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Abstract—The goal of speech parameterization is to extract the 

relevant information about what is being spoken from the audio 

signal. In speech recognition systems Mel-Frequency Cepstral 

Coefficients (MFCC) and Relative Spectral Mel-Frequency Cepstral 

Coefficients (RASTA-MFCC) are the two main techniques used. It 

will be shown in this paper that it presents some modifications to the 

original MFCC method. In our work the effectiveness of proposed 

changes to MFCC called Modified Function Cepstral Coefficients 

(MODFCC) were tested and compared against the original MFCC 

and RASTA-MFCC features. The prosodic features such as jitter and 

shimmer are added to baseline spectral features. The above-

mentioned techniques were tested with impulsive signals under 

various noisy conditions within AURORA databases. 

 

Keywords—Auditory filter, impulsive noise, MFCC, prosodic 

features, RASTA filter. 

I. INTRODUCTION 

PEECH parameterization is an important step in modern 

automatic speech recognition systems (ASR). The speech 

parameterization block is used to extract from the speech 

waveform the relevant information for discriminating between 

different speech sounds. The information is presented as a 

sequence of parameter vectors. In this paper, two acoustic 

features are found: MFCC and RASTA-MFCC. Generally, 

both methods are based on three similar processing blocks: 

firstly, basic short-time Fourier analysis which is the same for 

both methods, secondly, auditory based filterbank, and, 

thirdly, cepstral coefficients computation. The RASTA 

method belonging to the second category was proposed to 

extract robust speech features for recognition by processing 

temporal trajectories of frequency band spectrum using a 

band-pass filter [9]. The principle of RASTA method comes 

from the human auditory perception which indicates the 

relative insensitivity of human hearing to slowly and quickly 

varying auditory stimuli. Thus, the RASTA band-pass filter is 

designed with an IIR filter with a sharp spectral zero at the 

zero frequency in the modulation frequency domain. The most 

interesting point of RASTA method is to emphasize the 

important part of speech signal by human hearing perception 

which is definitely more immune to noise.  
MFCC are used extensively in ASR. MFCC features are 

derived from the FFT magnitude spectrum by applying a 

filterbank which has filters evenly spaced on a warped 

frequency scale. 
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The logarithm of the energy in each filter is calculated and 

accumulated before a Discrete Cosine Transform (DCT) is 

applied to produce the MFCC feature vector. There are many 

similarities between the two methods. The difference however 

lies in the shape of the filterbank. In this paper we present the 

proposed modifications of MFCC method, and it will be 

shown that the performance of MFCC and RASTA-MFCC, 

are also compared to MODFCC which integrate a new model. 

In the current paper, prosodic information is first added to a 

spectral system in order to improve their performance. Such 

prosodic characteristics include parameters related to the 

fundamental frequency such as the jitter and shimmer. The 

MODFCC shows consistent and significant performance gains 

in various noise types and levels. For this we will develop a 

system for automatic recognition of isolated words with 

impulsive noise based on HMM\GMM. We propose a study of 

the performance of parameterization techniques including the 

prosodic features proposed in the presence of different 

impulsive noises. Then, a comparison of the performance of 

different used features was performed in order to show that it 

is the most robust in noisy environment. The sounds are added 

to the word with different signal-to-noise SNRs (20 dB, 15 

dB, 10 dB, 5 dB, 0 dB and -5 dB). Note that the robustness is 

shown in terms of correct recognition rate (CRR) accuracy. 

The evaluation is done on the AURORA database.  

This paper is organized as follow; in the next section we 

describe the proposed modifications of MFCC. An 

experimental study performed to compare the performance of 

the different parameterization methods in various acoustic 

environments is described in Section III. Finally, the major 

conclusions are summarized in Section IV. 

II. NEW PROPOSED TECHNIQUE 

In this work, we present some modifications of the original 

MFCC in its recognition accuracy under noisy environments. 

This method is based on a study of differences between 

MFCC and RASTA-MFCC parameterizations. 

A. MFCC and Relative Spectral RASTA 

The relative spectral analysis technique (RASTA) is based 

on the idea that the rate of changing of the short-term 

spectrum for linguistic and non-linguistic components in 

speech is different [9]. This means that the spectral 

components of the communication channel vary more quickly 

or more slowly than the spectral components of the speech and 

they could be separated (filtered). The core part of RASTA 

processing is a band-pass filtering of the spectral parameters 

trajectories by an IIR filter. The convolutive (in the time 

domain) distortions in the communication channel can be 
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reduced by using the RASTA filtering in the logarithmic 

domain (spectral or cepstral). The RASTA approach can be 

combined with the mel cepstral coefficient method (so called 

RASTA-MFCC approach) or can directly be applied to the 

cepstral trajectories [9]. Fig. 1 shows a block diagram for 

extracting MFCC and RASTA-MFCC. The steps of RASTA-

MFCC are as follows. First, we pre-emphasis the input speech 

signal using a pre-emphasis filter. The Hamming window is 

applied to the pre-emphasized signal and then, it is processed 

by short-time Fourier transform (STFT). In the next step, we 

have used logarithmic amplitude transformation as a 

compressing static non linearity in step one of RASTA. The 

RASTA-MFCC is derived using a band-pass filter where more 

slowly and quickly changing parts for each spectral 

component are suppressed. The expanding static non linearity 

in step 3 of RASTA was an antilogarithmic transformation. 

Finally, the logarithm of the energy in each filter is calculated 

and accumulated before DCT is applied to achieve the cepstral 

coefficient. 

 

 

Fig. 1 Block diagram for extracting MFCC and RASTA-MFCC 

 

B. Proposed Modifications of MFCC 

In this paper, we present some modifications of the 

standard MFCC feature extraction method. The proposed 

modifications are presented in the following section. A 

schematic diagram of the proposed technique is shown in Fig. 

2. In this proposed algorithm MODFCC an application of pre-

emphasis is applied to the speech signal before the short term 

spectral analysis. In the second step, the digitized noisy 

speech is segmented into overlapping frames, each of length 

20 ms with 10 ms overlap [7], in speech processing a 

Hamming window are mostly used. Next, the FFT is taken of 

these segments. Afterwards, the segmented signal is filtered 

using the non linear model of the external and middle ear 

which is given by the following analytical expression [5]: 

 

 H (f) = -2.184* ���.� + 6.5* ���.��	�
.
�
�
 - 10�
* ��
.�.   (1) 

 

The transfer function of the external and middle ear model 

is shown in Fig. 3. The next processing step applies a 

filterbanks. Many different types of filterbanks exist but for 

MODFCC features the gammachirp filterbank is used. In this 

study, our objective is to introduce new speech features that 

are more robust in noisy environments. We propose a robust 

speech feature which is based on the method with 

gammachirp filterbank. The output signal of the outer and 

middle ear model filter is applied to a gammatone filterbank. 

On each sub-band we calculate the sound pressure level Ps 

(dB) in order to have the corresponding sub-band chirp term 

C. Those values of chirp term C corresponding to each sub-

bands of the gammatone filterbank lead to the corresponding 

gammachirp filterbank. The proposed auditory use filters that 

are smoother and broader than the Mel filterbank (the 

bandwidth of the filter is controlled by the ERB curve and the 

bandwidth multiplication factor F). The main differences 

between the proposed filterbank and the typical one used for 

MFCC estimation are the type of filters used and their 

corresponding bandwidth. In this paper, we experiment with 

one parameter to create a family of gammachirp filterbanks: 

the number of filters. An example of the gammachirp 

filterbank employing 32 filters is shown in Fig. 4. The free 

parameter in gammachirp filterbank as noted above is the 

number of filters. By increasing the number of filters they 

become narrow but with a small number of filters the loss of 

information is introduced. A new filterbank is presented 

where the width of the filters is fixed to 226 filter and the 

number of them is equal to the number of spectral coefficients 

(in our case we used 265 filters). The RASTA filter removes 

variations in the signal that are outside the rate of change of 

speech by filtering the log-spectrum at each frequency band. 

Both very slow and very fast changes in sound are ignored by 

the human ear, so RASTA processing attempts to filter these 

components out. The filter also helps to eliminate noise due to 

channel variation in the data. That is why we use the RASTA 

filtering technique to process the cepstral coefficients, and 

then we get the features coefficients which we need. In the 

next stage, we calculate tonal and non tonal components. This 

step begins with the determination of the local maxima, 

followed by the extraction of the tonal components (speech) 

and non tonal components (impulsive noise), in a bandwidth 

of a critical band. If frequency exceeds neighboring 
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components within a bark distance by at least 6 dB then it will 

treated as “speech” otherwise it will be considered as “noise”. 

The selective suppression of tonal and non tonal components 

of masking is a procedure used to reduce the number of 

maskers taken into account for the calculation of the global 

masking threshold. The tonal and non tonal components 

remaining are those which are above the hearing absolute 

threshold. Individual masking threshold takes into account the 

masking threshold for each remaining component [6]. Speech 

signals contain two types of information, time and frequency. 

In time space, sharp variations in signal amplitude are 

generally the most meaningful features. In the frequency 

domain, although the dominant frequency channels of speech 

signals are located in the middle frequency region, different 

speakers may have different responses in all frequency 

regions [3].  
Thus, the traditional methods which just consider fixed 

frequency channels may lose some useful information in the 

feature extraction process. The characteristic of multiple 

frequency channels and any change in the smoothness of the 

signal can then be detected to perfectly represent the signals. 

Then, the MFCC are applied to these channels to extract 

features characteristics. MFCC as previously stated has the 

advantage that they can represent sound signals in an efficient 

way because of the frequency warping property. In this way, 

the advantages of this technique are combined in the proposed 

method. For the final acoustic modeling we extended the 

modified MFCC-cepstral representation with derived delta 

and delta-delta features. The following features were 

extracted: 12 MFCC, 12 RASTA-MFCC, and 39 MODFCC. 

The energy of the frame, first (∆) and second temporal 

derivatives (∆∆) extracted from each enumerated parameter. 

At the end, we have 9 distinct feature vectors that can be 

categorized into three categories according to its length. 

Firstly, feature vector has length 13: (12 MODFCC and 

Energy). Secondly, feature vector has length 26: (12 

MODFCC, Energy, and 13 ∆). Thirdly, feature vector has 

length 39: (12 MODFCC, Energy, 13 ∆, and 13 ∆∆). We note 

that the addition of delta-cepstral features to the static 13 

dimensional MODFCC features strongly improves speech 

recognition accuracy, and a further (smaller) improvement is 

provided by the addition of double delta-cepstral features. The 

feature vector constructed on the basis of MODFCC is applied 

in the statistical classifier. This classifier is based on Gaussian 

mixture model (GMM) and Hidden Markov Model (HMM). 

Following the above modifications a new acoustic features 

(named MODFCC are derived. In the next section, we 

investigate the robustness and compare the performance of the 

proposed features to that of RASTA-MFCC with the different 

prosodic parameters by artificially introducing different levels 

of impulsive noise to the speech signal and then computing 

their correct recognition rate. 

III. EXPERIMENTAL FRAMEWORK AND RESULTS 

In this section, we investigate the robustness of MODFCC 

in noise by artificially injecting various types of impulsive 

noise to the speech signal. We then present speech recognition 

experiments in noisy recording conditions. The results are 

obtained using the AURORA databases. 

A. AURORA Task 
AURORA is a noisy speech database, designed to evaluate 

the performance of speech recognition systems in noisy 

conditions. The AURORA task has been defined by the 

European Telecommunications Standards Institute (ETSI) as a 

cellular industry initiative to standardize a robust feature 

extraction technique for a distributed speech recognition 

framework. The initial ETSI task uses the TI-DIGITS 

database down sampled from the original sampling rate of 20 

kHz to 8 kHz and normalized to the same amplitude level [4]. 

Two different noises (Explosion and door slams) have been 

artificially added to different portions of the database at 

signal-to-noise (SNR) ratios ranging from clean, 20 dB to -5 

dB in decreasing steps of 5dB. The training set consists of 

8440 different utterances split equally into 20 subsets of 422 

utterances each. Each split has one of the three noises added at 

one of the seven SNRs (Clean, 20 dB, 15 dB, 10 dB, 5 dB, 0 

dB and -5 dB). The test set consists of 4000 test files divided 

into four sets of 1000 files each. Each set is corrupted with 

one of the three noises resulting in a total of (2 x 1000 x 7) 

14,000 test utterances. In spite of some drawbacks of the 

current AURORA task such as the matched test and training 

conditions [1], or the absence of natural level variations and 

variable linear distortions, the AURORA task is of interest 

since it can demonstrate the potential benefits of using noise 

robust feature extraction techniques towards improving the 

recognition performance on a task which (though with 

matched training and test conditions) has substantial 

variability due to different types of additive noise at several 

SNRs. 

C. Experimental Setup 

To evaluate the suggested techniques, we carried out a 

comparative study with different baseline parameterization 

techniques of MFCC and RASTA-MFCC implemented in 

HTK. For the performance evaluation of our feature 

extractors, we have used the two noise of the AURORA 

corpus at different SNRs. The features extracted from clean 

and noisy database have been converted to HTK format using 

“VoiceBox” toolbox [2] for Matlab. In our experiment, there 

were 21 HMM models trained using the selected feature 

MODFCC, MFCC and RASTA-MFCC. Each model had 5 by 

5 states left to right. The features corresponding to each state 

occupation in an HMM are modeled by a mixture of 12 

Gaussians [8]. In all the experiments, 39 vectors are used as 

the baseline feature vector. Jitter and shimmer are added to the 

baseline feature set both individually and in combination.  
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Fig. 2 The structure of MODFCC features extraction
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Fig. 3 The transfer functions of the external and middle ear model 

 

      

Fig. 4 Characteristics of gammachirp filterbank 

 

D. Results and Discussion 

The performance of the suggested parameterization 

methods is tested on the AURORA databases using HTK. We 

use the percentage of word accuracy as a performance 

evaluation measure for comparing the recognition 

performances of the feature extractors considered in this 

paper. %: The percentage rate obtained. One Performance 

measures, the correct recognition rate (CORR) is adopted for 

comparison. They are defined as:   

 

 % CRR = no. of correct labels/no.of total labels * 100%.  (2)  
 

Comparison of phoneme recognition rates is shown in the 

Tables I-IV. 

 
TABLE I   

WORD ACCURACY (%) USING DIFFERENT PARAMETERIZATION TECHNIQUES 

Features 

                 SNR(dB) 

Explosions Door slams 

∞ 20 15 10 5 0 -5 ∞ 20 15 10 5 0 -5 

MFCC (24 filters) 72.46 62.03 60.30 58.43 46.33 33.61 33.32 74.20 60.52 55.98 44.06 40.19 35.32 32.76 

RASTA-MFCC (24 filters) 73.04 63.85 61.90 59.07 47.99 34.25 34.04 75.94 61.16 56.56 45.33 41.77 36.94 33.34 

MODFCC (24 filters) 74.45 64.25 62.28 60.44 48.38 35.67 35.33 76.35 62.59 57.97 46.71 42.12 37.30 34.71 

MODFCC (265 filters) 75.51 65.34 63.32 61.51 49.48 36.75 36.44 77.44 63.66 58.76 47.86 43.22 38.42 35.86 

 

TABLE II  

WORD ACCURACY (%) OF RASTA-MFCC USING THE PROSODIC FEATURES 

Features 

                 SNR(dB) 

Explosions Door slams 

∞ 20 15 10 5 0 -5 ∞ 20 15 10 5 0 -5 

RASTA-MFCC (Baseline) 85.40 82.25 78.29 78.44 66.38 50.65 33.35 84.32 80.56 78.98 77.76 70.12 55.32 42.76 

RASTA-MFCC+Jitter 88.03 84.84 80.80 80.03 68.99 53.24 35.93 86.93 83.17 81.59 80.36 72.72 57.90 45.31 

RASTA-MFCC+Shimmer 88.45 85.25 81.21 81.46 69.38 53.65 36.34 87.34 83.56 81.91 80.74 73.14 58.32 45.76 

RASTA-MFCC+Jitter+Shimmer 89.55 86.35 82.39 82.54 70.45 54.72 37.44 88.44 84.66 82.76 81.86 74.22 59.42 46.86 
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TABLE III  

WORD ACCURACY (%) OF MODFCC USING PROSODIC FEATURES 

Features 

                 SNR(dB) 

Explosions Door slams 

∞ 20 15 10 5 0 -5 ∞ 20 15 10 5 0 -5 

MODFCC (Baseline) 92.43 90.17 88.20 85.74 77.21 71.54 50.07 90.35 89.96 88.98 87.70 78.99 70.23 68.45 

MODFCC+Jitter 95.05 92.78 90.83 88.33 79.84 74.74 52.68 92.94 92.51 91.50 90.31 81.59 72.82 71.03 

MODFCC+Shimmer 95.43 93.17 91.25 88.71 80.28 74.55 53.06 93.35 92.94 91.95 91.70 84.59 75.82 74.03 

MODFCC+Jitter+Shimmer 96.53 94.27 92.30 89.84 81.31 75.64 54.17 94.45 94.06 93.08 92.83 85.67 76.92 75.13 

 
TABLE IV 

RECOGNITION RATE (%) OF MODFCC USING DYNAMIC PROPERTIES  

Features 

                 SNR(dB) 

Explosions Door slams 

∞ 20 15 10 5 0 -5 ∞ 20 15 10 5 0 -5 

MODFCC (13) 84.77 82.55 80.18 75.74 71.65 65.33 43.87 82.54 80.64 80.58 79.71 65.87 54.02 34.74 

MODFCC+∆ (26) 84.53 82 82.65 80.71 79.68 70.45 59.50 90.91 89.53 88.98 85.33 80.45 72.49 66.87 

MODFCC+∆+ ∆∆ (39) 93.92 91.11 91.20 90.09 89.56 85.67 77.87 94.21 92.87 91.98 90.10 81.90 78.10 72.76 

 

The new filterbank with fixed filter width and a large 

number of filters has also been applied and tested with the 

standard MFCC method. It can be seen (Table I) that the 

recognition accuracy improves slightly for a relative value of 

1%. From the Table I it can be observed that improvement 

(3% relative increase of recognition accuracy) is achieved 

with the new MODFCC method of parameterization over the 

baseline MFCC method. Tables II and III presents the 

performance of two voice features in presence of various 

levels of additive noise. We note that the MODFCC features 

that are extracted using the gammachirp containing frequency-

domain noise and speech detection exhibit the best CRR. 

Also, it is observable that the performance of the two features 

decreases when the SNR decreases too, that is, when the 

speech signal becoming more noisy. Similarly, the 

performance of RASTA-MFCC shows a decrease, but it is a 

relatively small decrease, whereas the MODFCC features 

have the overall highest recognition rate throughout all SNR 

levels. In additive noise conditions the proposed method 

provides consistently better word accuracy than all other 

methods. Jitter and shimmer are added to the baseline feature 

set both individually and in combination. The absolute 

accuracy increase is 2.6% and 3.0% after appending jitter and 

shimmer individually, while there is 4.1% increase when used 

together. As we can see in the tables, the identification rate 

increases with speech quality, for higher SNR we have higher 

identification rate, the MODFCC based parameters are 

slightly more efficiencies than standard RASTA-MFCC for 

noisy speech (94.27% vs 86.35% for 20 dB of SNR with jitter 

and shimmer) but the results change the noise of another. 

From the above Table IV, it can be seen that the recognition 

rates are above 90%, this is recognition rates are due to the 

consideration of using 39 MODFCC features.  

IV. CONCLUSION 

In this paper we proposed a novel robust method-based 

feature extraction algorithm for speech recognition. The 

proposed features called MODFCC have been shown to be 

more robust than MFCC and RASTA-MFCC in noise 

environments for different SNRs values. Jitter and shimmer 

features have been evaluated as important features for analysis 

for speech recognition. Adding jitter and shimmer to baseline 

spectral and energy features in an HMM\GMM based 

classification model resulted in increased word accuracy 

across all experimental conditions. The results gotten after 

application of this features show that this method give 

acceptable and better results by comparison at those gotten by 

other methods of parameterization. 
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