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Abstract—The issue of classifying objects into one of predefined 

groups when the measured variables are mixed with different types 
of variables has been part of interest among statisticians in many 
years. Some methods for dealing with such situation have been 
introduced that include parametric, semi-parametric and non-
parametric approaches. This paper attempts to discuss on a problem 
in classifying a data when the number of measured mixed variables is 
larger than the size of the sample. A propose idea that integrates a 
dimensionality reduction technique via principal component analysis 
and a discriminant function based on the location model is discussed. 
The study aims in offering practitioners another potential tool in a 
classification problem that is possible to be considered when the 
observed variables are mixed and too large.    

 

Keywords—classification, location model, mixed variables, 
principal component analysis.  
 

I.   INTRODUCTION 
 

ISCRIMINANT analysis is a statistical technique that allows 
one in understanding the differences of objects between 
two or more groups with respect to several variables 

simultaneously [1]-[2]-[3]. It is the first multivariate statistical 
classification method used for decades by researchers and 
practitioners in developing classification models [4]. In 
general, discriminant analysis concerns with the development 
of a rule for allocating objects into one of some distinct 
groups. Then, the constructed classification rule will be used 
to determine a group of some future objects. Many different 
classification rules have been developed with various 
conditions such as rules that are suitable for either continuous 
variables or categorical variables (see [5]-[6]-[7]). However, 
real problems of classification sometimes show that the 
variables are mixed with continuous and categorical variables 
[8]-[9]-[10].  

Many studies on dealing with mixed types of variables have 
been discusses and they can be generally grouped into three 
common strategies. The simplest strategy is to transform all 
the variables into the same type, either continuous or 
categorical, then construct a classification rule that is suitable 
to this type. However, it leads to loss of information due to the 
transformation process [11]-[12]-[13]. Alternatively, one may 
construct separate classification rules for each type of 
variables and then combine the results for summarising as 
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overall classification. Such strategy however needs more 
discussions on tackling the issue of combining the results as 
few studies on this strategy have been done [14]-[15]. If these 
two strategies may not offer a good solution, then one may 
develop a model that can manage different types of variable 
simultaneously, after that derives a classification rule from 
this model. This strategy has been discussed in depth by [9]-
[11]-[16]-[17]-[18] from the statistical point of view. 

Some researchers have advocated a classification rule for 
mixed variables. To name few: reference [19] proposed a 
method based on the kernel approach in which the 
classification procedure is based on the estimation of groups' 
density, [20] introduced the logistic discrimination and [11] 
developed the location model where the estimators are 
obtained from the likelihood approach. It is beyond the scope 
of this paper to discuss in details of each existing rule, but 
readers are encouraged to have further information from [13]. 
Although there are many classification rules that can be 
considered, but most of them are not permitted to be 
constructed when the number of observed variables is larger 
than the number of the objects in the sample. The rules that 
depend on the covariance matrix may suffer from the 
occurrence of singularity of the matrix and others may obtain 
biased estimators if the likelihood approach is used.  

Therefore, this paper is aiming on discussing the issue but 
the intention is based on the location model. It will be 
focusing on introducing the idea for constructing the model 
when the number of variables typically larger than the number 
of objects in the dataset. The discussion is limited to the two 
groups problem and the variables engage are the combination 
of continuous and binary. Section II is giving the idea of the 
location model and dimensionality reduction approaches. It is 
followed by Section III that outlines the proposed idea for 
constructing the location model on large dimensional space. 
Finally, Section IV summarizes the findings that expected to 
obtain from this study which is a new approach of 
classification model when dealing with large number of mixed 
variables.   

 

II.    THE LOCATION MODEL AND THE ISSUE OF 
LARGE NUMBER OF VARIABLES 

 

Location Model (LM) allows one to allocate a new object 
into one of the two-group based on the series of measurements 
taken on that object [21]. Its simplicity and reasonably 
efficient in classification procedures based on normal 
populations are essential in statistical practice. When the 
model assumes equal costs of misclassification and equal a 
priori probabilities of group membership, then it leads to a 
linear function of the observations as the appropriate 
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classification statistic [22]. Although it is almost impossible to 
guarantee the populations to be exactly normal distribution, 
the model has been proved feasible if the data are nearly 
normal distributed [23] or not much skewed from normality 
assumption [24].   

Let a vector zT = (xT, yT) is observed on each object where 
xT = (x1, x2, …, xb) is a vector of b binary variables and yT = 
(y1, y2, …, yc) is a vector of c continuous variables. The binary 
variables are treated as a single multinomial variable having s 
= 2b cells. The location model assumes the probabilities of 
obtaining an object in cell m of the table for population πi is 
ρim for i=1,2 and m = 1, 2, …, s. We also assume the vector of 
continuous variables to have a multivariate normal distribution 
with mean µi

(m) in cell m of πi and a homogeneous covariance 
matrix across cells and populations. Hence, we have Yim ~ 
N(µi

(m), Σ) for the combination of m cell on the ith  
population. If we assume all population parameters are known 
then the optimal allocation rule for an object zt = (xt, yt) can be 
derived easily from the general theory of classification [25]. 
Then, we assign a new object zt = (xt, yt) to π1 if x falls in cell 
m of the multinomial variable and  
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otherwise to π2 [11]-[12]. The constant a depends on the costs 
due to misclassification and prior probabilities for the two 
groups and is equivalent to zero for the case of equal costs and 
equal priors. In practice, however, the parameter values are 
unknown and the common procedure is to replace all 
parameters in equation (1) with a sample-based allocation 
rule.  

Often the maximum likelihood is used to estimate the 
unknown parameters [26] but estimators may be biased if one 
is dealing with a sparse data problem [27] thus limits the 
feasibility of the linear model approach [28]. Alternative 
approach which is based on a non-parametric smoothing is 
possible to be considered since it gives a marked reduction in 
the number of parameters that need to be estimated and hence 
alleviates the over-parametrization problems of the classical 
location model [9]. However, [18] discovered that this 
alternative is sometimes infeasible as the smoothing approach 
that based on the nearest neighbour may take negative or zero 
values. Such phenomenon lead to a problem in allocating 
future objects. Further modifications were done where a 
smoothed location model was proposed to tackle such 
problem but it may be not practically applicable when the 
number of binary variables is too large as the model will 
suffering from the singularity of the covariance matrix. 

Following this, some adjustments towards reducing the 
number of variables need to be done to allow classification 
rule to be computed, it is the case the corresponding number 
of variables typically larger than the number of objects in the 
samples [29]-[30]-[31]. As issued by [32], it may provide a 
promising approach to deal with a very large dimensional and 
low sample size data. Additionally, according to [33] and [34], 
dimension reduction step is an important, thus ignoring them 
would definitely underestimate the prediction error. Therefore, 
common adjustment procedures are either (i) choosing some 

important variables through feature/variable selection process 
or (ii) projecting the data onto a low dimensional subspace via 
linear combinations of those variables, this is known as a 
feature extraction technique.   

 
A. The Classification with Dimensionality Reduction 

Approaches 
 

According to [35], an important query in application of 
classification is whether all the variables on which 
measurements are made contain useful information or only 
some of them may be sufficient for the principle of 
classification. Therefore, the first step is to choose the best set 
of variates in order to construct and to obtain a superior 
classification rule which is able to bound and explain the 
nature of the study problem as originate as possible. But, 
selecting the most useful variables in discriminant analysis 
involves big challenges [36] as it is entailing with a large 
number of variables [37]. In such situation, it is desirable to 
select a subset of variables and hoping that not too much 
information has been ignored [38]. However, omitting the 
most useless or the least important variables would result in 
several negative aspects. For instance, stepwise regression 
methods (stepwise method, forward selection and backward 
elimination) can be used for this purpose due to their 
simplicity but some of the researchers are often not satisfied 
with its results. Their performance is poor when it is believe 
that multicollinearity exists among variables [39]. Besides, 
omitting some of the original variables may appear to be 
relevant and contributed to the study later [40] and the 
omitting the ones that are appear to have highly correlated 
with those retained will give a major influence on the 
efficiency measures [41]. The results of omitting different 
variables are extremely difficult to predict. Unfortunately, it is 
vary greatly according to which highly correlated variables are 
included or omitted even when the scientific or managerial 
justification for the omission or inclusion of certain variables 
is reasonable. 

On the contrary, feature extraction has been approved as an 
important method when facing with large number of variables 
compared to the size of sample [42]. A considerable amount 
of research has been assigned for solving small sample and 
high dimensional problems [43]-[44]-[45]-[46]-[47]-[48]. It 
plays an important role in many applications due to a large 
dataset such as data mining, machine learning and 
bioinformatics [49]. One necessary part of multivariate 
statistical analysis in such applications is by applying 
dimensional reduction [30]. As quoted by [31], feature 
extraction is superior in getting a very low dimensional 
representation. He further stated that, by this procedure, it can 
effectively encode by a low dimensional vector which can 
significantly reduce the recognition cost.  

Several methods exist for that particular purpose and some 
researchers have been applied the principal component 
analysis [50]-[51], latent semantic indexing [52]-[53], Partial 
least squares [54]-[55]-[56]-[57]-[58] and sliced inverse 
regression [59]-[60]-[61]-[62] as preprocessor for 
dimensionality reduction [63]-[64]. Over the past ten years, 
however, the principal component analysis (PCA) as data 
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reduction has received significant attention among all methods 
[65]. PCA is a well-known method for dimensional reduction 
[66]. Based on [67], the goal of PCA is to reduce its 
dimension into a low dimensional space which most of the 
essential information contained in a high dimensional space. 
Reference [68] and [69] further stated that, the most common 
technique which dimensionality can be reduce easily without 
disturbing the overall features of the sample is PCA. From its 
process, the singularity problem would be solved [70] and 
could avoid an over-fitting [71]. Furthermore, the new 
variables produced from PCA show no correlation among 
variables which is typically required particularly in high 
dimensional space [72]. When predictor variables are highly 
correlated, the model may encounter instability crisis because 
the existing of multicollinearity [73]. This is due to the 
arithmetic problem occurs from such collinearity issue [74]. 
As quoted by [75] that, even our model gives a good 
discrimination performance, there still exist some weaknesses 
as it is too flexible in situations if there are many highly 
correlated among variables. PCA can avoid and remedy this 
problem of multicollinearity [38] because PCA is a typical 
case that decorrelated and extracts the variables [76]. It is the 
case where the independent variables are linearly or near-
linearly depend on each other, it is common practice to 
transform these variables into principal component scores 
(PCs) which are orthogonal and then regress the dependent 
variable on these new variables (the PCs) [77].   

PCA yields a low dimensional subspace which minimizes 
the mean square error by finding the directions of major 
variations in the whole learning set [71]. In addition, the 
almost information in reduced components as there is in the 
original variables [23] with the idea of minimizing 
information loss is fundamental [78]. Throughout PCA, we 
will get a lower dimensional representation of the data which 
moves some of the noisy directions [79]. In fact, procedures 
involve in selecting variables using PCA will retain overall 
multivariate structure of the complete data as much as possible 
[77]. Furthermore, according to [67], PCA is a mathematically 
appealing statistical tool suitable for examining variables in 
high dimensional spaces. Nowadays, even with readily 
available compute power and sophisticated statistical 
algorithms, PCA is still a popular tool for dimensionality 
reduction or exploratory analysis [80]. He added that, the 
application of PCA to a very high dimension with small data 
has only increased. With many advantages of PCA as 
described, thus we fix on PCA to reduce the data dimension as 
the main tool to achieve the objectives of this research paper.    

 

III. METHODOLOGY 
A. Data   
 

We will use simulated data where the two groups are having 
multivariate normal distributions; MVN(µ1, Σ) and MVN(µ2, 
Σ) with p = 50 continuous variables and q = 50 binary 
variables. Common procedures for separately generating 
either continuous or binary variables are available in most 
statistical packages such as Minitab, S-Plus and R. However, 

there is no package so far is able to generate and provide a set 
of data for various types of variables simultaneously.  

Following Guo et al. (2007), a set of multivariate 
continuous variables will be generated by setting all entries of 
µ1 to be 0 and for µ2, the first 30 entries are 0.5 and the rest are 
all 0, i.e. µ1 = {0}100 and µ2 = {0.5, …, 0.530, 031, …,0100). 
Then, the first 50 variables in each group will be remained as 
they are generated while the last 50 observations will be 
discretised to form binary variables. We will generate n = 30 
with 15 objects for each group. This study will examine the 
model performance from some typical data distributions 
which are normal and non-normal cases. Finally, some 
investigations on real datasets also will be considered.  

 
 

B. Model Construction and Evaluation 
 

The objects in the sample will be divided into two parts: 
learning set and test set. The learning set will be used for 
constructing the model and the test set will be used for 
evaluation purposes. This mechanism will give more reliable 
and unbiased estimate of classification error as different 
objects are used for model construction and model evaluation 
following [81].   

The proposed location model will be evaluated using the 
common leave-one-out error rate. It gives the proportion of 
objects that are misclassified hence is able to represent the 
performance of the constructed rule. In general, some 
procedures involve sequentially in order to accomplish the 
final algorithm of location model which can be summarized in 
several steps specifically: 

 

i) Omit object i from the sample n where i = 1, 2, …, n.   
ii) Perform PCA for the continuous variables from the 

remaining objects (n1+n2-i) to choose the best 
combination of components or to reduce its dimensions. 

iii) Repeat step (ii) for conducting PCA purposely for binary 
variables, then combine the results from phase (ii) and 
(iii) to produce 2PCA.  

iv) Compute and estimate µi, Σ and ρi using the new 
components resulting from 2PCA, further construct the 
location model function.  

v) Pool and run step (ii-iv) together to produce a new 
algorithm of 2PCA plus LM.    

vi) Predict the group of the omitted object i using a new 
constructed model, if the prediction made is correct then 
assign error (εij) = 0 otherwise εij = 1. 

vii) Repeat step (i) - (vi) for all objects in turn.    
viii) Compute the leave-one-out error rate using (Σεij / n) X 

100. 
 

Fig. 1 demonstrates the study design that integrates the two 
standard methods in producing a new classification algorithm 
of the location model when dealing with large number of 
mixed variables namely 2PCA plus LM or simply called 
2PCALM. 
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Fig. 1  The new location model for large number of mixed variables 
  

IV. EXPECTED FINDINGS 
 

A new mechanism of discriminant analysis of the location 
model for handling large number of mixed variables will be 
produced. We also attempt to obtain a new algorithm of data 
reduction that is able to manage different types of variables 
(binary and continuous) simultaneously. 
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