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Abstract—An important structuring mechanism for knowledge 
bases is building clusters based on the content of their knowledge 
objects. The objects are clustered based on the principle of 
maximizing the intraclass similarity and minimizing the interclass 
similarity. Clustering can also facilitate taxonomy formation, that 
is, the organization of observations into a hierarchy of classes that 
group similar events together. Hierarchical representation allows 
us to easily manage the complexity of knowledge, to view the 
knowledge at different levels of details, and to focus our attention 
on the interesting aspects only. One of such efficient and easy to 
understand systems is Hierarchical Production rule (HPRs) system. 
A HPR, a standard production rule augmented with generality and 
specificity information, is of the following form 
Decision If < condition> 
             Generality <general information> 
              Specificity <specific information>. HPRs systems 
are capable of handling taxonomical structures inherent in the 
knowledge about the real world. In this paper, a set of related 
HPRs is called a cluster and is represented by a HPR-tree. This 
paper discusses an algorithm based on cumulative learning 
scenario for dynamic structuring of clusters. The proposed scheme 
incrementally incorporates new knowledge into the set of clusters 
from the previous episodes and also maintains summary of clusters 
as Synopsis to be used in the future episodes.  Examples are given 
to demonstrate the behaviour of the proposed scheme. The 
suggested incremental structuring of clusters would be useful in 
mining data streams. 
 

Keywords—Cumulative learning, clustering, data mining, 
hierarchical production rules.  

I. INTRODUCTION 
HE goal of the learner in conventional learning methods 
is to capture the inherent meaning of concepts meaning 

by observing concept examples, which can be given at 
once(batch learning) and incrementally. This paradigm 
works well for knowledge-based system applications which 
do not change in time. But many of the real life application 
are characterized by change of data. Even concepts are not 
static; they evolve over time. Applications such as dynamic 
knowledge-bases, intelligent agents and active vision 
systems violate many of the traditional assumptions of 
concept leaning. All training examples are not available at 
any given time; training examples are distributed over time. 
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Consequently, the system must not only learn over time, but 
it may also learn a changing concept.[5] 

The predominant representation of the discovered 
knowledge is the if-then rules because of its many 
advantages. However this representation often severely 
fragments the knowledge that exists in the data, thereby 
resulting in a large number of rules. The fragmentation also 
makes the discovered rules hard to understand and to use. 
Also the discovered knowledge is represented only at a 
single level of detail. This flat representation is not suitable 
for human consumption because we are more used to 
hierarchical representation of knowledge. Hierarchical 
representation allows us to easily manage the complexity of 
knowledge, to view the knowledge at different levels of 
details, and to focus our attention on the interesting aspects. 
A more efficient and easy-to-understand representation is in 
the form of Hierarchical Censored Production rules which 
has numerous applications in situations where decision must 
be taken in real time and with uncertain information. This 
representation is simple and intuitive, and also has a natural 
way of organizing the knowledge in a hierarchical fashion, 
which facilitates human analysis and understanding. Several 
extensions/generalizations of the system have been 
proposed (incorporating Fuzzy Logic [8],[13], DST [11], 
Genetic Algorithms [9] and Neural Networks [12]). 

In this paper an attempt is made to exploit the inherent 
structural properties of HPRs, a form of HCPR where 
censors are completely neglected due to time constraint, to 
accommodate cumulative learning scenario. A dynamic 
system which comprehends the knowledge with each 
episode is developed. Results on the behaviour of the 
proposed scheme are also included.  

II. BACKGROUND 
The concept of CPR as suggested by Michalski and 

Winston has the following form: 
 
        If             P {premises/preconditions} 
        Then       D {actions/decision} 
        Unless    C {censor conditions} 
A censor is a low likelihood condition when hold will block 
the rule. So when the system is having low resources, it can 
skip checking the censor conditions. If the resources are 
available, the censor conditions are examined, increasing the 
certainty factor of making a high speed decision or 
reversing the decision itself.  The above concept of CPR has 
been extended to HCPR to incorporate both aspects of 
precision namely certainty and specificity. Two new 
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operator added to CPR and we have the concept of HCPR 
having the general form as follows: 
 
     D {decision/concept/action} 
         If   P [p1,p2,p3,…,pn]  {preconditions} 
         Unless C [c1,c2,…,cn]  {censor conditions} 
         Generality [G%]  {general information} 
         Specificity S [s1,s2,…,sk] 
    {mutually exclusive set of specific information} 
As a special case, dropping the unless operator due to time 
constraint, HPR takes the form 
D{decision/concept/action} 
         If   P[p1,p2,…,pn]  {preconditions} 
         Generality [G%]  {general information} 
         Specificity S [s1,s2,…,sk] 
    {mutually exclusive set of specific information} 
Here is an example set of related HPRs.  
{level 0} 
Is_in_city(X,Y): 
          If [Lives_in_city(X,Y)] 
          Generality [] 
           Specificty[Is_at_home(X),Is_outside_home(X)] 
{level 1} 
Is_at_home(X): 
          If [Lives_in_city(X, Y), Time (night)] 
          Generality [Is_in_city(X, Y)] 
           Specificty[] 
Is_outside_home(X): 
          If [Lives_in_city(X, Y), Time (day)] 
          Generality [Is_in_city(X, Y)] 
          Specificty[Is_working_outdoor(X) 
                                        ,Is_entertaining_outdoor(X)] 
{level 2} 
 Is_working_outdoor(X): 
          If [Lives_in_city(X, Y), Time (day), Day (working)] 
          Generality [Is_outside_home(X)] 
           Specificty[] 
 Is_entertaining_outdoor(X)]: 
          If [Lives_in_city(X, Y), Time (day), Day (Sunday)] 
          Generality [Is_outside_home(X)] 
           Specificty[] 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In the following discussion a set of related HPRs is called 
a cluster and is represented as HPR tree. The cluster formed 
by the above HPRs is represented as HPR-tree in Fig.1. 
Now onwards instead of writing the set of HCPRs in a 
cluster i, only the HPR-treei will be given. 

The root represents the most general concept in a HPR 
tree and any child in tree is more specific case of its parent. 
As the concept becomes more specific, the number of 
elements in its precondition part will increase obviously. 
However it is not required to list all such elements because 
total inheritance is an inherent feature of the HPRs tree 
structure; each HPR inherits the entire preconditions set of 
its parent HPR, and thus of all of its ancestors. So the 
redundancy is minimized in the listing of preconditions in 
the child node. HPR system collect fragmented knowledge 
and represent these as collective one and hence significantly 
reducing the knowledge base. This representation scheme 
reduces the complexity of the discovered knowledge 
substantially, makes knowledge base easy to understand and 
efficient for future processing. 

 Jain and Bharadwaj [4] used the term “fusion” for 
merging two related HCPR trees. Two related HCPR trees 
can be merged into one if there are some common properties 
in the preconditions set of the roots of these two HCPR tree. 
The trees merged may not remain in their original form but 
the hierarchy of each tree is maintained .Fusion algorithm 
works as follows: 
 
Fusion(X,Y):Merges two HCPR trees having roots X and Y 
/* In the following discussion, IF(X) denotes the set of 
preconditions for the decision X*/ 
1. if (IF(X) ∩ IF(Y))=φ ) 
        then  printf (“ No fusion possible”) 
2. if (IF(X) ⊂ IF(Y)) 
        { then { X will be the root of the new combined tree} 
           T1 ← X 
           T2 ← Y 
        } 
    else if (IF(Y) ⊂ IF(X)) 
           { then { Y will be the root of the new combined tree} 
               T1 ← Y 
               T2 ← X 
           } 
     else 
          {{A new root is created for new combined tree} 
           IF(new_root) ← {(IF(X) ∩ IF(Y)} 
           Specificity(new_root) ← {X,Y} 
           IF(X) ← IF(X)-IF(new_root) 
           IF(Y) ← IF(Y)-IF(new_root) 
           Generality(X) ← [new_root] 
           Generality(Y) ← [new_root] 
         } 
3. Find where tree T2 would be attached in the tree with   
root T1 and attach it there.             

Two related HCPR tree and their merging by Fusion 
algorithm is shown in Fig. 2. 
 
 
 

     X is_in_city Y 
{Lives_in_city(X, Y)} 

 X is_at_home 
{Time(night)
}

 X is_outside_home 
      {Time (day)} 

 X is working_outdoor 
     {Day(working)}  X is entertraing_outdoor 

        {Day (Sunday)} 

Fig. 1 HPR-tree- Cluster of related HPRs 
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III. HPRS CLUSTERS AND CUMULATIVE LEARNING 
Clustering is the process of grouping the data into groups 

so that objects within a cluster have high similarity to each 
other and have dissimilarity to objects in other clusters. The 
objects here are grouped on the principle of maximizing the 
intraclass similarity and minimizing the interclass similarity. 
Representing data by a few clusters loses certain fine details 
but achieves simplification. Arranging voluminous data into 
few cluster is a challenging task as it is to be done using a 
limited memory. Clustering is a dynamic field of research in 
data mining. Many clustering algorithms have been 
developed. These can be categorized into partitioning 
methods, hierarchical methods, density-based methods, 
grid-based methods, and model-based methods. 

The basic idea of Cumulative Learning in general is to 
have the agent solve a series of related tasks in some 
sequence, and then, while solving the tasks, speed up 
learning a particular task by using information or knowledge 
obtained solving from previous tasks. One way to look at 
Cumulative Learning is as a way to set bias for a new task 
using knowledge accumulated from solving previous tasks. 
Since the performance (in terms of no. of examples required 
to learn) of a learning agent depends to a large extent on the 
bias given to it in the beginning, Cumulative Learning helps 
speed up learning. Inherent properties of HPRs can be 
exploited to implement cumulative learning scenario in this 
system 

Our focus is on the monitoring of cluster formation 
process so as to have deeper insight into the changing trend 
of data i.e. the comparison of clusters formed at different 
instances of time with the new piece of knowledge mined, 
and then adjusting cumulatively this new knowledge 
appropriately in one of the clusters or forming a brand new 
cluster of knowledge. The objective is online, dynamic 
detection and summarization on interesting changes, to 
know how well the model constructed from the previous 
data fits the new data or we can say that by how much the 
old model misrepresents the new data. An algorithm is 
proposed that accommodate the new piece of knowledge 

appropriately in one of the clusters of previous episode or 
forming an absolutely new cluster. All clusters of this new 
episode will act as the knowledge of previous episode.[10]. 

IV. PROPOSED METHODOLOGY  
The new piece of knowledge obtained in each episode is 

compared with the previous clusters, a correspondence 
needs to be established between old and new clusters that is 
which new cluster is to be compared with which old cluster. 
After the clustering for an episode is done, a synopsis of the 
clustering is stored and is used for obtaining cumulative 
clustering as further stream arrives. The synopsis reflects 
the trends of the historical data. Once clusters are obtained 
and finalized in an episode, the comparison parameters are 
also calculated and stored in the synopsis. Here Synopsis is 
the set of clusters from previous episodes. The attribute of a 
particular cluster is its root_property, shown with bold face, 
is the information at the root node of the corresponding 
HPR tree. For any clusters C1and C2, we define a boolean 
function, compare_attribute (C1,C2) as: 
          1  if root_property(C1)∩ root_property(C2) ≠ φ  
                and  0 otherwise. 
 
The whole process is depicted in Fig. 3. 
 
 
 
 
 
 
 
 
     ….  
       
 
 
 
 
Algorithm: Cumulative Clustering Scheme 
Input: A set of current clusters and Synopsis 
Output: Updated Synopsis  
 
1. IF compare_attribute (Cj, Ci)=1 for any cluster Ci, Cj, 
where Cj is cluster from current episode and Ci  is the cluster 
from previous episode  then 

a. Fusion(Cj, Ci ) →  Ci′ 
        The root_property of a cluster gets updated as per 
the following  if-else statement: 

     if (root_property (Ci) ⊂ root_property(Cj)) 
          then  root_property(Ci′)= root_property(Ci) 
       else if(root_property(C) ⊂  root_property(C)) 
                  then root_property(Ci′)= root_property(Cj) 
              else  
                  root_property(Ci′)= root_property(Cj) ∩ 
              root_property(Ci) 
      b. Add cluster new Cj′ to the synopsis and delete cluster  
          Ci from the synopsis, delete Cj from current set of 
          cluster . 
2.  ELSE add CJ to the synopsis, delete Cj from current set 
of cluster . 

    A 
[P1] 

      A1 
   [P2,P3] 

  A2 
[P4,P5,P6] 

  A3 
   [P7,P8] 

   B 
[P1,P9,P10] 
  B1 
 [P11,P12] 

(a) 

    A 
[P1] 

      A1 
   [P2,P3] 

  A2 
[P4,P5,P6] 

  A3 
   [P7,P8] 

   B 
[P9,P10] 

  B1 
 [P11,P12] 

(b) 

Fig. 2 (a) HCPR trees before fusion  (b) Final tree after fusion 

Stream Processing 
        Engine 

Updated 
 clusters 

Data Stream 

            Synopsis: 
Clusters from previous episodes  

Fig. 3 Proposed Cumulative clustering approach 

Current episode 
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3.  Repeat step 1-2 for remaining Cj, Ci where Ci∈Synopsis 
and Cj ∈current set of clusters. 

The Output, updated synopsis will be the Synopsis for 
the next episodes. 

V. EXPERIMENTAL RESULTS 

The algorithm is tested on a real life data and synthetic 
data. 
Example 1: Suppose the following HPR tree is   obtained in 
the current episode, depicting HPR cluster of plane figures. 
The synopsis is initialized with cluster C1, that is 
Synopsis={C1} 
 
 
 
 
 
 
 
 
 
 
 
 
 
Suppose the cluster obtained in second episode, say C2 is 
depicting the concept of Food items. 
 Now compare_attribute(C2,C1 )=0, so a new cluster is 
added to synopsis. Synopsis={ C2,C1 } 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Assuming that in the third episode,cluster C3 is obtained 
depicting the concept of non polygon figures. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Now compare_attribute(C3,C2)=0 so Fusion(C3,C1) not 
possible and compare_attribute(C3,C1)=1 so C3 gets merged 

in C1 producing a more refined cluster C1′ for  future 
episodes. 
 
 
            
 
 
 
 
 
 
 
 
 
 
 
            At this stage, Synopsis={ C1′,C2} 
 
 
 
Example 2: Consider Fig. 4 as the synopsis from the 
previous episode, contains two clusters C1 & C2. The 
synopsis obtained after two episode is shown in Fig. 5. 
 
 
 
 
 
 
 
 
 
            
 
 
 
 
  
 
                 
 
 
 
 
 
     
      Now compare_attribute(C1*, C1)=1 so 
                   Fusion(C1*, C1 ) →   C1′   
 
       
        
 
 
 
 
          
Add  C1′ to the synopsis. delete C1 from there. Delete C1* 
from current set of clusters. 
 compare_attribute(C2*, C2)=0 so no Fusion. 
compare_attribute(C2*, C1′)=0 so no Fusion . 
Add  C2* to the synopsis. Delete C2* from current set of 
clusters. 

       •Plane_figure 
    [2_dim,closed_fig] 

         • Non_polygon 
[atleast_one_edge_is_not_straight]

       •Polygon 
[each_edge_is_straight]

  •Triangle 
 [3 vertices] 

               • Square 
[4_vertices,all_edges_equal, 

all_angles_equal] 

                   •Non_polygon 
    [2_dim,closed_fig , 
           atleast_one_edge_not_straight] 

                 •Ellipse 
[non_equidistant_from_centre] 

                 •Circle 
[equidistant_from_centre] 

Episode 1:  

Current set of clusters

•D2 
[p1,p2,p3] 
 

     •D1″[p1″,p2″] 
 
   •D2″[p3″] 

C2* C1* 

  •D1 
[p1,p2] 

     •D1′ [p1′,p2′] 
 
•D2′[p4′]     D3′[p3′]   

C1 C2 

Fig. 4 Synopsis from previous episode 

           •D1 
        [p1,p2] 
           
          •D2 
            [p3] 

C1′  

     •food 
    [edible] 

     • Meat 
[animal_product]     •Vegetable 

[ plant_product] 
    •Beans 
 [leguminous] 

      • Carrots 
[tapering_root, sweet]

    •Dessert 
          [sweet, 
     eaten_after_main_meal]

       •Plane_figure 
    [2_dim,closed_fig] 

        • Non_polygon 
[atleast_one_edge_is_not_straight]        •Polygon 

[each_edge_is_straight]

 •Triangle 
      […] 

  •Square 
     […] 

   •Ellipse
      […] 

 •Circle 
  […]
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       This will act as a synopsis for next episode.  
 
 
 
 
 
      
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 Synopsis after first episode: 

     •D1′ [p1′,p2′] 
 
 •D2′[p4’]    D3′[p3′]   

C1’ C2 

           •D1 
        [p1,p2] 
           
          •D2 
            [p3] 

     •D1″[p1″,p2″] 
 
   •D2″[p3″] 

C2* 

After second episode 

•D3[p1] 
 
   •D4[p4] 

•D3 
[p1] 
 

•D3[p1] 
 
  
 •D5[p4,p5] 

Episode 2:  

Current set of clusters : {C1,C2,C3} 
C3C2 C1 

Fig. 5 Synopsis after two episode 

 
C1′ 

C2

No Change 

 Updated cluster 
No change 

C2* 

     •D1′[p1′,p2′] 
 
•D2′[p3′]    •D3′[p4′] 

           •D3[p1] 
 
•D4[p4]     •D1[p2] 
           
•D5[p5]         •D2[p3] 
 

     •D1″[p1″,p2″] 
 
   •D2”[p3”] 
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VI.  CONCLUSION 
The paper has discussed a novel cumulative learning 

methodology based on dynamic structuring of 
Hierarchical Production Rules (HPRs) clusters. The main 
advantage of the method is the high comprehensibility of 
the knowledge representation used and the employment 
of a symbolic learning approach Fusion [4] that allows 
incorporation of new knowledge into the knowledge 
gained during previous episodes. The proposed system 
restructures clusters with each episode and maintains a 
summary of clusters with minimum redundancy for future 
episodes. The proposed methodology would be useful in 
mining data streams and in the development of dynamic 
knowledge based systems. 
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