
International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:2, 2008

326

Abstract—Genetic Algorithm has been used to solve wide range

of optimization problems. Some researches conduct on applying
Genetic Algorithm to analog circuit design automation. These
researches show a better performance due to the nature of Genetic
Algorithm. In this paper a modified Genetic Algorithm is applied for
analog circuit design automation. The modifications are made to the
topology of the circuit. These modifications will lead to a more
computationally efficient algorithm.

Keywords—Genetic Algorithm, Analog circuits, Design.

I. INTRODUCTION
NALOG circuits form an important part of mixed-signal
integrated circuit and remain very important in high-

speed applications such as communications. Analog circuit
synthesis is very challenging, and has traditionally been
performed by specialists who have a wealth of experience and
intuition. It takes a lot more time than the easier chunks of
circuit. The analog circuit building involves selecting a
candidate topology meeting the requirements. This is due to
the need to manually iterate circuit parameters (e.g.
component values and transistor sizes) to meet specifications.
There has been development in automating analog circuit
design using optimization algorithms. A particular
optimization algorithm that has been applied to the task of
automating analog circuit synthesis is the Genetic
Algorithm.

This problem can be classified as an optimization problem
consisting of many parameters. Efforts with gradient search
methods result in the need of initial guesses and may get stuck
in local maxima. This paper asserts genetic algorithms (GA’s)
[1, 2, 3, 4] may be a better alternative for global optimization
tools for automated design of analog circuits.

The goal of this paper is to use Genetic Algorithm to design
analog circuits. The current algorithm is modified with respect
to population size and the generation of valid circuits only.
Current literature [5, 6, 7, 8] in the analog circuit design field
looks only at linear circuits. The methods may generate
invalid topologies and hence increase the computations. Also,
higher population sizes are required. Koza [9] has performed
non-linear circuit designs using genetic programming but
emphasized topology generation. In this paper, simple
modifications are introduced which reduce the computations

Amod P. Vaze is a final year student of Bachelors degree Program in

Electronics Engineering at the K. J. Somaiya College of Engineering, Vidya
Vihar (Mumbai University), Mumbai 400077 India (phone: 91-9869111061;
e-mail: amvaz2006@ yahoo.com).

required. Hence, we acquire a circuit in lesser generations.
The rest of the paper is organized as follows: in the next

section we will review the related work on Genetic Algorithm
and its application in analog circuit design automation. In the
third section we state our algorithm for using Genetic
Algorithm in circuit design and in the fourth section we will
evaluate our method and some remarks about our method will
be explored in last section.

II. RELATED WORK

A. Genetic Algorithm
Genetic algorithms are heuristic optimization methods

whose mechanisms are analogous to biological evolution [10].
A good general introduction to genetic algorithms is given in
[3]. In Genetic Algorithm, the solutions are called
chromosomes. The initial population is generated randomly.
Selection and variation function are executed in a loop until
some termination criterion is reached. Each run of the loop is
called a generation. The selection operator is intended to
improve the average fitness of the population by giving
individuals of higher fitness a higher probability to be copied
into the next generation. The quality of an individual is
measured by a fitness function.

B. Usage of Genetic Algorithm in Analog Circuit Design
Automation

As already stated, Genetic Algorithms have been used
extensively in analog circuit design automation [5,6,7,8]. The
basic principle of their application to analog circuit design
involves representing the circuits as chromosomes and with
component parameters as genes. The topology is created with
the help of a skeleton topology kept ready on which the other
components incorporate themselves. Koza [9] uses Genetic
Programming to incorporate topology generating and
modifying functions. The skeleton is kept very primitive here
and more emphasis on self-generation is given importance.
The invalid circuits generated are checked for and pruned.
Fitness functions involve the usage of simple weighing
functions, the weights deciding on which parameter is to be
improved and which one to be suppressed. Selection and
variation functions are used to generate better circuits and
after the required fitness levels are achieved, the process is
halted.

Analog Circuit Design using Genetic Algorithm:
Modified

Amod P. Vaze

A

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:2, 2008

327

III. GENETIC ALGORITHM APPLICATION IN ANALOG CIRCUIT
DESIGN

A. Problem Description
Analog Circuit design using Genetic Algorithms involves

representing the circuit completely. An analog circuit can be
completely defined with the components and their values
stated. Also, the nodes between which they are connected is
essential. None of the circuit component should be floating
else it will result in invalid circuit leading to a waste of that
chromosome. So, the problem involves encoding the above
said parameters into the chromosome. Each gene represents a
component of circuit or any parameter. This chromosome,
hence, represents our possible solution to the stated
requirements. The fitness value of the circuit has to be
measured. The fitness evaluation requires the usage of
simulation software which can give us the required values for
measuring its fitness.

B. Modification to the Topology
A modification to the existing topology has been made

which guarantees valid circuits. This modification involves the
connection of all nodes except ground i.e. first node connected
to second node and second to third and so on. These nodes are
connected with a resistor of very large value. The input node
is connected to the source with source resistance and output is
taken across a load resistor. This takes care of connection with
the ground. Hence, now there are no floating nodes in the
circuit. This leads to 100% efficiency of the population and
also we eliminate the need to check for any invalid circuit.
Thus, we speed up the algorithm i.e. the circuit with required
fitness is built in lesser number of generations. Lesser number
of generations result because the population does not consist
of invalid circuits.

C. Fitness Function
Fitness is a single numerical quantity describing how well

an individual meets predefined design objectives and
constraints. Fitness can be computed based on the outputs of
multiple analyses using a weighted sum. The definition of
good fitness functions is highly problem dependent. The
SPICE program is used to evaluate the fitness of each
chromosome. The function is defined such that the superior
individuals have the lowest fitness values. Using these
definitions, the raw and standard fitness defined by Koza [4]
are identical.

A raw fitness metric for minimizing an output variable ci

computed at N points can be defined as

||
1
∑
=

=
N

i
icf

Other metrics can also be defined to maximize an output

variable or to measure of the quality of a match of the
calculated responses to a specified response on either a
relative or absolute basis. Constraints are implemented by
imposing a large penalty whenever the constraint is violated.

Metrics for various functions can be combined to yield a
combined fitness for different output variables, analysis types
or circuit configurations. The total raw fitness F is then
calculated using

m

M

i
m fWF ∑

=

=
1

where Wm is the weighting applied to each of the basic fitness
metrics. This total fitness is used for getting the share of a
particular chromosome in the total fitness. This helps in the
selection of good individuals.

D. Genetic Operators
The genetic algorithm uses crossover and mutation

operators to generate the offspring of the existing population.
Before genetic operators are applied, parents have been
selected for evolution to the next generation. We use the
crossover and mutation operators and produce next generation.
The probability of deploying crossover and mutation operators
can be changed by user.

E. Halt Condition
Genetic Algorithm needs an Halt Condition to end the

generation process. If we have no sufficient improvement in
two or more consecutive generations; we can stop the Genetic
Algorithm process. In other cases, we can use time limitation
as a criterion for ending the process. We can also keep a
desired fitness value within some percentage of accuracy as
our Halt Condition.

F. Algorithm
Having looked at the above sections, we can now

implement our algorithm which is as follows:

1. [Start] Generate a random population of n
chromosomes (the format will be as stated in
section A)

2. [Fitness] Evaluate the fitness f(i) of each

chromosome i in the population with the fitness
function (section C).

3. [New population] Create a new population by
repeating the steps 4, 5 and 6 until the new
population is complete.

4. [Selection] Select two parent chromosomes

from a population according to their fitness.
Roulette Wheel Selection or Thresholding or any
method suitable for the above problem can be used.

5. [Crossover] With a crossover probability cross over

the parents to form new offspring. This is
analogous to reproduction and gives rise to a hybrid
chromosome.

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:2, 2008

328

6. [Mutation] With a mutation probability mutate new
offspring at each locus.

7. [Accept] Place new offspring in the new population
for a further run of the algorithm.

8. [Replace] Use new generated population for a

further run of the algorithm

9. [Test] If the halt condition (section E) is satisfied,
we stop and return the best solution in current
population, else go to step 2.

IV. EXPERIMENTS AND RESULTS
We tested our improved algorithm for building an analog

circuit. The analog circuit, which we built here for testing is a
low pass filter with typical specifications provided. This
circuit has been built earlier.

A threshold was fixed to generate a reasonable circuit and
we ran both algorithms on the specific problem with different
population sizes. Note that the crossover and mutation rates
have been kept same for all the readings. So, inspite of
increasing population size, there might be a discrepancy in the
time required to generate the circuit. But, our goal is achieved
because what we are looking for is a comparison of the
duration required for the two algorithms. So, the operator
effects are nullified.

The result is addressed in the following table:

TABLE I
COMPARISON RESULTS OF PREVIOUS AND NEW ALGORITHM

Time required
Population

Size
Modified GA Previous GA

50 2 min 36 sec 3 min 42 sec
100 3 min 1 sec 4 min 36 sec
200 4 min 24 sec 9 min 12 sec

As the results show, the modified algorithm generates

circuit in lesser time consistently. As population size
increases, we see that the improvement is significant.

V. CONCLUSION
As mentioned earlier, Genetic Algorithm has been used for

analog circuit design but the improved version shows
significant improvements with higher population sizes.
Therefore, it can be stated that the new algorithm is more
efficient than the previous algorithm.

REFERENCES
[1] John H. Holland, "Genetic Algorithms - Computer programs that

evolvein ways that resemble natural selection can solve complex
problems eventheir creators do not fully understand," Scientific
American, pp. 66-72,July 1992.

[2] Holland, J.H. "Adaptation in natural and artificial systems", Ann Arbor:
The University of Michigan Press, 1975.

[3] Goldberg, David E. "Genetic Algorithms in Search, Optimization, and
Machine Learning," Addison-Wesley, 1989.

[4] Koza, John R., "Genetic Programming - on the programming of
computers by means of natural selection", MIT Press, 1992.

[5] Roberto Menozzi, Aurelio Piazzi and Fabrizio Contini, "Small-Signal
Modeling for Microwave FET Linear Circuits Based on a Genetic
Algorithm," IEEE Transactions on Circuits and Systems-I: Fundamental
Theory and Applications, pp. 839-847, Vol. 43, No.10, October 1996.

[6] W. Druiskamp and D. Leenaerts, “Darwin: Analogue Circuit Synthesis
Based on Genetic Algorithms,” International Journal of Circuit Theory
and Applications, Vol 23, 1995, pp.285-296.

[7] J. Stoffels and C. van Reeuwijk, "A design strategy for the synthesis of
high-performance instrumentation amplifiers," Delft University of
Technology Computational Physics Report Series, Report Number CP-
96-002, 1996.

[8] J. B. Grimbleby, “Automated Synthesis of Active Electronic Networks
using Genetic Algorithms,” IEE/IEEE International Conference on
Genetic Algorithms in Engineering Systems: Innovations and
Applications, Styrathclyde, September 1997, pp. 103-107

[9] John R. Koza, F. Bennett, D. Andre, M. Keane, and F. Dunlap,
“Automated Synthesis of Analog Electrical Circuits by Means of
Genetic Programming,” IEEE Transactions on Evolutionary
Computation, Vol 1, No. 2, July 1997, pp. 109-128

[10] M. Mitchell, An Introduction to Genetic Algorithm, MIT Press, 1996.

