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Abstract—This paper presents a wavelet transform and Support 
Vector Machine (SVM) based algorithm for estimating fault location 
on transmission lines. The Discrete wavelet transform (DWT) is used 
for data pre-processing and this data are used for training and testing 
SVM. Five types of mother wavelet are used for signal processing to 
identify a suitable wavelet family that is more appropriate for use in 
estimating fault location. The results demonstrated the ability of SVM 
to generalize the situation from the provided patterns and to 
accurately estimate the location of faults with varying fault resistance. 

Keywords— Fault location, support vector machine, support 
vector regression, transmission lines, wavelet transform.  

I. INTRODUCTION

CCURATE fault location on power transmission line is 
important for both protection and maintenance purposes. 
Conventional fault location methods use the fault steady 

state components of voltage and current measured at one or 
more points along the transmission line. The fault distance can 
be estimated from the measured impedance of the transmission 
line at the power system frequency. The impedance is assumed 
to be proportional to the fault distance. The impedance 
measurement used in distance protection schemes is too 
inaccurate for precise fault location as the error in the 
estimated fault location can be as high as 10% of line length. 
Fault location based on reactance is a well known technique 
that has been used to improve the estimation of fault location 
[1]-[3]. The technique is based on linear relation between the 
reactance, estimated from the voltage and current of the fault, 
and the fault location. In most cases, the error in estimating the 
fault location using these techniques varies between 1% to 6%. 
The use of travelling waves to detect and locate faults on such 
line is another feasible alternatives [4]-[5]. The schemes are all 
based on determining the time needed for a wave to travel 
between the local end and the fault location. However, 
travelling wave schemes have problems with faults close to the 
bus and faults with close-to-zero incidence angle. Algorithms 
based only on local terminal current and voltage data need 
some simplifying hypothesis to allow the fault distance 
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calculations [6] affecting the accuracy of the results. To 
overcome this fault location in transmission line using one 
terminal post voltage data is proposed in [7]. New tools and 
algorithms for better system control become a main interest. 
One of the new tool introduced is wavelet analysis [8].  The 
wavelet is used to estimate the time taken by the wave to travel 
between the fault and the local end. Using the travelling time 
and propagation speed, the fault location is estimated. Another 
tool that has been used in signal processing applications and 
introduced recently to the protection field is Prony method [ 
9]. Recent reformation in the power industry such as open 
access and regulation may have an impact on the reliability 
and security of power systems. New methodologies for various 
protection and control schemes are a must to maintain system 
reliability and security within an acceptable level. Artificial 
intelligence techniques are among the top candidates to realize 
this new methodology. One of the AI technique used in fault 
location is Artificial Neural Network [10]-[14]. Although the 
neural network based approaches have been quite successful in 
determining the fault location, the main disadvantage of neural 
network algorithm is that it requires considerable amount of 
training effort for good performance. 

Methods of locating power system faults introduced so far, 
can be broadly classified under two categories: one based on 
the power frequency components, and the other utilizing the 
higher frequency content of the transient fault signals. The 
latter method is adopted in this paper in order to locate the 
fault quickly [8].  

In this paper, pre-processing module based on DWT in 
combination with SVM is used for fault location. Five types of 
mother wavelets, Daubechies (db5), Biorthogonal (bior5.5), 
Coiflets (coif5), Symlets (sym5), and reverse biorthogonal 
(rbio5.5) have been considered for signal processing. The 
SVM, which is based on statistical learning theory is a general 
classification method and its theoretical foundation is 
described in [15]-[16]. The great advantage of SVM approach 
is the formulation of its learning problem, leading to the 
quadratic optimization task. It greatly reduces the number of 
operations in the learning mode and hence SVM algorithm is 
usually much quicker for large datasets [17]. Because of these 
advantages of SVM, the proposed method is fast and easy 
implemental for practical large power systems.   
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II. WAVELET TRANSFORM

Wavelet analysis is a relatively new signal processing tool 
and is applied recently by many researchers in power systems 
due to its strong capability of time and frequency domain 
analysis [18]. 

The definition of continuous wavelet transform (CWT) for a 
given signal x(t) with respect to mother wavelet  (t) is 

                       CWT (a , b) = dt
a

bttx
a

)(1
    (1) 

 where a is the scale factor and b is the translation factor. The 
Discrete wavelet transform (DWT) can be written as  

                  DWT (m,n) =  
a

a
m

m

k
m

nbk
kx

a
0

00)(1
  (2) 

where original a and b parameters (1) are changed to be the 
functions of integers m,n,k which is an integer variable and it 
refers to a sample number in an input signal. The wavelet 
transform is useful in analyzing the transient phenomena 
associated with transmission line faults and /or switching 
operations. This technique can be used effectively for realizing 
non-stationary signals comprising of high and low frequency 
components, through the use of a variable window length of a 
signal. The ability of the wavelet transform to focus on short 
time intervals for high frequency components and long time 
intervals for low frequency components improves the analysis 
of transient signals. For this reason, wavelet decomposition is 
ideal for studying transient signals and obtaining better current 
characterization and a more reliable discrimination. 

The wavelet transform technique is first applied, in order to, 
decompose the different current signals into a series of wavelet 
components, each of which is a time domain signal, that covers 
a specific frequency band. 

III. SUPPORT VECTOR MACHINE

SVM is a computational learning method based on the 
statistical learning theory. In SVM, the input vectors are non-
linearly mapped into a high dimensional feature space. In this 
feature space optimal hyper plane is determined to maximize 
the generalization ability of the classifier. 

The motivation for considering binary classifier SVM 
comes from the theoretical bounds on the generalization error 
[19]. The main features of SVM are:  

        (i)The upper bound on the generalization error does 
not depend on the dimension of the space. 

        (ii)The error bound is minimized by maximizing the 
margin 

Support Vector Regression (SVR) is applied to locate the 
faults in transmission line.  

A. - Support vector regression 

Let the training data be Xyxyx ll ,,..., 11 ,

where X denotes the space of input patterns. In - SVR , goal 
is to find a function f(x) that has at most  deviation from 
actually obtained targets yi for all the training data, and at the 
same time is as flat as possible. In other words, no need to 
father about errors as long as they are less than , but will not 
accept error larger than this [20].

bxwxf ,)(  with bxw ,               (3)   
where ,  denotes the dot product in x  .   A separating 
hyper-plane which generalises well can be found by solving 
the following quadratic programming problem  

Minimize                                                     (4)  

Subject to 
ii

ii
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,
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                (5) 

The tacit assumption in (5) was such a function f actually 
exists that approximates all pairs (xi , yi) with  precision, or 
in other words, that the convex optimization problem is 
feasible. To cope with the infeasible constraints of the 
optimization problem one can introduce slack variables i  , 

i
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The constant C > 0 determines the trade-off between the 
flatness of f and the amount up to which deviations larger than 

 are tolerated. This corresponds to dealing with a so called 
- insensitive loss function  described by 

otherwise

if0
:                        (7) 

The key idea is to construct a Lagrange function from the 
objective function and the corresponding constraints, by 
introducing a dual set of variables. The dual optimization 
problem is 
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The support vector expansion w is 
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where w can be completely described as a linear combination 
of the training patterns xi. Hence the complexity of a function’s 
representation support vectors is independent of the 
dimensionality of the input space X and depends only on 
number of support vectors. 

IV. SYSTEM STUDIED

The single line diagram of a sample system is shown in 
Fig.1. It consists of two areas connected by transmission line. 
The transmission line is modelled as a distributed parameter 
line, representing 200-Km, 240-kV line with positive sequence 
impedance of, ZL(1) = 8.05 + j 110.66 ohm and Zero sequence 
impedance of ZL(0)=79.19 +j302.77 ohm. The Thevenin 
impedance of area A is ZA = 5 + j27.7 ohm and the area B is 
ZB = 0.6 + j9.3 ohm. The source voltages are EA = 240KV and 
EB = 240KV with a frequency of 50 Hz. The sample system is 
modelled and simulated using MATLAB7. 

Fig.1 Sample transmission line model 

V. TRAINING AND TESTING FOR FAULT LOCATION USING SVR

The data set is obtained from simulation of a single line to 
ground fault on a transmission line. The sampling rate 
employed is 1.6 KHz (32 samples per cycle at 50HZ). The 
fault simulation has been conducted at a fault impedance of 
10  and 100 . This also includes the fault at different 
locations of the transmission line as seen by a relay at one end 
of the transmission line. The location includes 10%, 20%, 
30%, 40% and 50% of distance from one end of the line. The 
analysis is focussed on single line to ground faults, under the 
assumption that the pre-processing required for all kinds of 
faults would be similar, based on the preliminary analysis of 
data. The proposed system is trained with 400 data sets and 
tested with 640 data sets. 

In this paper, the input pattern consists of higher frequency 
content of transient fault current samples. The data are 
sampled at 32 samples per cycle. The sampled signals perform 
as the input to DWT.   

The pre-processed signals are used to train SVR. MATLAB 
SVM toolbox is used to train the network. In this case, the 
target value of each pattern is the distance from relay locations. 
The details of simulations carried for generating the training 
and test patterns are given in Table.1. The criterion for 
evaluating the performance of the fault locator is defined as 

linetheoflength
locationFaultoutputSVM

error% * 100 (10) 

For single line to ground fault, %error for different mother 

wavelet with linear and RBF kernel are depicted in Tables.2,3. 
Figs.2-3 show the error in the estimation of the fault location 
for different mother wavelet with linear and RBF kernel. 

TABLE I
TEST PATTERNS GENERATED FOR TRAINING AND TESTING 

Sl.N
o

Patterns generated for 
training 

Patterns generated 
for testing 

1. 10 % , 20% , 30% , 
40%, 50% of total 

transmission line length 

 15%, 20%, 25%, 
30%, 35%, 40%, 

50% of total 
transmission line 

length 

VI. CONCLUSION

The results proved the ability of SVM to generalize the 
situation from the available patterns and to accurately locate 
the faults. The proposed trained networks are capable of 
providing fast and precise location for different types of 
mother wavelet. The percentage error for most of fault location 
is within 1% for all types of wavelet. In the proposed method 
using SVR, maximum error obtained is less than 1% for 
different fault location with Daubechies and reverse bi-
orthogonal wavelet. Though, all five types of wavelet is giving 
better results for trained data, only db5 and rbio5.5 wavelet are 
giving better result for both trained and untrained data.   
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TABLE.II
% ERROR FOR DIFFERENT MOTHER WAVELET WITH L-G FAULT (RF = 10  ) 
bior5.5 coif5 sym5 Rbio5.5 db5 

Fault distance (km) 
Linear RBF Linear RBF Linear RBF Linear RBF Linear RBF 

20 0.0183 0.0353 0.1456 0.1235 0.0342 0.3324 0.0044 0.0593 0.0651 0.0294 

30 0.7792 1.2021 0.7349 0.8234 0.5348 0.7119 0.2460 0.5712 0.4893 0.4956 

40 0.0348 0.0254 0.0108 0.0634 0.0111 0.3756 0.0265 0.1087 1.5546e-004 0.1662 

50 0.8259 0.5945 0.4105 0.7653 0.0497 0.6869 0.3870 0.0261 0.8005 0.7408 

60 0.0126 0.0144 0.0779 0.1146 0.0105 0.1219 0.0288 0.0996 0.0733 0.0884 

70 0.0412 0.7205 0.8153 0.7289 0.7468 1.0555 0.5090 0.1412 0.3356 0.8105 

80 0.0056 0.0970 0.0235 0.2088 0.0344 0.1602 0.0146 0.0752 0.0234 0.1996 

100 0.0784 0.2468 0.0679 0.2790 0.1423 0.2504 0.0158 0.2294 0.0365 0.2720 

TABLE.III
% ERROR FOR DIFFERENT MOTHER WAVELET WITH L-G FAULT (RF = 100  ) 

% error for bior5.5 % error for coif5 % error for sym5 % error for rbio5.5 % error for db5 Fault
distance

(km) Linear RBF Linear RBF Linear RBF Linear RBF Linear RBF 

20 0.0018 0.0283 0.1273 0.1283 0.0085 0.3242 0.0177 0.0468 0.0515 0.0414 

30 0.7945 1.2457 0.7578 0.8847 0.5415 0.9325 0.22 0.6018 0.4993 0.5075 

40 0.0497 0.0035 0.0785 0.0696 0.0521 0.3618 0.0357 0.1116 0.0681 0.2021 

50 0.8598 0.6147 0.4406 0.6767 0.0311 0.8254 0.4148 0.0052 0.7947 0.7769 

60 0.1787 0.0405 0.0708 0.1568 0.0495 0.0717 0.1389 0.0713 0.0736 0.079 

70 0.2459 0.8066 0.8756 0.9364 0.628 0.6232 0.3456 0.0156 0.4862 0.7544 

80 0.0063 0.1255 0.025 0.1985 0.0349 0.1621 0.0179 0.0989 0.0665 0.1978 

100 0.2092 0.2457 0.1557 0.2454 0.2257 0.2179 0.1 0.222 0.1131 0.2597 
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 Fig. 2 Test results for different mother wavelet with Rf =
10
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       Fig.3 Test results for different mother wavelet with Rf=
100
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