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Abstract—This study employs the use of the fourth order 
Numerov scheme to determine the eigenstates and eigenvalues of 
particles, electrons in particular, in single and double delta function 
potentials. For the single delta potential, it is found that the 
eigenstates could only be attained by using specific potential depths. 
The depth of the delta potential well has a value that varies depending 
on the delta strength. These depths are used for each well on the 
double delta function potential and the eigenvalues are determined. 
There are two bound states found in the computation, one with a 
symmetric eigenstate and another one which is antisymmetric. 
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Numerov Method, Single Delta Potential 

I. INTRODUCTION 
HE delta function potential has an interesting property and 
it plays an important character in theoretical solid state 

physics. In the Kronig-Penney square well periodic potential, 
the periodic delta function is used to simplify the coefficients 
of the eigenstate of electrons so as to determine the accessible 
energy states and isolated energy bands on solids[1]. The 
potential has the form 
 

       )()( xxU αδ−=          (1) 

 
where α is called the delta strength. Theoretically, this has one 
bound state 
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and the allowed energy[2] is 
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This research work aims to investigate on the bound state 

and energy of a particle in single and double delta function 
potentials.  
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II. NUMERICAL METHOD 

The Numerov Method is based on a Taylor expansion of the 
function and its second derivative[3]. This is the numerical  
 
method used to solve the eigenstate of particle in delta 
function potential. In solving the Schrödinger equation 
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implementing Numerov algorithm gives the eigenstate 
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This method requires two initial conditions of the eigenstate 

to start the iteration for the equation. It must be noted that the 
wave function approaches zero as the position tends to 
infinity. Starting conditions could be chosen as ψ0 = 0 and ψ1 

=1. These are reliable initial conditions and can be justified 
mathematically since multiplying an eigenstate with a constant 
does not affect the eigenvalue[4]. In all calculations, h has a 
value equal to 0.1 Å. 

To easily get values of the wave function, a computer must 
be used to easily solve the iterative equation. The simulation 
tool used here is ROOT, an object-oriented framework aimed 
at solving the data analysis challenges of high-energy 
physics[5].   

III. SINGLE DELTA FUNCTION POTENTIAL 

The Dirac delta function, δ(x), is defined informally as 
follows[2]: 
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It is infinitely high, infinitesimally narrow spike at the 

origin, whose area is 1[2]. However, in computational 
calculations, it is impossible to use an infinite value. So there 
must be a defined depth of the delta potential well. In the 
numerical calculations, this potential depth is the quantity that 
was derived using analytical eigenvalues. For an electron as 
the particle in consideration, delta strengths of 1.0 neV·m, 1.5 
neV·m, 2.0 neV·m, 2.5 neV·m and 3.0 neV·m are used and the 
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corresponding eigenvalues from equation 3 are utilized for the 
iterative equation 5. These are just arbitrary values chosen for 
the purpose of differentiating the behavior of the potential.  

For these delta strengths, the potential energies shown in 
table 1 for each potential well were used in order to get the 
wave function that depicts the theoretical wave function. 

 
TABLE I 

POTENTIAL DEPTH OF THE WELL 

Delta Strength α  
(10-20 eV·m) 

Potential energy of the well  
(10-20 eV) 

1.0 –10.36381494819571 

1.5 –15.83707646222841 

2.0 –21.52314586178961 

2.5 –27.43775238467572 

3.0 –33.59757028209128 

The corresponding potential energy of the potential well for certain values of 
the delta strengths 

 

This showed a more realistic model since it is impossible in 
actual physical systems to have wells or barriers with infinite 
depth or height. 

The eigenstate for the first delta potential, with delta 
strength equals 1 x 10-20 eV·m is graphed and shown on figure 
1. Different delta strengths would still show a similar behavior 
of the curve. 

 
 

Fig. 1 Graph of the eigenstate of an electron influenced by an attractive delta 
potential with delta strength 1 x 10-20 eV·m. Horizontal axis shows the 
position of the electron while the vertical axis represents the values of 

eigenstate 

IV. DOUBLE DELTA FUNCTION POTENTIAL 

Using the potentials depths derived in part III, the double 
delta function potential could be analyzed easier now. The 
double delta function is much more interesting because it 
gives a quick way to study the properties of a narrow deep 
double well[6]. Let the potential be of the form 

 

)]()([)( axaxxU −+−−= δδα         (8) 

 
The delta strength used will still be the same with that of the 

single delta potential with corresponding potential depths. For 
a =1.0 Å, the eigenvalues determined is shown in table II. 

 
TABLE II 

EIGENVALUE OF BONDING STATES FOR a = 1.0 Å 

Depth of the delta potentials  
(10-20 eV) 

Eigenvalue 
(10-20 eV) 

–10.36381494819571 – 1.081062871017 

–15.83707646222841 – 2.373951456076 
–21.52314586178961 – 4.207072725867 

–27.43775238467572 – 6.570993061844 

–33.59757028209128 – 9.461779956832 

Eigenvalue of an electron bound in a double delta function potential for 
different potential depths derived in part III with a = 1.0 Å for bonding states. 

 
Figure 2 shows the eigenstate of the particle influenced by 

this delta function potential. However, for this double delta 
potential, another bound state also exists. This eigenstate, 
unlike the symmetric graph shown in figure 2, is 
antisymmetric. Bonding and antibonding states exist for 
double delta function potential, respectively with even and odd 
parity[7]. Table III shows the eigenvalues of for the 
antibonding states. 

 
TABLE III 

EIGENVALUE OF ANTIBONDING STATES FOR a = 1.0 Å 

Depth of the delta potentials  
(10-20 eV) 

Eigenvalue 
(10-20 eV) 

–10.36381494819571 – 1.018041401387 

–15.83707646222841 – 2.356725108829 

–21.52314586178961 – 4.203336265901 

–27.43775238467572 – 6.570281057373 

–33.59757028209128 – 9.461655042166 

Eigenvalue of an electron bound in a double delta function potential for 
different potential depths derived in part III with a = 1.0 Å for antibonding 
states. 

For other values of a, at 1.5 Å and 2.0 Å, the eigenvalues 
for symmetric eigenstates are shown in tables 4 and 6. 
Eigenvalues for antisymmetric eigenstates are also calculated 
and shown in tables V and VII. 

 
TABLE IV 

EIGENVALUE OF BONDING STATES FOR a = 1.5 Å 

Depth of the delta potentials  
(10-20 eV) 

Eigenvalue 
(10-20 eV) 

–10.36381494819571 – 1.05509022589 

–15.83707646222841 – 2.36579662427 

–21.52314586178961 – 4.20523563474 

–27.43775238467572 – 6.57063901021 

–33.59757028209128 – 9.46171761553 

Eigenvalue of an electron bound in a double delta function potential for 
different potential depths derived in part III with a = 1.5 Å for bonding states. 

 
TABLE V 

EIGENVALUE OF ANTIBONDING STATES FOR a = 1.5 Å 

Depth of the delta potentials  
(10-20 eV) 

Eigenvalue 
(10-20 eV) 

–10.36381494819571 – 1.04743093704 

–15.83707646222841 – 2.36506161400 

–21.52314586178961 – 4.20517992302 

–27.43775238467572 – 6.57063530228 

–33.59757028209128 – 9.46171738847 

Eigenvalue of an electron bound in a double delta function potential for 
different potential depths derived in part III with a = 1.5 Å for antibonding 
states. 
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TABLE VI 
EIGENVALUE OF BONDING STATES FOR a = 2.O Å 

Depth of the delta potentials  
(10-20 eV) 

Eigenvalue 
(10-20 eV) 

–10.36381494819571 – 1.0517617849625 

–15.83707646222841 – 2.3654450304468 

–21.52314586178961 – 4.2052081952484 

–27.43775238467572 – 6.5706371659047 

–33.59757028209128 – 9.4617175022064 

Eigenvalue of an electron bound in a double delta function potential for 
different potential depths derived in part III with a = 2.0 Å for bonding states. 

 
TABLE VII 

EIGENVALUE OF ANTIBONDING STATES FOR a = 2.0 Å 

Depth of the delta potentials  
(10-20 eV) 

Eigenvalue 
(10-20 eV) 

–10.36381494819571 – 1.05082651718 

–15.83707646222841 – 2.36541366367 

–21.52314586178961 – 4.20520736457 

–27.43775238467572 – 6.57063714659 

–33.59757028209128 – 9.46171750179 

Eigenvalue of an electron bound in a double delta function potential for 
different potential depths derived in part III with a = 2.0 Å for antibonding 
states. 

 
The bonding states refer to the symmetric state shown in 

figure 2. This is the graph of the eigenstate for a = 2.0 Å. All 
other potential depths and other values of a would also show a 
similar graph of eigenstates. 

 

 
Fig. 2 Symmetric eigenstate of an electron in a double delta function potential 

well with kinks at a = 2.0 Å. Horizontal axis acts for the position of the 
electron while the vertical axis represents the values of eigenstate 

 
Fig. 3 Antiymmetric eigenstate of an electron in a double delta function 

potential well with kinks at a = 2.0 Å. Horizontal axis acts for the position of 
the electron while the vertical axis represents the values of eigenstate. 

 
Figure 3 shows the antisymmetric eigenstate for a = 2.0 Å. 

The rest of the antibonding states for different values of a and 
potential depths also exhibit a similar graph of eigenstate. 

V. CONCLUSION 
The Numerov algorithm followed in this paper showed 

success in determining eigenvalues and eigenstates of an 
electron bound in single and double delta potential wells. For 
the single delta potential well, it was found that there should 
be a specified potential depth to get the required eigenstate of 
the particle considered. The potential depths were found to be 
dependent on the delta strength of the delta function. For the 
double delta function potential well, whose potential depths 
are those that were derived from the single well, two allowed 
eigenvalues were computed showing the symmetric eigenstate 
corresponding to the bonding state and the antisymmetric 
eigenstate for the antibonding state. 
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