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Abstract—In contrast to existing methods which do not take into 

account multiconnectivity in a broad sense of this term, we develop 
mathematical models and highly effective combination (BIEM and 
FDM) numerical methods of calculation of  stationary and quasi-
stationary temperature field of a profile part of a blade with 
convective cooling (from the point of view of realization on PC). The 
theoretical substantiation of these methods is proved by appropriate 
theorems. For it, converging quadrature processes have been 
developed and the estimations of errors in the terms of A.Ziqmound 
continuity modules have been received. 

For visualization of profiles are used: the method of the least 
squares with automatic conjecture, device spline, smooth 
replenishment and neural nets. Boundary conditions of heat exchange 
are determined from the solution of the corresponding integral 
equations and empirical relationships. The reliability of designed 
methods is proved by calculation and experimental investigations 
heat and hydraulic characteristics of the gas turbine first stage nozzle 
blade. 

 
Keywords—Mathematical Modeling, Gas Turbine Blade 

Cooling, Neural Networks, BIEM and FDM.  
 

NOMENCLATURE 
 

ГT   gas temperature K 
T  required temperature K 

0T  temperature of environment at 
0i = ; 

K 

0γT  temperature on the outline iγ  at 
0i =  (outside outline of  blade);  

K 

iT  temperature of the environment at 
M1,i =  (temperature of the cooler) 

K 

iγT  temperature on the outline iγ  at 
M1,i =  (outline of cooling 

channels) 

K 

kT  temperature in the k point K 
ρ  material density,  

density of a logarithmic potential 
kq/m3 

- 
vc  thermal capacity J/kg·K 
λ  heat conduction coefficient of 

material or thermal conductivity of 
material of the blade  

W/m·K 

vq  internal source or drain of heat W/m2 

0α  heat transfer coefficient from gas to 
a surface of a blade (at 0i = ) 

W/m2·K 

гα  gas local heat exchange coefficient  W/m2·K 

Вα  air convective heat exchange local 
coefficient 

W/m2·K 

M  quantity of outlines - 
y,x  coordinates of segments mm 

n  external normal to outline or  
quantity of outline segments 

- 

m  quantity of inline segments of all 
cooling channels 

- 

R   variable at an integration of the 
distance between fixed  and 
“running” points 

- 

SΔ  mean on sections of the partition - 
( ) )z(fL ,ετ

 
two-parameter quadrature formula 
for logarithmic double layer 
potential 

- 

)(~ zf  double layer logarithmic potential 
operator 

- 

( ) )(, zfI ετ

 

two-parameter quadrature formula 
for logarithmic potential simple 
layer 

- 

)(zf���  simple layer logarithmic potential 
operator 

- 

)(xfω  module of a continuity  - 
Г  curve outline; the  circulation of 

speed 
- 

ϕ  potential of speed m2/s 
ψ  current function of speed m2/s 
∞V  gas speed vectors mean on the 

flowing 
m/s 

∞α  angle between the speed vector and 
the profile cascade axis 

deg 

Вθ  angle that corresponds to the outlet 
edge of the profile 

deg 

Tu  ratio of turbulences - 

uTε  turbulences coefficient - 

ВG  air flow kg/s 

Гψ , Вψ  gas and air temperature coefficients - 

фκ  coefficient of the form - 

Вμ , Вλ  cooler dynamic viscosity,  
heat conductivity coefficient 

poise, 
W/m·K 

Вi  Bio criterion  - 
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ijp  density of coolant flow kg/m3 

ijξ  coefficient of hydraulic resistance - 

Nu  Nusselt criterion - 
Re  Reynolds criterion - 

 
I. INTRODUCTION   

The development of aviation gas turbine engines (AGTE) at 
the present stage is mainly reached by assimilation of high 
values of gas temperature in front of the turbine ( ГT ). The 
activities on gas temperature increase are conducted in several 
directions. Assimilation of high ( ГT ) in AGTE is however 
reached by refinement of cooling systems of turbine blades. It 
is especially necessary to note, that with ГT  increase the 
requirement to accuracy of results will increase. In other 
words, at allowed values of AGTE metal 
temperature )00K(1100...13Tlim = , the absolute error of 
temperature calculation should be in limits ( K3020 − ), that is 
no more than 2-3% [2,3,5,6,12]. 

This is difficult to achieve (multiconnected fields with 
various cooling channels, variables in time and coordinates 
boundary conditions). Such problem solving requires 
application of modern and perfect mathematical device. 
 

II. PROBLEM FORMULATION 
In classical statement a heat conduction differential equation 

in common case for non-stationary process with distribution of 
heat in multi–dimensional area (Fourier-Kirchhoff equation) 
has a kind [1]:  

,()(
v

v qT) grad div
t

TC
+=

∂
∂ λρ                           (1) 

where ρ , vc  and λ - accordingly material density, thermal 
capacity, and heat conduction; vq - internal source or drain of 
heat, and T - is required temperature.  

Research has established that the temperature condition of 
the blade profile part with radial cooling channels can be 
determined as two-dimensional [2]. Besides, if to suppose 
constancy of physical properties and absence of internal 
sources (drains) of heat, then the temperature field under fixed 
conditions will depend only on the skew shape and on the 
temperature distribution on the skew boundaries. In this case, 
equation (1) will look like: 

                   0
y
T

x
TT

2

2

2

2
=

∂

∂
+

∂

∂
=Δ                            

(2) 
When determining particular temperature fields in gas 

turbine elements are used boundary conditions of the third 
kind, describing heat exchange between the skew field and the   
environment (on the basis of a hypothesis of a Newton-
Riemann). In that case, these boundary conditions will be 
recorded as follows: 

                      
n

T
TT 0

000 ∂

∂
=−

γ
γ λα )(                           (3) 

This following equation characterizes the quantity of heat 
transmitted by convection from gas to unit of a surface of a 

blade and assigned by heat conduction in a skew field of a 
blade. 

)( ii TT
n

T
i

i −=
∂

∂
− γ

γ αλ                        (4) 

Equation (4) characterizes the heat quantity assigned by  
convection of the cooler, which is transmitted by heat 
conduction of the blade material to the surface of cooling 
channels: where 0T  - temperature of environment at 0i = ; iT  
- temperature of the environment at M1,i =  (temperature of 
the cooler), where M - quantity of outlines; 

0γT - temperature 

on an outline iγ  at 0i =  (outside outline of blade); 
iγT  - 

temperature on an iγ  at M1,i =  (outline of cooling channels); 

0α  - heat transfer factor from gas to a surface of a blade (at 
0i = ); iα - heat transfer factor from a blade to the cooling air 

at M1,i = ; λ  - thermal conductivity of the material of a 
blade; n - external normal on an outline of researched area. 

 
III. APPLICATION OF BOUNDARY INTEGRATED 

EQUATIONS METHOD FOR DEFINITION OF AGTE 
ELEMENTS’ TEMPERATURE FIELDS 

At present for the solution of this boundary problem (2)-(4) 
four numerical methods are used: Methods of Finite 
Differences (MFD), Finite Element Method (FEM), 
probabilistic method (Monte-Carlo method), and Boundary 
Integral Equations Method (BIEM) (or its discrete analog ─ 
Boundary Element Method (BEM)). 

Let us consider BIEM application for the solution of 
problem (2)-(4). 

The function ( )yxTT ,= , continuous with the derivatives up 
to the second order, satisfying the Laplace equation in 
considered area, including and its outline ∪

M

0i
iγГ

=
= , is harmonic. 

Consequence of the Grin integral formula for the researched 
harmonic function ( )yxTT ,=  is the ratio:   

]ds
n
ТnR

n
nR)([Т

2π
1y)Т(x, Г

Г
Г ∂

∂−∫ ∂
∂= AA                  (5) 

where R  - variable at an integration of the distance between 
point ( )yxK , and “running” on the outline k - point; ГT  - 
temperature on the outline Г . The temperature value in some 
point k  lying on the boundary is determined (as limiting at 
approach of point ( )yxK , to the boundary) 

⎥
⎦

⎤
⎢
⎣

⎡
∫
∂
∂

−∫
∂

∂
= dsnR

n
Т

ds
n

)nR(
Т

2π
1Т

Г
k

Г

Г

k
Гk A

A                    (6) 

With allowance of the boundary conditions (2)-(3), after 
collecting terms of terms and input of new factors, the ratio (6) 
can be presented as a linear algebraic equation, computed for 
the point R : 

            
0πT2TT

T...TT

kikγ0kγ

γknγ2kγ1k

i0

m00201

=−−−

−+++

ϕϕ

ϕϕϕ
                 (7) 

where n is the quantity of sites of a partition of an outside 
outline of a blade )( 0ion

i0
=γγ AA  on small sections 

)( 0iatSS i0 =ΔΔ , m is the quantity of sites of a partition of 
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outside outlines of all cooling channels ),( M1i
i

=γA  on small 
sections iSΔ . 

Let us note, that unknowns in the equation (7) except the 
unknown of true value kT  in the k  point are also mean on 
sections of the outlines partition 0SΔ  and iSΔ  temperatures 

m00201
TTT γγγ ,...,, and 

im2i1i
TTT γγγ ,...,,  (total number mn + ). 

From a ratio (7), we shall receive the required temperature for 
any point, using the formula (5): 

]...

...[),(

ii00im

n00201

cpkcpkkm

kn2k1k

TTT

TTT
2
1yxT

γγγ

γγγ

ϕϕϕ

ϕϕϕ
π

−−++

++++=
                  (8) 

where 

∫++∫=

∫++∫=

∫−∫
∂

∂
=

∫−∫
∂

∂
=

imi1
ii

01
0

0m0m

0101

ΔS
k

m

im

ΔS
k

1

01
kγ

ΔSn
k

n

0n

ΔS
k

1

01
kγ

ΔS
k

m

0m

ΔS

k
kn

ΔS
k

1

01

ΔS

k
k1

dsnR
λ
α...dsnR

λ
α

dsnR
λ
α...dsnR

λ
α

dsnR
λ
αds

n
)nR(

.         .             .          .             .    

dsnR
λ
αds

n
)nR(

AA

AA

AA

AA

ϕ

ϕ

ϕ

ϕ

 

In activities [2] the discretization of aniline ∪
M

0i
iγГ

=
=  by a 

many discrete point and integrals that are included in the 
equations as logarithmic potentials, was calculated 
approximately with  the following ratios: 

∫
∂

∂
≈

∂
∂

iγ
i

ΔS
γ

kk ΔS
n

)nR(
ds

n
)nR( AA   ,                       (9)               

 ∫ ≈
iγ

i
ΔS

γkk ΔSnRdsnR AA          ,                   (10) 

(where )∪
M

0i
iiγ

i
i

dsl   ;lLΔS
=

∫==∈
γ

 

 
VI. NEW INTERPRETATION OF THE BIEM 

In contrast to [4], we offer to decide the given boundary 
value problem (2)-(4) as follows. We locate the distribution of 
temperature ( )yxTT ,= as follows: 

                      ∫= −

Г

1dsnRρy)T(x, A ,                               (11) 

where ∪
M

0i
iγГ

=
= -smooth closed Jordan curve; M -quantity of 

cooled channels; ∪
M

0i
i

=
= ρρ - density of a logarithmic potential 

uniformly distributed on iγ  ∪
M

0i
isS

=
= . 

Thus curve   ∪
M

0i
iγГ

=
=  are positively oriented and are given in a 

parametric kind: ( )sxx = ; ( )syy = ; [ ]L0s ,∈ ; ∫=
Г

dsL . 

Using BIEM and expression (11) we shall put problem (2)-(4) 
to the following system of  boundary integral equations: 
 

      

))((

),())()(()(

dsRnsT
2

dsnR
n

s
2
1s

1

Г

i

Г

−∫−=

=
∂
∂

∫ −−

A

A

ρ
πλ
α

ξξξρρ
π

ρ    ,                  (12) 

where 

2122 ysyxsxsR /)))()(())()(((),( ξξξ −+−= . 
For the singular integral operators evaluation, which are 

included in (12) the discrete operators of the logarithmic 
potential with simple and double layer are investigated.  Their 
connection and the evaluations in modules term of the 
continuity (evaluation such as assessments by A. Zigmound 
are obtained) is shown Theorem (main) 
Let 
                        +∞<∫

0 x
x)(ξω  

and let the equation (12) have the solution f*∈CГ (the set of 
continuous functions on Г). Then ∃Ν0∈Ν= {1, 2…} such that 
the discrete system ∀N>N0, obtained from (12) by using the 
discrete double layer potential operator (its properties has been 
studied), has unique solution ;n1,j;m1,k},f{ j

(N)
jk

==
�

 

),dx
x

(x)ω
τ

dx
x

(x)ω
)τ(ωdx

x

(x)(x)ωω
ε

dx
x

(x)(x)ωω
С(Г)(|ff|

L/2

Nε

*f
N

L/2

Nε

L/2

0

*f
N*f

*fξ

Nε

0

*fξ(N)
jk

*
jk

∫

∫ ∫

∫

+

+++

+≤−
�

 

where )(ГC  is constant, depending only on 
∞

=1NNτ --the 

sequence of partitions of Г ; ∞
=1}{ NNε -- the sequence of 

positive numbers such that the pair ( NN ετ ,, ), satisfies the 

condition pτε2 1 ≤≤ −− . 
Let ( )2,0 d∈δ , where d is diameter Г, and the splitting τ is 

that, which is satisfied the condition 

2≥≥′ τ
δp

 
then for all ГC∈ψ  ( ГC  - space of all functions continuous 

on Г ) and Гz ∈ ,  ( iyxz += ) 

( )

( ) ( ) ;2ln2ln

)()()(,

⎟
⎠
⎞

⎜
⎝
⎛ +++

≤−

τω
δ

ττω
δ

δ

δτ

ZCfC
fddf

ГСzfzfI
 

( )

( ) ⎟⎟
⎠

⎞
++

+⎜⎜
⎝

⎛
≤−

∫∫

∫

ΔΔ

Ω

d
f

d
l

f

Г
lf

Г

dx
x

x
dx

x
x

dx
x

xx
ГСzfzfL

2

0
2,

)()(

)()(
)()(~)(

ω
τ

ω
τω

ωω

, 

 
where 

( )

)(
))(())((

)(
2

)()(
)(

2
,

,,1,,,1,

,1,
,

)(,

zf
zz

yyxxxxyy

zf
zfzf

zfL

ek

ekekekekekek

z

ekek

zem

π

τ

ετ

+
−

−−−−−

⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+
=

++

+∑
∈  

 
( ) )(, zfL ετ
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- two-parameter quadrature formula (depending onτ and δ  
parameters) for logarithmic double layer potential; )(~ zf - 
double layer logarithmic potential operator; )(ГC – constant, 
dependent only from a curve Г ; )(xfω  is a module of a 
continuity of functions f; 

( )

jkjk
jk

z

jkjk

zz
zz

zfzf
zfI

zem

,1,
,

,1,
,

1ln

2
)()(

)(
)(,

−
−

⋅

⋅
+

=

+

+∑
∈τ

ετ  

 ( ) )(, zfI ετ - two-parameter quadrature formula (depending on 

τ and δ  parameters) for logarithmic potential simple layer; 
)(zf��� -simple layer logarithmic potential operator; 

{ }

jkjkmj

mkkkmkkk

ekek

ekekekek

zz

zzzzz

zzzz

iyxzz

k

kk

,1,,1

,2,1,,1,

,,

,,,,

max

...},,...,{

)(

,

−=

≤≤≤=

>−=

+=∈

+=
τ

τ

ετ

τ

 

Thus are developed effective from the point of view of 
realization on computers the numerical methods basing on   
constructed two-parametric quadratute processes for the 
discrete operators logarithmic potential of the double and 
simple layer. Their systematic errors are estimated, the 
methods quadratures mathematically are proved for the 
approximate solution Fredholm I and II boundary integral 
equations using Tikhonov regularization and are proved 
appropriate theorems [1].  
 
V. SOLUTION TECHNIQUE OF DIRECT AND INVERSE 

PROBLEMS OF HEAT CONDUCTIVITY 
The given calculating technique of the blade temperature 

field can be applied also to blades with the plug–in deflector. 
On consideration blades with deflectors in addition to 
boundary condition of the III kind adjoin also interfaces 
conditions between segments of the outline partition as 
equalities of temperatures and heat flows       

                                ),(),( 1 yxTyxT vv += ,                      (13) 
 

               
),(),( 1

n
yxT

n
yxT vv

∂
∂

=
∂

∂ + ,                  (14) 

where ν  - number of segments of the outline partition of the 
blade cross-section; x, y- coordinates of segments. At finding 
of cooler T best values, is necessary to solve the inverse 
problem of heat conduction. For it is necessary at first to find  
solution of the heat conduction direct problem with boundary 
condition of the III kind from a gas leg and boundary 
conditions I kinds from a cooling air leg 

                          Ty)(x,T
00 iγv =                                 (15)  

where 
0iT -the unknown optimum temperature of a wall of a 

blade from a leg of a cooling air. 
 

VI. APPLICATION OF BIEM TO QUASYSTATIONARY 
PROBLEMS OF HEAT CONDUCTIVITY 

 The developed technique for the numerical solution of 
stationary task of the heat conduction in cooled blades can be 
distributed also to quasistationary case. 
Let us consider a third boundary-value problem for the heat 
conduction quasilines equation: 

0
y
TT

yx
TT

x
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂ )()( λλ           (16) 

0
n

T
TTT i

icii =
∂

∂
−− γ

γ λα )()(                       (17) 

For linearization of tasks (16) - (17) we shall use the Kirchhoff 
permutation: 

                 ∫=
T

0
dA ξξλ )(                                (18) 

Then equation (16) is transformed into the following Laplace 
equation: 

0
y

A
x
A

2

2

2

2
=

∂
∂

+
∂
∂                             (19) 

For preserving convection additives in boundary-value 
condition (17), we shall accept in initial approximation  

cT λλ =)( . Then from (18) we have 
 cAT λ/=                                     (20) 

and the regional condition (17) will be transformed as follows: 

0
n

A
AT i

cicii =
∂

∂
−− γ

γ λα )/(                 (21) 

So, the stationary problem (19) with (21) is solved by 
boundary integrated equations method. If the solution ),( yxL  
in the ),( yx  point of the linear third boundary-value problem 
(19), (21) for the Laplace equation substitute in (18) and after 
integration to solve the appropriate algebraic equation, which 
degree is higher than the degree of function ( )Tλ with digit, 
we shall receive meaning of temperature ),( yxT  in the same 
point. Thus in radicals is solved the algebraic equation with 
non-above fourth degree   
          AaTaTaTaTa 43223140 =++++ .                    (22) 

This corresponds to the ( )Tλ  which is the multinomial with 
degree non-above third.  In the result, the temperature field 
will be determined on the first approximation, as the boundary 
condition (17) took into account constant meaning heat 
conduction cλ  in convective thermal flows. According to it 

we shall designate this solution ( )1T  (accordingly ( )1A ). For 
determining consequents approximations ( )2A  (accordingly 

( )2T ), the function ( )TA is decomposing in Taylor series in 

the neighborhood of ( )1T  and the linear members are left in it 
only. In result is received a third boundary-value problem for 
the Laplace equation relatively function ( )2A . The temperature 

( )2T  is determined by the solution of the equation (20).  
The multiples computing experiments with the using  BIEM 

for calculation the temperature fields of nozzle and working 
blades with various amount and disposition of cooling 
channels, having a complex configuration, is showed, that for 
practical calculations in this approach, offered by us, the  
discretization of the integrations areas can be conducted with  
smaller quantity of discrete points. Thus the reactivity of the 
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algorithms developed and accuracy of evaluations is increased. 
The accuracy of temperatures calculation, required 
consumption of the cooling air, heat flows, losses from cooling 
margins essentially depends on reliability of boundary 
conditions, included in calculation of heat exchange. 
 

VII. PROFILING OF COOLED BLADES 
Piece-polynomial smoothing of cooled gas-turbine blade 

structures with automatic conjecture is considered: the method 
of the least squares, device spline, smooth replenishment, and 
neural nets are used. 
Let the equation of the cooled blade outline segments is the 
third degree polynomial:  
 

( ) 3
3

2
210 xaxaxaaxy +++=                        (23) 

The equation of measurements of the output coordinate has a 
kind: 

y
3

3
2

210y xaxaxaaZ δ+++=                                  (24) 
where Zy=║z1y, z2y, …, zny║T - vector of measurements of 
output coordinate, n-amount of the points in the consideration 
interval. For coefficients of polynomial (23) estimate the 
method of the least squares of the following kind is used 

θ
�

=(XTX)-1(XTZy),                      (25) 
 

θ
�D =(XTX)-1σ2  ,                       (26) 

where 

X=

32

3
3

2
33

3
2

2
22

3
1

2
11

1
............

1

1

1

nnn xxx

xxx

xxx

xxx

- structural matrix; 

θ
�D  - dispersion matrix of errors; θ

�
=║a0, a1, a2, a3║T - vector 

of estimated coefficients.  
Estimations of coefficients for the first segment is received 

with using formula (25). Beginning with second segment, the 
θ vectors components is calculated on experimental data from 
this segment, but with the account of parameters found on the 
previous segments. Thus, each subsequent segment of the 
blade cross-section outline we shall choose with overlapping. 
Thus, it is expedient to use the following linear connections 
between the estimated parameters of the previous segment 

1Nθ
�

 and required Nθ
�

  for N-th segment: 
AθN=V,                                           (27) 

 

 A=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

e

2
ee

3
e

2
ee

x6200

x3x210

xxx1

,                                  (28) 

 

V=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+

++

+++

−−

−−−

−−−−

e1N31N2

2
e1N3e1N21N1

3
e1N3

2
e1N2e1N11N0

xa6a2

xa3xaa

xaxaxaa

��

���

����

,       (29) 

e=(N-1)(n-L); L- number points of overlapping. 
The expressions (27)-(29) describe communications, which 

provide joining of segments of interpolation on function with 
first and second degrees. 
Taking into account the accuracy of measurements, the 
problem of defining unknown coefficients of the model in this 
case can be formulated as a problem conditional extremum: 
minimization of the quadratic form (Zy-Xθ)Tσ2I(Zy-θ) under 
the limiting condition (27). Here I is a individual matrix. 
For the  solution of such problems, usually are using the 
method of Lagrange uncertain multipliers. In result, we shall 
write down the following expressions for estimation vector of 
coefficients at linear connections presence (27): 

θ~ T=θ
�

T+(VT-θ
�

TAT)[A(XTX)-1AT]-1A(XTX)-1         (30) 
 

−= θθ
�DD~ (XTX)-1AT[A(XTX)-1AT]-1A(XTX)-1σ2       (31) 

Substituting matrixes A and Х and vectors Zy and V in 
expressions (25), (26), (30), and (31), we receive estimations 
of the vector of coefficients for segment of the cooled blade 
section with number N and also the dispersing matrix of  
errors. 
As a result of consecutive application of the described 
procedure and with using of experimental data, we shall 
receive peace-polynomial interpolation of the researched 
segments with automatic conjecture. 
Research showed that optimum overlapping in most cases is 
the 50%-overlapping. 
Besides peace-polynomial regression exist interpolation 
splines which represent polynomial (low odd degrees - third, 
fifth), subordinated to the condition of function and derivatives 
(first and second in case of cubic spline) continuity in common 
points of the next segments. 
If the equation of the cooled gas-turbine blades profile is 
described cubic spline submitted in obvious polynomial kind 
(23), the coefficients а0, а1, а2, а3 determining j-th spline, i.e. 
line connecting the points Zj=(xj, yj) and Zj+1=(xj+1, yj+1), are 
calculating as follows: 
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where  hj+1=|zj+1-zj|, j= 1,1 −N . 
Let us consider other way smooth replenishment of the  cooled 
gas-turbine blade profile on the precisely measured meaning of 
coordinates in final system of discrete points, distinguishing 
from spline-function method and also from the point of view 
of effective realization on computers. 
Let equation cooled blades profile segments are described by 
the multinomial of the third degree of the type (23). By taking 
advantage the smooth replenishment method (conditions of  
function smooth and first derivative are carried out) we shall 
define its coefficients: 
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j= SN −−1,1 , S=1. 
If it’s required carry out conditions of function smooth first 
and second derivatives, i.e. corresponding to cubic splines 
smooth, we shall deal with the multinomial of the fifth degree 
(degree of the multinomial is equal 2S + 1, i.e. S = 2). 
The advantage of such approach (smooth replenishment) is 
that it’s not necessary to solve system of the linear algebraic 
equations, as in case of the spline application, though the 
degree of the multinomial is higher 2. 

Let us consider new approach of profiles mathematical 
models’ parameters identification. This approach is based on 
Neural Networks (Soft Computing) [7-9]. Let us consider the 
regression equations: 

m,i;xaY j

n

j
iji 1

1
==∑

=
                                                 (34) 

lsr;l,s;l,r;xxaY
s,r

sr
rsi ≤+===∑ 0021                   (35)  

where rsa are the required parameters (regression 
coefficients). 
The problem is put definition of values ija  and rsa  
parameters of equations (34) and (35) based on the statistical 
experimental data, i.e. input jx  and 21, xx , output coordinates 

Y of the model. 
Neural Network (NN) consists from connected between their 
neurons sets. At using NN for the solving (34) and (35) input 
signals of the network are accordingly values of 
variables ),...,,( 21 nxxxX = , ),( 21 xxX =  and output Y . 
As parameters of the network are ija  and rsa  parameters’ 
values.  
At the solving of the identification problem of parameters ija  

and rsa for the equations (34) and (35) with using NN, the 
basic problem is training the last.  

We allow, there are statistical data from experiments. On 
the basis of these input and output data we making training 
pairs ),( TX  for network training. For construction of the 
model process on input of NN input signals X  move and 
outputs are compared with reference output signalsТ . 
After comparison, the deviation value is calculating by 
formula  

∑
=
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j
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1

 

If for all training pairs, deviation value Е  less given then 
training (correction) parameters of a network comes to end  
(Fig 1). In opposite case it continues until value Е  will not 
reach minimum. 
Correction of network parameters for left and right part is 
carried out as follows: 

rs

c
rs

н
rs a

Eaa
∂
∂

+= γ , 

where н
rs

c
rs aa , are the old and new values of NN parameters 

andγ is training speed. 
The structure of NN for identifying the parameters of the 
equation (34) is given on Fig 2. 

 
VIII. DEFINITION OF HEAT EXCHANGE BOUNDARY 

CONDITIONS 
For determining of the temperature fields of AGTE 

elements, the problem of gas flow distribution on blades’ 
profile of the turbine cascade is considered. The solution is 
based on the numerical realization of the Fredholm boundary 
integrated equation II kind. 
On the basis of the theory of the potential flow of cascades, 
distribution of speed along the profile contour can be found by 
solving of the following integrated equation [10]:  

( ) ( ) ( )∫±+=
+

∞∞∞
S

2
1

B2
1

kkkk dSГyxVyx θϕθααϕ ππ ∓sincos, ,   (36) 

where ),( kk yxϕ -the value of speeds potential; ∞V  - the  gas 
speed vectors mean on the flowing; ∞α - the  angle between 
the vector ∞V  and the profile cascade axis; Г - the  circulation 
of speed; Вθ  - the  angle that corresponds to the outlet edge of 
the profile.  
For the numerical solution of the integrated equation (36) the 
following approximating expression is received: 
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where 12 −= ni , nj 2= , n  is the  numbers of parts.  
Distribution of speeds potential ϕ  along the profile contour 
received from the solution of linear algebraic equations 
system.  
The value of the gas flow speed is determined by the 
derivation of speeds potential along the contour s , i.e. 
( ) dsdsV ϕ= . 

Distribution of speed along the profile contour can be 
determined by solving the integral equation for the current 
function ψ  [10, 11]: 
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taking it to simple algebraic type: 
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The data of speed distribution along the profile contour are 
incoming for determining outer boundary heat exchange 
conditions.  
The method for finding the local heat transfer coefficient гα  
in this case is given in [4].  
At the thickened entrance edges characteristic of cooled gas 
vanes, the outer local heat exchange is described by empirical 
dependences offered by E.G.Roost [4]: 

TuxxNu ε⋅⋅= 5,0Re5,0 , 
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where   
at ;/Tu:%,Tu%, ,

Tu 1015301 41+=ε<<  

at  104153 280 /Tu:Tu%, ,
Tu +=ε<  

 
The problem of determining inner boundary heat exchange 
conditions is necessary. For example, to calculate heat transfer 
in the cooling channel track of the vanes of deflector 
construction usually is applied criterial relationships. The 
mean coefficients on the inner surface of the carrier envelope 
at the entrance edge zone under the condition of its spray 
injection by the number of sprays from round holes in the nose 
deflector were obtained by the equation [12]: 

)//(PrRe ..
equ

430980 bLCNu = , 

where 0
2
0 2tdbequ π= - the width of hole which is equivalent 

by the trans area; 0d , 0t - diameter and pitch of the holes in 
nose deflector. The Re criterion in this formula is determined 
by the speed of the flow from the holes at the exit in the nose 
deflector and the length L of the carrier wall in the entrance 
edge zone. 
The empirical criterion equation earlier received [12]: 
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⋅⋅

⋅−+−= δδ
,      (37) 

was used for the calculation of the mean coefficient of heat 
transfer at the inner surface of the vane wall in the area of the 
perforated deflector. 
In this equation: dδδ =  - the relative width of the deflector; 

dhh = - the relative height of the slot channel between 

deflector and vane wall; dSS =  - the relative longitudinal 
step of perforations holes system; d -the diameter of 
perforation; δ45.075.0 −=L ; hk 5.025.0 += . The Reynolds 
criterion in the formula (37) is defined by hydraulic diameter 
of  cross-section channel and speed of cooler flow in the 
channel after the zone of deflector perforation. 
 

IX. SOLUTION OF PROBLEM OF THE COOLING 
SYSTEMS’ INTERNAL HYDRODYNAMICS 

At known geometry of the cooling scheme, for definition of 
the convective heat exchange local coefficients Вα  of the 
cooler by the standard empirical formulas, is necessary to have 
income values of air flow distribution in cooling channels.  
For example, for blades with deflector and with cross current, 
the value of the airflow ВG  for blade cooling is possible to 
define with the following dependence: 
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where Гψ , Вψ  -the gas and air temperature coefficients; фκ - 

coefficient of the form; Вd - the characteristic size in the 
formula BRe ; Вμ , Вλ -cooler dynamic viscosity and heat 
conductivity coefficients; Вi  - the Bio criterion for the blade 

wall; ВF  - the total area of passage for air; C  and n - 
coefficient and exponent ratio in criteria formulas for 
convective heat exchange n

ВВ CNu Re=  for considered 
cooling parts. 

To determine the distribution of flow in the blade cooling 
system, an equivalent hydraulic scheme is built. 
The construction of the equivalent hydraulic tract circuit of the 
vane cooling is connected with the description of the cooled 
vane design. The whole passage of coolant flow is divided in 
some definite interconnected sections, the so-called typical 
elements, and every one has the possibility of identical 
definition of hydraulic resistance. The points of connection of 
typical elements are changed by node points, in which the 
streams, mergion or division of cooler flows is taking places 
proposal without pressure change. All the typical elements and 
node points are connected in the same sequence and order as 
the tract sites of the cooled vane.  
To describe the coolant flow at every inner node the 1st low by 
Kirchhoff is used: 

( ) n321ipkpsignGf
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1j
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= =
ΔΔ     (38) 

where ijG  is the discharge of coolant on the element, ji − , 
m  are the e number of typical elements connected to i node of 
the circuit, n  is the number of inner nodes of hydraulic circuit, 

ijpΔ - losses of total pressure of the coolant on element ji − . 
In this formula the coefficient of hydraulic conductivity of the 
circuit element ( ji − ) is defined as: 

ijij
2

ijij pf2k ξ⋅= ,                             (39) 

where ijijij pf ξ,,  are the mean area of the cross-section 
passage of elements ( ji − ), density of coolant flow in the 
element, and coefficient of hydraulic resistance of this 
element. The system of nonlinear algebraic equations (38) is 
solved by the Zeidel method with acceleration, taken from: 

( )kk
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k
i

1k
i pffpp ∂∂−=+ ,    

where k  is the iteration number, k
ip  is the coolant pressure in 

i node of the hydraulic circuit. The coefficients of hydraulic 
resistance ijξ  used in (39) are defined by analytical 
dependencies, which are in the literature available at present 
[12]. 
For example, to calculate a part of the cooling tract that 
includes the area of deflector perforation coefficients of 
hydraulic resistance in spray [13]: 
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and in general channel: 
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In these formulas, kr GG ,  are cooling air consumption in the 
spray stream through the perforation deflector holes and slot 
channel between the deflector and vanes wall, and kr ff , - the  
flow areas. 
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X. RESULTS 
The developed techniques of profiling, calculation of 

temperature fields and parameters of the cooler in cooling 
systems are approved at research of the gas turbine Ist stage 
nozzle blades of GTN-16 (Turbomachinery Plant Enterprise, 
Yekaterinburg, Russia) thermal condition. Thus the following 
geometrical and state parameters of the stage are used: step of 
the cascade - ммt 5.41= , inlet gas speed to cascade - 

sм156V1 /= , outlet gas speed from cascade - 

sм512V2 /= , inlet gas speed vector angle - 0
1 7.0=α , gas 

flow temperature and pressure: on the entrance to the stage -
KTг 1333* = , Pа1020951p 6

г ⋅= .* , on the exit from stage -

KTг 10051 = , Pа10750p 6
1г ⋅= . ; relative gas speed on the 

exit from the cascade - 8910аd1 .=λ . 
The geometrical model of the nozzle blades (fig.3), diagrams 
of speed distributions V and convective heat exchange local 
coefficients of gas гα  along profile contour (fig.4) are 
received. 
The geometrical model and the cooling tract equivalent 
hydraulic scheme (fig.5) are developed. Cooler basics 
parameters in the cooling system and temperature field of 
blade cross section (fig.6) are determined [2].  
 

XI. CONCLUSIONS 
The reliability of the methods was proved by experimental 

investigations heat and hydraulic characteristics of blades in 
"Turbine Construction" (Laboratory in St. Petersburg, Russia). 
Geometric model, equivalent hydraulic schemes of cooling 
tracks have been obtained, cooler parameters and temperature 
field of "Turbo machinery Plant" enterprise (Yekaterinburg, 
Russia) gas turbine nozzle blade of the 1st stage have been 
determined. Methods have demonstrated high efficiency at 
repeated and polivariant calculations, on the basis of which has 
been offered the way of blade cooling system modernization.  
The application of perfect methods of calculation of 
temperature fields of elements of gas turbines is one of the 
actual problems of gas turbine engines design. The efficiency 
of these methods in the total influences to operational 

manufacturability, reliability of engine elements design, and 
on acceleration characteristics of the engine has been studied. 
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Fig. 1 System for network-parameter (weights, threshold) training (with feedback) 
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Fig. 3 The cascade of profiles of the 
nozzle cooled blade  
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Fig. 4 Distribution of the relative speeds λ  (1) 
and of gas convective heat exchange coefficients 

Гα   (2) along the periphery of the profile contour 
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Fig. 5 The equivalent hydraulic scheme of experimental 
nozzle blade cooling system 
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Fig. 6 Distribution of temperature along outside (   ) and internal (    ) contours of 
the cooled nozzle blade 
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Fig. 2 Neural network structure for multiple linear regression equationFig. 2 Neural network structure for multiple linear  


