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Abstract—By systematically applying different engineering 

methods, difficult financial problems become approachable. Using a 
combination of theory and techniques such as wavelet transform, 
time series data mining, Markov chain based discrete stochastic 
optimization, and evolutionary algorithms, this work formulated a 
strategy to characterize and forecast non-linear time series. It 
attempted to extract typical features from the volatility data sets of 
S&P100 and S&P500 indices that include abrupt drops, jumps and 
other non-linearity. As a result, accuracy of forecasting has reached 
an average of over 75% surpassing any other publicly available 
results on the forecast of any financial index. 
 

Keywords— Discrete stochastic optimization, genetic algorithms, 
genetic programming, volatility forecast 

I. THE PROBLEM AND APPROACH 
OLATILITY is the standard deviation of the rate of 
return distributions and is a commonly accepted measure 

of risk in the investment field. Integrated Volatility (IV) is 
calculated from the cumulative squared intraday returns of the 
underlying securities at high frequencies as defined by 
Anderson et al [1]. The daily volatility is a crucial variable in 
evaluation of option prices and in conducting different 
hedging strategies. The importance of volatility 
estimation/forecast is further exemplified by the Nobel Prize 
awarded in 2003 to Professor Robert F. Engle for his 
pioneering work on modeling volatility dynamics. 

The research outlined in this paper intends to establish a 
systematic approach by using the existing engineering 
methods to forecast effectively the volatility of a selected 
financial market i.e., to improve the accuracy of the forecast. 
The approach will revolve around evolutionary algorithms 
(EA) within a Time Series Data Mining (TSDM) framework, 
which is supported by a Markov chain based random search 
method specifically for discrete stochastic optimization. A key 
concept borrowed from engineering practices is data 
transformation prior to any in depth analysis. As such, a time 
series of an equity index is first converted into IV’s and then 
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wavelet coefficients. By converting the latent variance of an 
index into an effectively observable IV time series, we arrive 
at a typical time series forecasting problem. Instead of going 
the classical econometric route, a wavelet transform is used to 
preprocess the IV data, and then a combined genetic algorithm 
(GA) and genetic programming (GP) approach is used to 
explore the hidden repetitive patterns for the forecasting 
purpose. By treating the wavelet coefficients as 4-lag 
recursive data, we apply simple “IF/THEN” rules with GA’s 
and similarly with GP’s in order to capture the typical patterns 
most frequently found in the data set including the nonlinear 
cases. Since wavelet coefficients are far smaller in size 
compared with the original time series, calculation efficiency 
could be achieved. The research covered in this paper intends 
to forecast both the direction and range of the volatility 
movement with GA’s and the corresponding values with 
GP’s. Two indices of S&P500 and S&P100 are obtained from 
different sources and analyzed with a similar approach. The 
results are compared with each other for validation purpose. 

This paper could be divided into three sections, Section I 
provides background information regarding volatility 
forecasting and the general plan and methodology of the 
current research. Section II lays the theoretical foundation for 
the practical approach adopted in this work, i.e. the rationale 
of converting the IV series into a 4-lag recursive data set. And 
the third part describes the procedure to implement the 
proposed IV-wavelet-EA method including the analysis on 
real data and the corresponding results. 

A. Literature Review 
As mentioned in Ma et al [2], traditional financial 

engineering methods based on parametric models such as the 
GARCH model family, seem to have difficulty to improve the 
accuracy in volatility forecasting due to their rigid as well as 
linear structure. The requirement of distribution assumption 
further hinders the forecasting accuracy [3]. Except those 
based on proprietary methodology, there is still a lack of 
publicly available and effective method to deal with the non-
linearity inherent in the volatility series of financial indices [4, 
5]. In this regard, recent development in financial time series 
analysis could be beneficial to these forecasting problems. 

Work conducted in [6] has established that by using a GA 
method, the one day ahead moving direction and range of the 
volatility of selected underlying securities could be forecasted 
at an average accuracy of over 75%. Table I summarizes the 
important characteristics of the reviewed papers, which 
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provides us with guidelines to further our discussion. 
 

TABLE I. 
SUMMARY OF THE PAPERS REVIEWED IN DETAILS 

AUTHOR(S) APPROACH GOAL COMMENTS 
Pictet et al., [7] GP Discover new FX volatility models using 

“typed” GP trees. 
Does not take into account non-linearity. Use FX symmetry to 
reduce considerably the search space. 

Zumbach et al., [8] GP+LS Use hybrid GP to forecast FX volatility. Does not take into account non-linearity. Use FX symmetry to 
reduce considerably the search space. 

Chen & Yeh, [9] GP Use a recursive GP to detect and adapt to 
structural changes of market volatility. 

Explicit recognition of non-linearity but does not attempt to 
forecast. Integrated Volatility was not used. 

Neely & Weller, [4] GARCH, GP, 
RiskMetrics 

Compare three approaches: Parametric, 
generalized parametric and non-parametric in 
FX forecasting. 

In many instances, GP out-performed the other approaches. 
They were tested on FX volatility only.  Non-linearity is not 
accounted for. No IV. 

Kaboudan, [10] GP, wavelet, NN Apply an integrated approach to forecast one-
step as well as 16-step-ahead exchange rate 
forecasting. 

Does not deal with volatility.  Other type of wavelet might 
improve the effectiveness. 

Lee, [11] ANN + GP, 
GARCH 

Compare the computation intelligence method 
with GARCH models. 

Better results are achieved at questionable calculation 
efficiency for medium to long forecasting horizons. 

Lawrenz & Westerhoff, 
[12] 

GA Explore how trading rules can explain market 
volatility. Use GA to combine six simple 
trading rules using the chartists – 
fundamentalists point of view.   

In real world there are more than two players (i.e. chartists and 
fundamentalists) and trading rules are much more complex. 

Kinlay et al., [13] GA, SM Asset allocation and optimization system 
based on a weighted sum technique. The 
weights are determined by statistical inference 
and aided by a GA. 

Proprietary techniques with many undisclosed details. Best 
published results with 72% – 75% prediction accuracy. 

Fong & Szeto, [14] GA Use GA to determine simple if – then – else 
rules in order to predict the behavior of 
artificially generated time series. 

Obtained 50% - 60% accuracy using only 100 simple if – then 
– else rules. Demonstrated the search power of GA applied to 
stochastic series. 

Maheu, [15] SM Explores the nonlinear features of FX 
integrated volatility. 

Found that stochastic jumps (structural changes) are a very 
determinant feature in IV. 

Gaunersdorfer, [16] SM Attempt to define a nonlinear model that 
explains the volatility clustering phenomenon. 

It concludes that the rate of return have non predictable 
behavior while the variance do show trend that is close to the 
index measured. Thus confirming the usefulness of the 
integrated volatility approach. 

Dunis & Huang, [17] NN Applied a non-linear non-parametric approach 
to forecast and trade FX 

Achieved slightly above 50% of forecast accuracy.  But 
elaborate models produced poor results. 

Wang et al. [18] CEV Account for the non-linearity in volatility with 
a stochastic jump-decay process 

Provides further theoretical foundation for the current research 
to deal with non-linearity. 

Hovspian, et al. [19] SVC, 
periodogram, 

GARCH 

Detect and predict periods of relatively 
increased volatility by a synthesizing method. 

It is still a GARCH based approach, i.e. parametric models and 
lacks verification with real data sets. 

Tino et al. [20] Sparse Bayesian 
Kernel 

By quantizing real value time series, forecast 
the one-day-ahead volatility to generate profit. 

Only forecasts the directions of volatility. 

Gavrishchaka, [21] Boosting 
framework 

Make optimal investment decisions by 
forecasting the directions of volatility. 

Other calculation methods could help improve efficiency.  Only 
forecasts the directions of volatility. 

GA – Genetic Algorithm, GP(+LS) – Genetic Programming (with local search), SM – Statistical Methods, FX – Foreign Exchange. 
 

Based on the literature survey, one can conclude that the 
contemporary research of volatility forecast has started to 
venture into the non traditional domain particularly in the 
computational intelligence area such as GA/GP in a backdrop 
of active IV research; each has its own advantages.  IV 
provides a good starting estimation of the current volatility, 
and as indicated in previous sections, researchers could apply 
a variety of techniques including stochastic analysis to 
forecast future volatility more accurately.  GA/GP on the 
other hand, could effectively and progressively efficiently deal 
with non-linearity, which opens up an alternative avenue 
besides the effort made by the traditional academics. 

B. Research Objectives 
This paper intends to establish a systematic approach and 

eventually a software tool for analysts to forecast more 
precisely the direction, range or even the value of future 

volatility of financial indices as well as different equities.  In 
other words, this volatility forecasting method should be: 
• free of strong assumptions, e.g. no need to assume 

normal or any other statistical distributions associated 
with the time series and its estimation errors;  

• more flexible, i.e. not limited by the parametric structure;   
• more accurate on the current and hence the forecasted 

volatility, i.e. IV transforms volatility from a latent 
variable into an observable variable; 

• more efficient because of the data preprocessing by 
means of wavelet transform. 

C. Research Procedure 
It is apparent that most of the contemporary researchers use 
EA in time series analysis simply as a tool without building up 
rigorous theoretical substantiation for its application in the 
process.  



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:1, No:10, 2007

575

 

 

 

In teg ra ted
V o la tility

W av e le t
T ran sfo rm

N o n -lin ea r
v o la tility  d irec -
tio n a l fo recas t

S tru c tu ra l ch an g e
d e tec tio n

P red ic tio n
m o d u le

E q u ity
trad in g

d a ta

S h o rt te rm
fo rcastin g

re su lts

R esam p le
d a ta  an d

p ro d u ce  IV

D o m ain
red u c tio n  u sin g

W av e le t
T ran sfo rm

E A  o p tim iza tio n

U sin g  G A

U sin g  G P

S h o rt te rm
fo recas tin g

 
Fig. 1 Proposed volatility directional forecasting system architecture 

 
EA be it GA or GP is typically lack of rigorous 

mathematical proof even though it is a powerful tool for 
optimization. In order to lay the theoretical foundation for the 
current approach, the IV time series is first converted into a 
four-lag recursive series in the TSDM framework as shown in 
Section II.A and B. In Section II.C we found that the resultant 
series is in fact a Markov chain and thus demonstrated that a 
Markov chain based discrete stochastic optimization method 
could provide the theoretical support for applying GA’s for 
the forecast purpose. The following figure summarizes the 
architecture of the proposed IV-wavelet-EA time series 
forecasting approach. Figure 1 illustrates the operational 
procedure to implement the proposed method in which the 
application of a data reduction and analysis technique converts 
a difficult volatility forecasting problem into a classical signal 
analysis one. And such a principle is one of the main 
contributions made by this research. 

II. THEORETICAL FOUNDATION 

A. Data Mining of the IV Time Series 
Data mining is the analysis of data with the goal of 

uncovering hidden patterns especially those complex 
relationships in large data sets. Predictive data mining is a 
search for very strong patterns in those data that can be 
generalized to make accurate future decisions [22].  

Povinelli [22] introduced the Time Series Data Mining 
(TSDM) framework, which differs fundamentally from most 
of other contemporary approaches. The TSDM framework 
helps reveal hidden temporal patterns that are characteristic 
and predictive of time series events. This contrasts with other 
time series analysis techniques, which attempt to characterize 
and predict all observations. There are inherently many 
different patterns in financial time series, linear and nonlinear. 
A financial series is a dynamic entity which is affected by 
many variables, be it economical, financial, political, 
psychological, legal, etc. It is philosophically unwise to use 
one fix model, linear or nonlinear to estimate such a process, 
let alone forecasting. We believe that instead of using one 

single formula to explain the entire time series, a better idea 
would be to use multiple GA’s and/or GP’s exploring 
sequentially in the search space to obtain an overall estimation 
represented by a set of formula rules. For example, the GP’s 
try to find the best fitting rules based on the input time series. 
The best formula rules are then combined and used to forecast 
the future IV values. The same applies to rules in the GA 
approach. 

B. Rule-based EA Forecasting Method 
In this section and in the Appendix, background 

information regarding Povinelli’s TSDM methods is 
introduced. The TSDM methods create a new structure for 
analyzing time series by adapting concepts from data mining, 
time series analysis, EA’s, and nonlinear dynamics system. 
They are designed to predict non-stationary, non-periodic and 
irregular time series, and not restricted by the use of 
predefined templates. More specifically, they help discover 
hidden temporal structures predictive of sharp movements in 
time series, using a time-delay embedding process that 
reconstructs the time series into a phase space that is 
topologically equivalent to the original system under certain 
assumptions [22]. The TSDM methods are developed and 
applicable to make one-step predictions for time series data 
sets. In order to extract non-stationary temporal patterns, a 
specific TSDM method could be used to address quasi-
stationary temporal patterns, i.e., temporal patterns that are 
characteristic and predictive of events for a limited time 
window Q. It is called the Time Series Data Mining evolving 
temporal pattern (TSDMe2) method, which uses a fixed 
training window and a single period prediction window. The 
TSDMe2 method differs from the other TSDM methods in 
how the observed and testing time series are formed. The 
TSDMe2 method creates the overlapping observed time 
series: 
 { }, , , .j jX t j j N= θ = +K  (1) 

The testing time series is formed from a single observation: 
 { }, 1 ,j jY t j N= θ = + +  (2) 
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where θj is the time series value at time t=j, and N is the size 
of the window. 

In characterizing different patterns hidden in the time 
series, there are two key factors to consider, number of pattern 
types and size of the patterns (or window Q). By parsimony, 
the simplest characterization of events possible is desired i.e., 
as small a dimensional phase space Q as possible and as few 
characterization patterns as necessary. However, the following 
modifications have been made to the typical TSDM in order to 
implement the proposed data mining procedure,  
 
i) to increase the pattern characterizations by involving as 

many as 100 different arithmetic expressions to describe a 
windowed time series;  

ii) to use a 4-lag recursive memory as the size of the patterns 
Q.  For definitions of some related concepts, refer to 
Appendix I. 

 
By using 100 different formula/rules to match the 

frequently appearing events and to extract different patterns 
buried in noise, there is a high probability to extract the 
patterns and further to forecast the one step-ahead activity. 
Note that in each of the 100 rules used to characterize 
different patterns, the value of δ could be considered as the 
margin of accuracy the rules match the points in the window. 
The 4-lag recursive system is used due to the economy of time 
and memory and is particularly useful in dealing with 
volatility forecasting because of past research showing that 
most of the information is contained in the most recent lags, 
resulting the popularity of GARCH(1,1) or other short 
memory models. Moreover, the application of volatility 
estimation in option trading deem necessary to extract also the 
non-event, so that one could capitalize on the time value of the 
option. The potentially wide variety of the 100 rules could 
also help extracting those non events. 

To find the different temporal patterns the time series is 
embedded into a reconstructed phase space with a time delay 
of one and a dimension of four [22]. The patterns are 
determined by the first four points in the windowed data while 
making a prediction for the value at the fifth time interval. 
Once the data is embedded, temporal structures are located 
using a GA/GP search. Pattern clusters are made of points 
within a fixed distance of the temporal structures δ. In case of 
using GP, the event characterization function g(t) = θt+, 
determines the value given to the prediction made from the 
clustering using the temporal structures. This value is the IV 
value for the next time interval. The temporal structures are 
next ordered by how well each predicts the IV movements. A 
ranking function is defined as the average value within a 
temporal structure, and it is used to order the structures for 
optimization. The optimization is a search to find the best set 
of temporal structures and is done with GP that finds fitness 
value parameters that maximize the ranking function f(P) – the 
frequency of the correct guessed patterns. The GP uses a 
combination of Monte Carlo search for population 
initialization with a fixed percentage selection, crossover and 

mutation to find the optimal P*, and a limited number of 
generations to halt the GP [22, 23]. 

When GA is used, the IV window Xj= {θj, t=j,…, j+ 3} will 
be converted into a set of numbers {1, 2, 3, 4, *} by 
classifying the range as (-∞, -a], (-a, b], (b, c], (d, ∞), where 
‘*’ means “don’t care”. Therefore, all data will become a 
sequence of numbers. The rules will take the form of <IF [((θj 
= I) AND/OR (θj+1 = J) AND/OR ((θj+2 = K)) AND/OR (θj+3 = 
L))], THEN (θj+4 =M)>, where the event characterization 
function g(t)= θj+4 will be a number that predicts the range of 
the subsequent IV value. And δ will become obsolete. The key 
difference between using GP and GA is the form of the rule.  
More details could be found in Section III.B. 

In general, combination can potentially eliminate the 
erroneous predictions which might be generated due to the 
noise in the data. In the case of the rule learning process, 
independent trials of the GA/GP can be considered to explore 
different parts of the search space, thereby learning different 
types of patterns for prediction. As a result, at a given time 
some rules generate better predictors than others, thus making 
them ideal candidates as base predictors to achieve increased 
predictive accuracy. 

C. Markov Chain based Discrete Stochastic Optimization 
The GA approach outlined above and employed in Ma et al 

[6] satisfied some stringent criteria and yielded forecasting 
accuracy that is higher than those derived from other publicly 
available research. GA methods have, however, certain 
drawbacks, e.g. GA’s are not guaranteed to give an optimal 
solution and they lack convergence proof. Compared with 
other stochastic optimization techniques such as simulated 
annealing, it is less rigorous. 

The recent advancement in discrete stochastic optimization 
methods provides the theoretical foundation to solidify the GA 
approach. For example, Andradottir [24] demonstrated the 
feasibility of applying the Markov chain method when the 
transitional matrix is initially non-time homogeneous and 
asymptotically approaches time homogeneous, unlike Duan 
[25] and most other work in the field, which are confined to 
time-homogeneous cases. However, the main difficulty while 
applying Markov chain theory to solve time series problem is 
that data in time series problems are typically correlated, while 
Markov chain by definition does not concern about the 
historical states prior to the current point. This is exemplified 
by the application of Markov chain method on the non-linear 
asymmetric GARCH(1,1) process, as done in Duan et al’s [25] 
research. Therefore, one needs to transform a time series into 
a Markov chain while maintaining the necessary characteristic 
of the original data, in order to make use of the rigorous 
mathematical theory to substantiate the stochastic optimization 
such as GA’s.   

The Markov chain approach allows one to decouple the 
partitioning of time and state.  In other words, one can use 
time steps suitable for a particular contingent claim without 
being unduly constrained to have a particular set of state 
values, unlike other option valuation methods such as 



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:1, No:10, 2007

577

 

 

binomial tree or lattice and finite difference method. Such a 
characteristic motivates the current IV data conversion into 
the overlapping four lag data groups thus making the 
optimization feasible when we use both Markov chain and GA 
together.   

In the following sections we attempt to apply a Markov 
chain based discrete stochastic optimization method (DSOM) 
to substantiate the use of GA’s in Ma et al. [6], which 
typically lacks rigorous mathematical proofs. In Section II.C.1 
Andradottir’s [24] global search method for discrete stochastic 
optimization is introduced.  In Section II.C.3, the method is 
applied to substantiate the use of GA’s for volatility forecast. 
In Section II.E, we generally discuss the approach with 
respect to its limitations and potential applications. 

C.1 Typical Markov Chain Method 
The following is the general form of a discrete stochastic 

optimization problem that needs to determine global optimal 
solutions: 
 { }max ( ), where ( ) ( ) , .f f E X

θ∈Θ
θ θ = θ ∀θ ∈ Θ  (3) 

• Here, f : Θ → ℜ is the objective function.  
• Θ is the discrete feasible region containing at least two 

states; in the current case, for a finite feasible set, Θ∗ ≠ 0, 
where Θ∗ = { θ ∈Θ : f(θ)≥ f(θ’) for all θ ∈Θ} (θ’ 
∈Θ\{θ}) is the set of global optimal solutions to the 
optimization problem; since f :  Θ → ℜ,  the optimal 
value f* = maxθ ∈Θ  f(θ ) is finite and can be achieved. 

• {X(θ):θ ∈Θ}  is a collection of random variables having 
the property that E{X(θ)} cannot be evaluated analytically 
but estimated or measured. 

• θ is a random variable in a stochastic process.  
 

Rather than sequentially using either the current point or the 
most frequently visited point to estimate the optimal solution,  
Andradottir [24] proposed using all the observed objective 
function values generated as the random search method moves 
around the feasible region to obtain increasingly more 
accurate estimates of the objective function values at different 
points.  At any given time, the feasible solution that has the 
best estimated objective function value, e.g. the largest one for 
maximization problems, is used as the estimate of the optimal 
solution. Numerical evidence presented by Andradottir [24] 
suggests that the use of this approach for estimating the 
optimal solution appears to yield improved performance 
relative to other approaches for estimating the optimal 
solution 

C.2 More Contemporary Approach 
Andradottir’s [24] Lemma 3.1 assumes that Pm, m = 0, 1, 2, 

… and P are Markov matrices on the state space Θ such that P 
is irreducible and aperiodic and Pm → P as m → ∞.  If q: Θ → 
ℜ, then as M → ∞  

 
1 1

1 ( ) ( ), ,
M J

m d
m d

q q d as M
M = =

θ → π → ∞∑ ∑  (4) 

where πΤ = (π1, ..., πJ) is the steady-state distribution 

corresponding to P, while {Xm} is a non-homogeneous 
Markov chain with transition probabilities 

 { } ( )1 0| , ,
0,1, 2,

m m m mP d P d
d m

+θ = θ θ = θ
∀ ∈ Θ ∧ =

K
K

 (5) 

In other words at iteration m+1, θm+1 has d=J possible states. 
Here the number of states d is countable and limited. θt could 
be, in the case of Ma et al [6] the successively overlapped 4-
lag recursive data set that has been converted from the original 
IV time series.  And it takes the states in the form of 
numerical values θt ∈{1, 2, 3, 4, *}, and j = 1, …, J. 
Consequently, θt’s will form a typical rule θ with numerical 
values joined by operators “AND” and “OR”. Details about the 
structure of the rules will be given in Section III.B. At the 
limit, the transitional matrix becomes time-homogeneous. By 
using Theorem 1 shown in Section II.C.5 with our GA 
operation, we look for rules that most frequently match with 
the actual overlapped 4-lag IV data.  Those patterns that 
appear more often tend to be caught by rules derived from 
crossover and/or mutation, and will gradually lead to more 
successful estimates.   

 Andradottir’ method [24] needs to maintain two variables 
for each point θ ∈Θ, i.e. Km(θ) would count how many 
estimates of f(θ) have been generated in the first m iterations, 
while ∑m(θ) would contain the sum of all Km(θ) estimates of 
f(θ)  that have been generated in the first m iterations.  The 
specific procedure is outlined as follows: 
 
Algorithm 1 – Modified Global Search Method 
Step 0: Select a starting point θ0 ∈ Θ. Let K-1(θ) = Σ-1(θ) = 0 

∀ θ ∈ Θ. Let m = 0 and θ*
m = θ0 and go to Step 1. 

Step 1: Given the value of θm, generate a uniform random 
variable θ’m on N(θm) independently of the past (so that 
∀ θ∈Θ, θ ≠ θm, we have that θ’m = θ with probability 1 / 
(|Θ| − 1)). Go to Step 2. 

Step 2: Given the value of θm and θ’m, generate observations 
Xm,l(θ) of X(θ), for l = 1, …, L and θ = θm, θ’m 
independently of the past. Let Rm = ΣL

l=1 (Xm,l(θm) − 
Xm,l(θ’m)/L. if Rm > 0, then let θm+1 = θm. Otherwise let 
θm+1 = θ’m. Go to Step 3. 

Step 3: Let Km(θ) = Km-1(θ)  + L for θ = θm, θ’m, and 
Km(θ) = Km-1(θ) ∀θ ∈Θ\{θm, θ’m}. Moreover, let 
∑m(θ) = ∑m-1(θ) + ∑L

l=1Xm,l(θ) for θ = θm, θ’m, and 
∑m(θ) = ∑m-1(θ)  ∀θ ∈Θ\{θm, θ’m}. Let θ*m ∈ 
arg max ( ) K ( )

m mmθ∈ϒ θ θ∑ , where ϒm = {θ ∈ Θ : 

Km(θ) > 0}.  Let m = m +1 and go to Step 1. 
 

The main issue in using Algorithm 1 will be the way to use 
the state data generated by a random search method in order to 
obtain an estimate of the optimal solution. There is no 
particular requirement how θ , the rule should behave.  On the 
other hand, {X(θ):θ ∈Θ} should be a collection of random 
variables having the feature that E{X(θ)} is the unbiased and 
consistent estimation of f(θ), i.e. the prediction accuracy 
recorded at the current generation among all best rules. Details 
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regarding the rationale of unbiased and consistent estimation 
of f(θ) are given in Section II.C.5. The GA operation in Ma et 
al [6] repetitively loops through Step 1 through 3 until the last 
generation.  Its main differences include a) evaluating far 
more rules per iteration, b) ranking instead of tournament as 
the selection method and c) limited number of rules instead of 
all historical rules involved in fitness value optimization. In 
Algorithm 1, rules in each group are first compared against 
each other pair by pair. Those rules that have better prediction 
rate will be retained for the next generation, i.e. the selection 
of θm+1 based on the value of Rm. The approach here requires 
the search of optimized solution to be identified in Step 3, 
where Km(θ)  and ∑m(θ) for each θ ∈Θ are stored, 
accumulated and compared for maximization. This is the key 
difference between Andradottir’s method and others including 
the one used in Ma et al [6], i.e. all values of θm+1 are kept in 
memory while GA’s are ongoing. In every generation, new 
rules in the groups that have been derived from crossover and 
mutation in the previous generation will be put back into the 
pool to compare with those retained from the last generation. 
Only those new ones that have higher prediction rates will 
replace the respectively selected peers for the next generation. 
Either accepted or rejected they are recorded in memory 
together with other existing rules. At the last generation, 
among thousands of rules in the memory the optimization is 
performed with θm

* ∈armax θ∈Tm ∑m(θ)/Km(θ). The top 100 
non-identical rules will be used for validation on another set of 
IV data. The detailed procedure in applying Andradottir’s 
method with GA will be given in Section III.B. 

C.3 Proposed Methodology 
Algorithm 1 is quite a general form of optimization without 

explicit assumption on the variables. To apply Algorithm 1, 
we classify the IV time series into four ranges and randomly 
generate 100 groups of 100 rules, as shown in Section II.B. 
The first four elements in the “IF” part of the rule are used as 
the qualifying criteria and the “THEN” part is for predicting 
the subsequent IV value. We define a set θ = {θt, θ t+1, θ t+2, 
θt+3, θ t+4}, where θ  ∈{1, 2, 3, 4, *}.  As a result, the 
collection of random variable  

 
{ }1 2 3 4if , , , , matches the1,( ) data sequence;

0, otherwise.
t t t t tX + + + +⎧ θ θ θ θ θ⎪θ = ⎨

⎪⎩
 (6) 

where {θt, θ t+1, θ t+2, θ t+3, θ t+4 } represents the complete rule 
including the qualifying part θ t, θ t+1, θ t+2, θ t+3 and the 
prediction part θt+4.  The nature of X(θ) makes it IID as 
required in equation (3). The problem is therefore, converted 
into a search of rules that best fit the four-point patterns in the 
IV data set, so that the immediate fifth IV value could be 
forecasted upon knowing the previous four points. Each rule 
with five recursive points in θ’s will be independent of each 
other or at least treated as independent in the eye of GA’s, 
thus satisfies the requirement of Markov chain operation. A 
time series problem is thus converted into a set of random data 
that could be approached with the Markov chain method. 

Here, L is the smaller number of the possible matches derived 
by comparing θm and θm

’ and is at maximum equals the 
number of data points in the IV time series minus four, 
whereas m is the number of generations to perform GA. One 
important feature GA’s incorporate in Step 2 is the way of 
generating Xm,l(θ) of X(θ), for l =1, …, L and θ = θm, θm

’ 
independently of the past. By applying GA’s, θ’m are 
generated through crossover or mutation, while X(θ) depends 
on whether the qualified rule predicts correctly. With the 
value of Rm we could choose either θm or θm

’ to go through 
further GA manipulation, i.e. crossover or mutation. At the 
last generation, we could retain θm

* as the optimal solution for 
the mth generation by carrying out the optimization process. 
Note that the calculation of Km(θ) could be modified as 

 
{ }1 2 3

1

1

, , ,
( ) ,

( ) matches the data sequence;
( ), otherwise.

t t t t
m

m

m

if
K L

K
K

+ + +
−

−

⎧ θ θ θ θ
θ +⎪θ = ⎨

⎪ θ⎩

 (7) 

where {θt, θ t+1, θ t+2, θ t+3} is again the qualifying part of the 
rule. 

C.4 Procedure to Apply DSOM with GA 
When apply Algorithm 1 to solve the current discrete 

stochastic optimization problem, we have Algorithm 2: 
 
Step 0: Randomly assign any one value of {1, 2, 3, 4, *} to 

the first four fields in θ = (θt, θt+1, θt+2, θt+3, θt+4), 
randomly assign operators “AND” and “OR” to join these 
four fields and then assign θt+4 = 1 for the first 25 rules. 
Repeat the same process with θt+4 = 2, 3 and 4 
respectively to form a total of 100 rules. Repeat the 
operation to generate another 99 such groups. Then 
randomly select 50 rules in each group as θ0

’s. Set all 
counters to zeros 

Step 1: The rest of 50 rules in each group that have been 
generated in Step 0 will become θ’m’s. Or when m > 0 
θ’m are derived by applying crossover or mutation on the 
first four points and the three joining operators of rules 
in those ones rejected in Step 2 during the previous 
generation.  

Step 2: Generate the random variable Xm,l(θ)  by running the 
pair of rules respectively selected from θm and θ’m 
sequentially through the entire IV data set. L would be 
the smaller of the two corresponding total matches for 
each θm and θ’m. Xm,l(θ)  = 1 when predict correctly, 0 
otherwise. Let Rm = ∑L

l=1(Xm,l(θm) − Xm,l(θ’m))/L. If Rm > 
0, then let θm+1 = θm. Otherwise let θm+1 = θ’m. Select 
another pair rules from θm and θ’m and repeat the 
comparison procedure until obtaining 50 θm+1 rules. 25 of 
the rejected rules will be used for crossover and the other 
25 mutation at Step 1 in the next generation. Repeat the 
entire process for the rest of the 99 groups.  

Step 3: Km(θ) would be the total number of matches in the 
qualifying part of rules θm and θ’m up to generation m, 
while ∑m(θ)  is the number of correct predictions for the 
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corresponding rules. Increase the counter by 1 until 
reaching the preset limit. At the last generation, optimize 
among all rules stored in the memory based on the given 
criteria and retain the top 100 θ*m that could best 
forecast in the given data set, i.e. maximize the 
percentage of correct forecast by letting θ*m ∈ 
arg max ( ) K ( )

m mmθ∈ϒ θ θ∑ , where ϒm = {θ ∈ Θ : 

Km(θ) > 0}. In ranking all stored rules, among those rules 
that are numerically identical, qualified and predicting 
correctly only the one has minimum “don’t care” fields 
and “OR” operators will be retained. 

 
At Step 0 generation 0, first rule is generated to take a value of 
θ0 and the success rate of prediction to be zero. For whatever 
value of θ0 we generate a different rule based on criteria given 
in Step 1.  At Step 1 we would make use of the GA technique 
such as the tournament/elitist selection criterion to improve the 
chance of reaching the optimal objective function. Tournament 
selection is a mechanism for choosing individuals from a 
population. A group (typically between 2 and 7 individuals) 
are selected at random from the population and the best 
(normally only one, but possibly more) is chosen. An elitist 
GA is one that always retains in the population the best 
individual found so far. Tournament selection is naturally 
elitist.  

At Step 2, we generate the expected outcome Xm(θ)  for 
both rules by comparing each rule with all data points in the 
IV series.  In carrying on the same process to the next point in 
the data set till completion, we find the respective L. For 
generation m>1, we only need to go through this process for 
θ’m while values of Xm(θ) and L for θm have been derived in 
the previous generation. If θ’m have higher rates of success, 
replace the current rules with the more successful ones and 
keep them in memory as θm+1.  In such an operation, the same 
θm+1 from different groups could appear more than once as 
indicated in Step 1, and it will yield the same X(θ) as before 
due to the nature of the data set. But only one of them should 
be registered when they predict better than the current best θm. 
In order to comply with Algorithm 1, we could incorporate a 
screening mechanism firstly to reject rules that are the same as 
those currently exist in the memory and secondly to reject 
rules that are identically qualified and correctly predicting in 
the current generation. This is necessary because in 
Andratottir’s algorithm, θm

’ which is the same as previous θ’s 
will be rejected in Step 2. This process is repeated in parallel 
for all 100 groups. At step 3, at the last generation we 
calculate for the optimal solutions θ∗

m+1 based on the 
corresponding number of correct predictions, i.e. to determine 
the rules that maximize the prediction among all retained 
rules. Once the top 100 rules are derived, we could use them 
to predict another set of IV data especially those at a 
subsequent time period in order to confirm the validity of the 
approach. 

C.5 Rate of Convergence 
The rate of convergence of the algorithm is the rate at 

which the distribution of θm in Algorithm 1 converges to an 
optimal distribution, i.e. only puts a positive mass on elements 
of Θ∗. In other words, rate of convergence of a random search 
method for discrete stochastic optimization is the rate at which 
the estimated value of the objective function at the estimated 
optimal solution converges to the optimal values of the 
objective function. Theorem 1: Rate of Convergence of 
Random Search Methods [24]. Assume that  
 
• Θ∗≠ 0 and is finite; 
• The estimate of the optimal solution θ∗

m+1 ∈ 
arg max ( ) K ( )

m mmθ∈ϒ θ θ∑ in Algorithm 2 converges 

almost surely to the set Θ∗as m → ∞.  Since ∑m(θ) is the 
number of correct predictions while Km(θ) is the number 
of hits, i.e. the number of matches between the first four 
points of the rule and the 4-lag recursive points in the IV 
data set, as m → ∞, Km(θ) → ∞.  From the Strong Law of 
Large Numbers, consistent and unbiased solutions exist 
[24];   

• For all θ ∈ Θ∗, the estimate of f(θ) (obtained from single 
trials, i.e. at a certain value of m) are independent and 
identically distributed with mean –∞ < f(θ) < ∞ and 
variance 0<σ2< ∞;  If Θ is finite and for all θ ∈Θ we have 
|f(θ)| < ∞, the estimates of f(θ) here are IID.  Since the 
rules are initially randomly generated, and each rule is 
independent of each other; rules after randomly crossover 
and mutated are also independent. Moreover, they are 
generated in a similarly random fashion therefore, it is 
understandable that the rate of correct prediction for all 
rules at each iteration is IID. 

• The estimates f(θ) are independent of the estimates of 
f(θ’) for all θ’ ∈ Θ∗\{θ} (when each estimate is obtained 
from a single trial); and  

• there exists a constant 0<c(θ)<∞ and a sequence {am} of 
constants such that as m → ∞, am→ ∞ and Km(θ)/am →P 

c(θ). (i.e. Km(θ) can be tracked so that it is feasible for 
each θ to have a distinguishable value of Km(θ).)  We then 
have 

 
( )
( ) *

*
1

*
1

min ( ) min Z( )
K

as

mm
m

m m

a f

m

+

θ∈Θ θ∈Θ
+

⎛ ⎞θ
⎜ ⎟− θ ⇒ θ
⎜ ⎟θ⎝ ⎠
→ ∞

∑
 (8) 

where ∀θ ∈ Θ∗, the random variables Z(θ) are independent 
and 

 
2 ( )Z( ) ~ N 0, .
( )c

⎛ ⎞σ θ
θ ⎜ ⎟θ⎝ ⎠

 (9) 

D. Limitations of the Proposed Method 
Indeed, Andradottir’s local and global search methods are 

based on the assumptions of initially non-homogeneous but 
asymptotically time homogeneous Markov transition matrix as 
m → ∞, while other assumptions are easy to satisfy, i.e. 
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irreducible, aperiodic, etc. [24]. Such a principle of time 
averages for non-homogeneous Markov chains may be 
applicable to our case, because the 100 rules found by GA are 
derived from matching the 100 most popular patterns in the IV 
data set through an evolutionary process.  The 100 popular 
patterns may not necessary be at the steady-state because the 
limited number of generations and size of the available data 
set. In other words, the required conditions for applying 
Andradottir’s method are stronger than what we actually 
possess. However, Andradottir’s approach provides at least a 
basic mathematical foundation for further development. 

The second limitation is closely related with the first one. 
Andradottir assumed that unbiased estimates of the objective 
function values are available. In particular, if X1(θ),…,XL(θ) 
are IID observations of X(θ) for all θ ∈Θ, then ∑L

l=1X1(θ)/L is 
an unbiased estimate of f(θ) for all L ∈ Ν and θ ∈ Θ.  And at 
current time we will need to accept such an assumption prior 
to the GA operation with a limited data set, which leads to 
limited m. 

E. Potential Applications of volatility Forecasting 
As detailed in [6], the current GA approach provides the 

flexibility and guideline in determining the forecasting 
horizon based on the values of entropy of the respective 
wavelet coefficients by incorporating the wavelet transform.  
More details could be found in Section III.A. This will be 
more reasonable than arbitrarily select the forecasting horizon 
based on users’ experience or requirement in other prevalent 
approaches. The method’s concentration on abrupt changes 
and the use of 4-lags does not limit it from the analysis of 
longer term volatility activities. The current 4-lag could be 
configured to deal with hourly, weekly or even monthly data.  
Moreover, 5-lag, 6-lag or more could be used to account for 
data in longer time horizons. With an improved prediction of 
volatility, we could proceed to trade volatility itself.  One way 
to do so would be to use the newly formed VIX Futures in the 
CFE (Chicago Futures Exchange), namely VXB. 

III.  IMPLEMENTING THE APPROACH 

A. Data Pre-processing 
The original time series such as the S&P100 index is first 

converted into the IV data and then transformed into wavelet 
coefficients.  One advantage of combining wavelet analysis 
with EA is the flexibility that they bring in. By selecting the 
corresponding wavelet coefficient series, the current 4-lag 
configuration could help focus on different time ranges 
depending on nodes on the wavelet tree as given by the 
following expression: 

 ,

1 1

1; ,
2 2

j n

j j

f n n
t t t+ +

+⎡ ⎤= ⎢ ⎥∆ ∆ ∆⎣ ⎦
 (10) 

where j is the level on the tree,  n is the location on the tree, ∆t 
is the sampling period; in the current case, it is one day and  
fj,n is the nominal frequency band. For example, wavelet 
packet node (1, 0) gives information up to four days ahead; 
while (5, 5) is between 11 and 13 days.  

For a data set of N samples of IV's, level 2 of the wavelet 
packets has N/2 number of coefficients, representing a saving 
of 50% calculation for the subsequent GA processing. A 
maximum of level 5 has been selected as the analysis scale in 
this paper, because as mentioned earlier reliability of 
forecasting accuracy drops as time horizon expands. Filters 
such as the db2 wavelet, which has two vanishing moments, 
were used for the current analysis in order to maximize the 
match of the reconstructed data with the original data while 
retain the minimal amount of data. Note that a wavelet of the 
Daubechies family with fewer vanishing moments may fail to 
suppress the higher order polynomial signal. This has been 
confirmed in analyzing the current S&P100 series when db1, 
db2 and db3 occasionally fail to generate the wavelet 
coefficients based on the best tree that is created from the 
wavelet packet. On the other hand, higher order wavelet tends 
to generate smoother decomposed plots, which may loose 
some desirable details from the original series. Different 
combinations of orders and levels of the db wavelets could be 
tried to obtain the best tree. Analysis could focus on the node 
with the highest entropy. For example, db3 with level 5 in the 
best tree, the highest entropy occurs in packet (4, 0), where j = 
4 and n = 0. Packet (4, 0) corresponds to the frequency of (n + 
1)/(2j ∆t) = 1/(32)= 32 days (in case of j = 1, n = 2, (2 + 1)/( 4 
× 1) ≥ 1.3 days). In general, there are five parameters to be 
determined before conducting the analysis, i.e. number of 
levels of the wavelet packet tree, order of the filter, number of 
generations, number of groups of rules and the training period. 
In this research, the effect of each variable is investigated by 
holding others constant.  Since the main difficulty that 
contemporary researchers are faced is the forecast of abrupt 
changes, short term patterns in the volatility are the focus of 
this paper. 

B. Volatility Forecasting with GA 
The premise of the GA approach adopted here is originated 

from Fong and Szeto’s method [14].  First, the transformed IV 
time series in form of wavelet coefficients is classified into 
four ranges, and generate rules randomly in the form as shown 
in Section II.B. More details about wavelet transform of the 
data are given in the following section. For the ‘THEN’ part of 
the rule, there are four different classes, 1, 2, 3 and 4. 
Randomly generate 25 rules for each class to have a total 100 
rules. Repeat the process to generate 100 groups of such rules. 
As a result, the rules would be like <((θt =2)OR(θt+1 
=3)AND(θt+2 =4)AND(θt+3 =2))= (θt+4 =1)>. 

Fitness value of each rule is calculated as described in the 
following. In each training step, the rules for class k are 
trained by comparing the patterns of the randomly generated 
rules with the S&P100 IV historical data. Three possible cases 
can arise:  

Case 1: the ‘IF’ part of the rule does not match the 
data point pattern.  So, no prediction can be made.  

Case 2: the ‘IF’ part of the rule matches the data 
points in the training set. Prediction can be made.  
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When the ‘THEN’ part of the rule also matches the 
class of the corresponding data point, it is counted as 
a correct guess otherwise a wrong guess.  The fitness 
value of rule i will be 

 ( ).i c g c c wF N N N N N= = +  (11) 
Here Nc is the number of correct guess and Nw is the 
number of wrong guess, so that 

 .g c wN N N= +  (12) 
Apply each rule to all training data and find the 
accumulated Nc.  

Case 3: there are more than one rule with the ‘IF’ 
part, which matches the data points in the training 
set. The most specific rule, which does not have 
“don’t care” and all logical operators are ‘AND’, is 
chosen. 

These rules will be ranked based on their fitness.  Repeat 
these steps sequentially throughout the training data set for 
other 99 groups.  Out of the 50 groups with Fi’s below its 
medium, randomly choose 25 groups for crossover, in which 
each group goes through the following process:  

 
1) From the pool of 100 rules, randomly select 2 rules 

to conduct crossover;  
2) Register the rules in a memory;  
3) From the second round of selection onward, 

compare selected the rules with those stored in the 
memory;  

4) If both rules have been selected as a pair before, 
then repeat the selection process till picking a 
different pair. Repeat the process until forming 100 
new rules.   

 
The other 25 groups undergo mutation at a rate of 4%, 

which means 1% overall in each generation. The same process 
is repeated for a preset number of generations, e.g. 1000. In 
each generation, only 50% of rules need evaluation of Fi’s, 
thus a 50% of CPU time saving.  At the end, the best group of 
rules is selected for testing of their forecasting accuracy with 
the subsequent part of the data. 

B.1 Data Testing and Results 
The intraday data of S&P100 between 1987 and Aug. 2003 

is acquired from TickData Inc. Part of the data set θt, the 15-
minute high-low prices between 1998 and 2002 is taken for 
training purpose. The second part, e.g. between Jan. 2 and 
Aug. 29, 2003 will be used to test the validity of the rules.  
The data are imported into a MATLAB environment to 
calculate the corresponding normalized IV's. The IV values 
are then wavelet transformed to find the best tree. The GA 
programs are then applied to forecast the IV values at the 
selected time ranges ahead. 

In applying the GA programs, all rules are initially assigned 

to have zero fitness. The data range. (−∞,−a], (−a, b], (b, c], 
(c, ∞) are preset at a = −0.3, b = 0 and c = 0.3 based on 
observation of the time series plots as well as analyst's risk 
requirement. The data is then processed with the GA programs 
in the Matlab environment and the best group of rules is 
found. Upon completion of the training process, the best 
group of rules will be used to test the subsequent part of the 
S&P100 IV data to assess the forecasting accuracy. To 
achieve calculation economy, the programs that involve GA 
are written in Java while the wavelet transformation is done 
with MATLAB. 
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Fig. 4 Hourly 2003 S&P100 forecasting accuracy based on 2002 

S&P100 data 
It could be observed from Figure 2 and 3, while less 

obvious in Figure 4 that a) the forecasting accuracy is 
generally above 60%, which is better than the traditional 
methods and matches those derived from the proprietary 
methods [4]; b) the forecasting accuracy is higher for the 
wavelet transformed series with higher scales compared with 
those derived on the original series, i.e. the non-transformed 
ones. This may be attributed to the fact that variance of the 
original series is the sum of variances of its spectral 
components. The same data in the same one-year, two-year 
and five-year time horizons as in the current research are 
processed with the GARCH(1,1) model. The forecasting 
values from GARCH(1,1) are first normalized to the 
respective logarithmic means and are then converted into 
values of 1, 2, 3 and 4 according to their amplitudes, similar to 
the preprocessing described in the previous sections where 
GA is used. The accuracy of forecasting is calculated based on 
the comparison between the converted data and the realized 
volatility in the validity-testing period, i.e. from Jan. 03 to 
Aug. 29, 2003. The one day ahead forecasting accuracy for 
the 2003 S&P100 daily data based on training sets at the 
selected periods are as shown: 

TABLE II 
ONE DAY AHEAD FORECASTING ACCURACY 

Period % Accuracy 
2002 0.485 

2001⎯2002 0.491 
1998⎯2002 0.503 

 
They agree well with the results derived in many 

contemporary GARCH as well as IV studies [1, 3], but are 
markedly lower than those achieved by using the GA method 
proposed in this research. The GA method is superior to the 
GARCH approach simply because it takes more historical 
patterns linear or nonlinear, into consideration for forecasting 
purpose. 

C. Volatility Forecast with GP 
In this section, we attempt to forecast the numerical values 

of the volatility by formulating a nonlinear and non parametric 
approach based on GP in the TSDM framework. Different 

patterns, linear or non-linear including the stylized clustering 
effect of volatility may repeat in different time intervals. This 
is true when dealing with different types of financial securities 
or dealing with different historical periods for the same 
underlying security. By making use of the stylized 
characteristics of financial volatility, we extend the TSDM 
method with GP to forecast as many events/non-events as 
practically feasible in the IV time series in order to guide 
option trading. 

C.1 Data Testing and Results 
The same intraday data of S&P100 index (OEX) as those 

used earlier is again applied here. Part of the data set θt, the 
15-minute high-low prices between Dec. 3, 2001 and Dec. 31, 
2002 are taken for training purpose. The second part, e.g. 
between Jan. 2 and Aug. 29, 2003 will be used to test the 
validity of the rules.  The first 21 days of both sets of data are 
used to prepare for the 21-day moving average, in order to 
take the monthly effect into consideration, to de-trend and to 
improve the forecasting accuracy.  

The corresponding normalized IV’s were then calculated 
and fed to the GA programs as described in Section III.A and 
B in order to find the best 100 rules by maximizing the value f.  
These rules are further processed by GP to find the arithmetic 
formulae to forecast the IV values at the selected time ranges 
ahead such as one-day-ahead [6]. The execution cycle of the 
generational GP algorithm includes the following steps: 
1.  Initialize the population. An initial population of 100 is 

created randomly from the basic building blocks. 
2.  Evaluate the individual programs in the existing 

population. A value for fitness, e.g. the absolute 
difference between the individual and the desired one is 
assigned to each solution depending on how close it 
actually is to solving the problem (thus arriving at the 
answer of the desired problem). 

3.  Until the new population is fully populated, repeat: 
a. Select an individual or individuals in the population 

using the selection algorithm 
b. Perform genetic operations (crossover & mutation) on 

the selected individuals 
c. Insert the result of the genetic operations into the new 

population. 
4.  If the termination criterion is fulfilled, then continue. 

Otherwise, replace the existing population with the new 
population and repeat steps 2-4 

5.  Present the best individuals in the population as the 
output from the algorithm. 

Parameters used in the current study are listed in Table III.  
Note that based on the findings in Neely and Weller’s research 
[10], the fitness of the GP operation in the current 
investigation is derived from the Mean Absolute Error 
between the generated individual and the actual IV value.  In 
two separate tests, the 2002 training data set were pre-
processed by following the same steps as those in the GA 
programs, one for 500 generations and the other 1000. The 
intermediate results are then passed through GP programs and 
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the final results of percentage accuracy are shown in Table IV. 
 

TABLE III 
GP CONFIGURATION 
PARAMETER VALUES 

Generations: 25/50/100 
Populations: 100 
Function set: +, −, %, ×, sin, exp, sqrt, ln 
Terminal set : {x(t−1), …, x(t−4)} 
Fitness: difference between obtained values and desired values 
Max. depth of new individual: 6 
Max. depth of new subtrees for mutation: 6 
Max. depth of individuals after crossover: 17 
Mutation rate: 0.05 
Generation method: 50% 

 
TABLE IV  THE FORECASTING ACCURACY FOR 2003 IV DATA BASED ON BOTH 2002 TRAINING DATA SETS. 

GP PARAMETERS 2002 DATA SET (500 GENERATIONS OF GA) 2002 DATA SET (1000 GENERATIONS OF GA) 

[25, 100, 6] 72.65, 73.21, 74.40 74.23, 66.00, 68.77 

[50, 100, 6] 71.46, 75.36, 74.46 76.77, 69.13, 67.54 

[100, 100, 6] 71.44, 69.60, 68.42 68.09, 67.49, 67.17 

 
The 2001-2002 training data set was then pre-processed using GA’s [6] and 1000 generation GP was implemented to obtain the 
results as shown in Table V. 
 

TABLE V  THE FORECASTING ACCURACY FOR 2003 IV DATA BASED ON 2001/2002 TRAINING DATA SETS. 

GP PARAMETERS 2001/2002 DATA (BASED ON 1000 GENERATIONS GA) 

[25, 100, 6] 78.25, 77.66, 78.25 

[50, 100, 6] 80.20, 79.51, 79.54 

[100, 100, 6] 79.10, 78.86, 78.98 

 
For example, an initial population of 100 rules is generated 
and 25 generations of GP are performed with a maximum 
depth of six of new individuals. 

An interesting phenomenon could be observed that the 
forecasting accuracy in the current tests is not positively 
related to the number of generations used in either GA or the 
subsequent GP operations. This may be caused by the early 
convergence to the local minima in the search process.  
Further investigation and appropriate search strategy may be 
necessary to resolve the issue. 

D. Data Analysis with DSOM 
In order to verify the GA principles outlined earlier, we 

analyzed the volatility of S&P500 index based on the 
algorithms shown in Section II.C.4.  The data in 2003 is first 
employed to train the algorithms, while the selected rules are 
tested with the data in 2004.  The same procedure is repeated 
with the data between 2002 and 2003.  Refer to Figure 5 for 
results. 
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Fig. 5 Daily 2004 S&P500 forecasting accuracy with both 2002/2003 

and 2002 data as training data sets 
One could observe that the forecasting accuracy ranged 

between 70 and 80%. Other tests of up to 500 generations 
have shown that results tend to converge after 75 generations. 
One advantage of using the DSOM algorithms is the fast 
convergent due mainly to the usage of larger amount of 
memory instead of looping while implementing GA’s. It is 
interesting however, forecasting accuracy for the 2003 data set 
is generally higher than those derived based on 2002-2003 
data sets.  Further tests would be necessary to shed more light 
into this issue. 
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IV. CONCLUSIONS AND RECOMMENDATIONS 
The methodology described in this research illustrates a 

systematic approach to address specifically non linearity 
problems in the forecast of financial indices. There is no need 
to have much a priori knowledge regarding the nature of the 
phenomenon, neither parametrically nor stochastically. Yet, 
highly accurate estimation and even forecasts could be 
achieved. 

The rationale of the forecasting approach is based on the 
stylized fact of volatility clustering that has been the 
foundation of the GARCH approach. The key characteristics 
of the IV–wavelet-EA approach are the use of the EA four-lag 
recursive data conversion.  Within the TSDM framework the 
four-lag data set acts as the sliding window. And at the same 
time, such data set is a Markov chain thus, enabling the 
subsequent use of the Markov-chain-based discrete stochastic 
optimization process for validation purpose. The current 
approach helps analysts identify different patterns in the time 
domain even if those patterns are abrupt jumps or drops. Since 
it is non parametric and free of any strong pre-assumption, it 
is more flexible and robust to deal with non-linearity. The 
wavelet transform enables analysts to study the volatility 
patterns in different frequencies (time horizons). The 
combination of these techniques opens up a broader field for 
analysts to explore different properties hidden in the volatility 
series.  In general, the GA part of the approach is proved to 
forecast at an accuracy of 75% matching the level achieved by 
other proprietary methods.  These results are further validated 
by the tests of S&P500 with the discrete stochastic 
optimization algorithms, in which the forecasting accuracy 
ranged between 70 and 80%. 

The 100 rules found by GA’s are however, derived from 
matching the 100 most popular patterns in the IV data set 
through an evolutionary process. As such, the 100 popular 
patterns may not necessarily be at the steady-state because the 
limited number of generations and size of the available data 
set. Further proof is needed to generalize Andradottir’s 
method. 

APPENDIX 
A group of TSDM definitions are given in this section, e.g. 

events (important occurrences), temporal patterns (vector of 
length Q), event characterization function (g(t)), temporal 
pattern cluster (P), time-delay embedding, phase space, 
augmented phase space, and objective function [23]. 

An event may be defined as the sharp rise or fall of an IV 
value.  Let Θ = {θj, t = 1, …, M} be the daily IV series for the 
S&P100 index between 2001 and 2002.  A temporal pattern is 
a hidden structure in a time series that is characteristic and 
predictive of events.  The temporal pattern P is a real vector of 
length Q. And it best characterizes the desired events, e.g. P is 
used to predict events in a testing time series.  The temporal 
pattern is represented as a point in a Q dimensional real metric 
space, P∈ℜQ.  Because a temporal pattern may not perfectly 
match the time series observations that precede events, a 
temporal pattern cluster is defined as the set of all points 

within δ of the temporal pattern.   
Let τ>0 be a positive integer. If t represents the present time 

index, then t−τ is a time index in the past, and t + τ is a time 
index in the future.  A phase space is a Q dimensional metric 
space into which a time series is embedded.  In our case, Q is 
chosen to be 4, representing 4-lag recursive memory.  To link 
a temporal pattern (past and present) with an event (future) the 
event characterization function g(t) is introduced. The event 
characterization function represents the value of future 
“eventness” for the current time index.  One possible event 
characterization function to address this goal is g(t) = θj+1, 
which captures the goal of characterizing IV values one-step 
in the future.  The concept of an augmented phase space 
follows from the definitions of the event characterization 
function and the phase space. The augmented phase space is a 
Q+1 dimensional space formed by extending the phase space 
with g(.) as the extra dimension.  Every augmented phase 
space point is a vector <  θj, g(t) > ∈ ℜQ+1. 

As shown in Fig. A-1, the height of the leaf represents the 
significance of g(.) for that time index. From this plot, the 
required temporal pattern and temporal pattern cluster are 
easily identified.  The TSDM objective function represents the 
efficacy of a temporal pattern cluster to characterize events. 
The objective function f maps a temporal pattern cluster P 
onto the real line, which provides an ordering to temporal 
pattern clusters according to their ability to characterize 
events. The objective function is constructed in such a manner 
that its optimizer P* meets the TSDM goal.  The objective 
function must capture the accuracy with which a temporal 
pattern cluster predicts all events. Since it may be impossible 
for a single temporal pattern cluster to perfectly predict all 
events, a collection C of temporal pattern clusters is used for 
this objective function. The objective function f (C) is the ratio 
of correct predictions to all predictions, i.e. 

 ( ) .p r

p r p r

t t
f

t t f f
+

=
+ + +

C  (A-1) 

This objective function would be used to achieve maximum 
event characterization and prediction accuracy for binary g(t).  
The key concept of the TSDM framework is to find optimal 
temporal pattern clusters that characterize and predict events. 
Thus, an optimization algorithm represented by

,
max ( )

P
f P

δ
. 
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Fig. A-1 Stem-and-leaf plot showing the augmented phase space for 
a time series 
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