply unlinks the pointers from those
data blocks. The bitmap value of the second extent is one,
meaning that the preceding snapshot connected by the
prev_core_snap has not shared the data blocks with snapshot 2.
However, since these blocks might be shared with the active file,
before de-allocating the blocks, the spatial algorithm should
check the bitmap value of the active file.

Because the active file includes the data blocks being shared
with snapshot 2, the spatial algorithm splits the extent into two
parts, to separate those blocks. The bitmap value of the first split
extent is set to zero because the associated data blocks, B0 to B3,
are shared with the first snapshot, snapshot 1. On the other hand,
the bitmap value of the second split extent is set to one, because,
after eliminating snapshot 2, no other file shares the associated
data blocks, B4 to B6, with the active file.

IV. PERFORMANCE EVALUATION

A. WORM Structure

Fig. 5 WORM overhead

Fig. 6 Create performance as a function of WORM files

Fig. 7 Write performance as a function of WORM files

Fig. 8 Read performances as a function of WORM files

For the WORM evaluation, we equally divided HDD into two
partitions and used one of them as the WORM partition. We
used SQLite to store the WORM attributes. Fig. 5 shows the
WORM overhead for calling worm_commit and inserting
WORM attributes to database(sqlite), while changing the
number of WORM files from 25,000 to 100,000. As can be seen,
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the overhead for calling worm_commit is very small, compared
to the overhead for inserting the WORM attributes. However,
most of execution time is consumed by IO. This fact is clear in
Fig. 6 to 8. Fig. 6 to 8 show I/O performance which obtained
using 100,000 files, with a size range of 1Kbytes to 64Kbytes.
Also, we changed the number of WORM files among them to be
25%, 50%, 75%, and 100% of total number of files.

In case of performing create operations, as shown in Fig. 6,
increasing the number of WORM files from 0 to 100,000
slightly affects I/O performance, because creating WORM files
causes the access to database to insert the associated WORM
attributes. However, this WORM overhead does not
significantly lower the create bandwidth. On the other hand, in
Fig. 7, as the percentage of WORM files increases, we can see
that the write bandwidth becomes large, because once the
WORM files have been created, they are not allowed to be
modified. Therefore, with 25% of WORM frequency, only
75,000 of general files are written. The extreme case is with
100% of WORM frequency in which no write operation is
executed.

In case of read operations, as can be shown in Fig. 8,
changing the number of WORM files has little effect on I/O
performance. This is because the WORM attributes are rarely
used in the read operation, except for checking the authorization
to the WORM file.

B. Snapshot Structure

Fig. 9 Write performance compared to XFS without snapshot

Fig. 10 Read performances compared to XFS without snapshot

Fig. 9 to 10 show the WOWSnap I/O performance with
snapshot capability. Also, we compared the performance with
XFS[4,5] that does not have snapshot, to find out the effect of
snapshot overhead. It is noted that there exists a tradeoff
between performance and reliability in using snapshot. We used
IOzone benchmark to measure I/O performance.

Fig. 9 shows the performance of the WOWSnap write
operation, while varying the record unit for each file size. Also,
we configured the WOWSnap to take a snapshot every one
second. In this case, changing the record size for each file size
does not lower the write performance as much as we expected.
This is because, at each snapshot checkpoint, only the file
metadata would be duplicated. Fig. 9 also shows the effect of
snapshot overhead in the WOWSnap write operations, by
comparing I/O performance to that of XFS without snapshot. In
case of write operations, the impact of the overhead is obvious,
especially in file sizes smaller than 256Mbytes. With small
file-sizes, the larger number of snapshot-related metadata
operations, such as pre-allocating snapshot inode, would occur
than with large file-sizes, thus causing the performance
decrement.

Fig. 10 shows the performance of the WOWSnap read
operations, with the impact of memory cache. Unlike in write
operations, we can see that using large record size in read
operations generate better I/O performance, due to the data
coalesce. Also, memory shortage might cause the sharp
performance downgrade, with file sizes larger than 512Mbytes.
When comparing to XFS read performance, we could see little
impact of snapshot overhead.

Fig. 11 Rewrite performance compared to XFS without snapshot

Fig. 11 shows the performance of the WOWSnap re-write
operations combined with snapshot. In this measurement, after
creating each file, the data of record size are re-written in the file.
Since the metadata operations for writing files, such as bitmap
and block allocation, have been performed before the
measurement, the performance of re-write operations is higher
than that of write operations in most cases. Also, based on the
Figure, we can see that varying the record size does not much
affect the performance.

In order to see the snapshot overhead in modifying data
between checkpoints, we compared the WOWSnap re-write
performance to XFS. In re-write operations, snapshot incurs the
related metadata operations, such as inode pre-allocation,
snapshot-associated pointer setup, and new block allocation if
data modification occurs within the checkpoint. As shown in
write operations, with the small file-size, the overhead to create
snapshots overwhelms the entire re-write performance because
of the large number of snapshots being taken. However, with the
file size larger than 128Mbytes, we can see that such a
snapshot-related overhead becomes small, thereby the
WOWSnap produces better performance than XFS. In this case,
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even if new block allocations are needed due to data
modification, it does not lower the WOWSnap performance.

V.CONCLUSION

We presented the WORM and snapshot structures of the
WOWSnap. These structures have been implemented to
enhance data availability and reliability. Unlike other WORM
structures, the WOWSnap is capable of protecting WORM files
for a finite time period, by assigning the protection cycle to each
file. Instead of unnecessarily taking space of the costly WORM
disk section, as soon as the protection cycle is expired, the
associated WORM file can automatically be moved to general
disk section without user interference. We also described the
snapshot structure of the WOWSnap that has been implemented
based on file system-based method and row approach. The
snapshot performance results show that the impact of the
snapshot overhead is obvious with the small file-size because
the larger number of snapshot-related metadata operations
would occur than with large file-sizes. Also, the WORM
performance results show that the overhead to issue the
necessary system call and to insert WORM attributes to
database is very small. The dominated performance factor is I/O
performance of the underlying file system.
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