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On Convergence Property of MINRES Method for
Solving a Complex Shifted Hermitian Linear

System
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Abstract—We discuss the convergence property of the minimum
residual (MINRES) method for the solution of complex shifted
Hermitian system (αI + H)x = f . Our convergence analysis
shows that the method has a faster convergence than that for real
shifted Hermitian system (Re(α)I +H)x = f under the condition
Re(α) + λmin(H) > 0, and a larger imaginary part of the shift α
has a better convergence property. Numerical experiments show such
convergence properties.
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I. INTRODUCTION

WE are interested in the iterative solution of the follow-
ing complex shifted Hermitian system

(αI +H)x = f, (1)

where H ∈ Cn×n is a Hermitian matrix, α is a complex num-
ber, called shift. Such the shifted systems arise in a variety of
practical applications such as the complex Helmholtz equation,
lattice gauge computations in QCD and structural dynamics,
see [4], [6], [9], [10], [12].

We know that the Krylov subspace keeps shift invariance,
i.e. for any α,

Km ≡ Km(H, v) = Km(αI +H, v),

where Km(H, v) = span(v,Hv,H2v, · · · , Hm−1v). Thus
we can seek the approximation solution of the system (1)
in Km(H, v). It is important that the basis of Km can be
produced by the Hermitian matrix H (therefore using short
vector recurrences) rather than by the shifted matrix αI +H ,
which is not Hermitian matrix. We know that such shifted
system has been discussed for many years. The fundamental
work of Faber and Manteuffel [5] ensured that the Arnoldi re-
currence simplifies, yielding an optimal short-term recurrence.
The issue was further explored and some theoretical results has
been derived by [7], [8], [14], [15].

However, our motivation to discuss (1) comes from the HSS
method [3]. We know that in the HSS method, two shifted
sub-systems as inner iteration have to be solved per iteration
step. In [10], a complex parameter α in the HSS method
is employed and the HSS method with a suitable complex

Guiding Gu is with the Department of Applied Mathematics, Shanghai
University of Finance and Economics, Shanghai, 200433 China e-mail:
guiding@mail.shufe.edu.cn.

Guo Liu is with the School of Finance, Shanghai University of Finance
and Economics, e-mail: guoliu819@163.com.

Manuscript received February 22, 2013; revised March 2, 2013.

parameter has a smaller spectral radius of the iteration matrix
than with a real parameter, even than with the experimental
’optimal’ real parameter; also see the numerical experiment
3 in this paper. Since a complex parameter α is employed in
HSS, two sub-system become the complex shifted system, not
the real shifted system. In such case, an interesting discussion
on the convergence rate of the shifted sub-system (i.e. the
system (1)) in the HSS method is which is better, complex
shift α, or real shift α. In [11], we have shown that the
Lanzcos method has a better convergence property for solving
the system (1) than that for solving the real shifted Hermitian
system

(Re(α)I +H)x = f. (2)

In this paper, we discuss the convergence property of the
MINRES method for solving the system (1). Similar to the
Lanczos method, our convergence analysis also shows that
under the condition Re(α) + λmin(H) > 0, the method
have faster convergence than that for the system (2), and the
method has the better convergence property if the shift has
a larger imaginary part Im(α). Numerical experiments show
such convergence properties.

II. CONVERGENCE PROPERTY OF MINRES METHOD

In this section we first briefly describe the MINRES method,
and then give an analysis on its convergence property for the
system (1).

The main ingredient of the MINRES method is the follow-
ing Lanczos procedure [13] applied to the Hermitian matrix
H with v1 = r0/‖r0‖2 as a starting vector:

For j = 1, 2, · · · ,m, Do

wj = Hvj − βjvj−1, (if j = 1, let β1v0 = 0)
αj = (wj , vj),
wj = wj − αjvj ,

βj+1 = ‖wj‖, (if βj+1 = 0, stop.)
vj+1 = wj/βj+1.

EndDo
We refer to [16] for a detailed discussion of the Lanczos

procedure. By setting Vm = [v1, · · · , vm], an orthonormal
basis of Km ≡ Km(H, v1), and a symmetric tridiagonal matrix
Tm = tridiag(βi, αi, βi+1), we have the shifted factorization,

(αI +H)Vm = Vm(αI + Tm) + βm+1vm+1e
T
m.
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An approximation to the solution of the system (1) in {x0}+
Km can be written as xm = x0 + Vmym and its residual is

rm = f − (αI +H)xm

= r0 − (αI +H)Vmym

= Vm+1(βe1 − (αI + T̃m))ym,

where
T̃m =

(
Tm

βm+1e
T
m

)
.

A. MINRES method

We solve ym such that the residual rm has the minimum
norm,

‖rm‖ = min
y∈Cm

‖Vm+1(βe1 − (αI + T̃m))y‖
= min

y∈Cm
‖βe1 − (αI + T̃m)y‖. (3)

The following is the MINRES method for the system (1);
see [8], [16].

Algorithm (MINRES method for the solution of the system
(1)).

1) Choose x0, and let r0 = f − (αI + H)x0, β =
‖r0‖, v1 = r0/β.

2) Run m steps of the Lanczos procedure to generate Vm
and T̃m.

3) Solve the solution: ym = argminy∈Cm ‖βe1 − (αI +
T̃m)y‖.

4) xm = x0 + Vmym.

In practical computation we can use the Givens complex
rotation to solve the linear least-square problem (3), by which
the direct version of the MINRES method (denoted by the
D-MINRES method) can be derived. We omit the description
and refer to [8], [16] for a detailed derivation. Our numerical
experiments in the section 3 is based on the D-MINRES
method.

B. Convergence Property

In this subsection, we give an analysis on the convergence
property of the MINRES method for the system (1). By letting
the shift α = a+ ib, the system (1) can be written as

(ibI + Ĥ)x = f, (4)

where Ĥ = aI +H . Let λmax(H), λmin(H) be the largest
and smallest eigenvalue of the Hermitian matrix H . We now
assume that a+λmin(H) > 0. Thus the matrix Ĥ is Hermitian
positive definite (HPD). We produce the orthonormal basis Vm
of Km(Ĥ, r0) and Tm by the Lanczos procedure with Ĥ and
v1 = r0/β, β = ‖r0‖, and then we have

ĤVm = VmTm + βm+1vm+1e
T
m

and

(ibI + Ĥ)Vm = Vm(ibI + Tm) + βm+1vm+1e
T
m.

It is clear that the convergence property of the method for
solving the system (1) is equivalent to that for solving the
system (4).

Note that the residual of any approximation solution xm of
(4) in {x0}+Km(Ĥ, r0) = {x0}+Km(biI + Ĥ, r0) can be
expressed by

rm = f − (biI + Ĥ)xm

= r0 − (biI + Ĥ)qm−1(biI + Ĥ)r0

= pm(biI + Ĥ)r0,

where pm(x) is a polynomial with pm(0) = 1. By the
minimum property, the residual rm of the MINRES method,
denoted by rminm , for the system (4) satisfies with

‖rminm ‖ = min
pm(0)=1

‖pm(biI + Ĥ)r0‖.

Since the matrix Ĥ is Hermitian, there exists a unitary matrix
U , such that Ĥ = U Λ̂UH , where Λ̂ = diag(λ̂1, · · · , λ̂n) and
λ̂i is eigenvalue of Ĥ , which is real. Then,

ibI + Ĥ = U Λ̃UH , pm(ibI + Ĥ) = Upm(Λ̃)UH ,

where Λ̃ = diag(ib+ λ̂1, · · · , ib+ λ̂n). Thus,

‖rminm ‖ = min
pm(0)=1

‖Upm(Λ̃)UHr0‖

≤ min
pm(0)=1

‖pm(Λ̃)‖‖r0‖

= min
pm(0)=1

max
λ̂j∈Λ(Ĥ)

|pm(ib+ λ̂j)|‖r0‖.

The eigenvalues ib+ λ̂j of the matrix ibI + Ĥ = αI +H are
all located on the line L : λ + ib, λ ∈ [λ̂min, λ̂max], where
λ̂min = a+ λmin(H), λ̂max = a+ λmax(H). Thus

‖rminm ‖ ≤ min
pm(0)=1

max
z∈L

|pm(z)|‖r0‖.

Consider the complex Chebyshev polynomial

Tm(z) =
(z +

√
z2 − 1)m + (z −√

z2 − 1)m

2
.

It also can be expressed by

Tm(z) =
ωm + ω−m

2
,

where z has the relation with ω as the following,

z =
ω + ω−1

2
.

Let c0 = 1
2 (λ̂max + λ̂min) and e0 = 1

2 (λ̂max − λ̂min). We
now define a mapping between the z-plane and the ω−plane:

z − c0 − bi

e0
=
ω + ω−1

2
.

This mapping transforms an unit circle ω = eiθ in the ω−
plane onto the line L in the z− plane. Therefore, it holds that

Tm(
z − c0 − bi

e0
) =

ωm + ω−m

2
.

Let

T̂m(z) =
Tm( z−c0−bie0

)

Tm(−c0−bie0
)
,
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then T̂m(0) = 1. Thus we have

‖rminm ‖ ≤ max
z∈L

∣∣∣∣∣Tm( z−c0−bie0
)

Tm(−c0−bie0
)

∣∣∣∣∣ ‖r0‖.
Assume that the point ω0 in the ω− plane corresponds the
point z0 = −c0−bi

e0
in the z− plane, which satisfies with

−c0 − bi

e0
=
ω0 + ω−1

0

2
,

i.e., ω0 satisfies with the following equation,

ω2
0 + 2qω0 + 1 = 0,

where q = c0+bi
e0

. We choose a larger root in the modulus as
ω0,

ω0 = −q −
√
q2 − 1. (5)

Then there is the following estimate by setting ω0 = ρ0e
iφ,

‖rminm ‖ ≤ max
ω=eiθ

∣∣∣∣ωm + ω−m

ωm0 + ω−m
0

∣∣∣∣ ‖r0‖
≤ 2

|ωm0 + ω−m
0 | ‖r0‖

=
2

ρm0

1

|1 + e−2iφρ−2m
0 | ‖r0‖.

Note that Re(q) = c0
e0

= κ+1
κ−1 > 1, where κ = λ̂max

λ̂min
is the

condition number of the Hermitian positive matrix Ĥ . Since
the complex number q is either in the first quadrant (if b > 0)
or the fourth quadrant (if b < 0) of the complex plane, q and√
q2 − 1 are both in the same quadrant as |q| > 1. Thus by

(5), it holds that

ρ0 = |ω0| = |q +
√
q2 − 1| > |q| > 1.

Then we have that 2
|ωm

0 +ω−m
0 | −→ 0, m −→ ∞, i.e., the

MINRES converges.
Remark Note that

|q|2 =
c20 + b2

e20
=
b2

e20
+ (

κ+ 1

κ− 1
)2.

This demonstrates that the larger the imaginary b of the shift
α is, the larger |q| is, and therefore the larger |ω0| = ρ0. In
this case, the MINRES has a faster convergence rate.

We conclude these as the following convergence property
of the MINRES method for solving the system (1).
Theorem Suppose that the matrix H be Hermitian, and
the complex shift α be satisfied with Re(α) + λmin(H) >
0. Then the MINRES method for the system (αI + H)x =
f converges and has a faster convergence than that for the
Hermitian positive system (Re(α)I +H)x = f .

III. NUMERICAL EXPERIMENTS

In this section, we give three numerical experiments to show
the convergence property of the MINRES method revealed by
the theorem for the complex shifted Hermite system (αI +
H)x = f and the real shifted Hermitian system (Re(α)I +
H)x = f .

We report the results of our numerical experiments with
a Fortran 77 implementation of the method based on the D-
MINRES method. The right-hand side of the linear system is
formed by f = (αI + H)x, or f = (Re(α)I + H)x, where
x = (1 − i, 1 − i, · · · , 1 − i)T . The initial value is set by
x(0) = 0, and the stopping criterion is based on the residual
of system ‖r(k)‖ < 10−6.

Experiment 1 We form a Hermitian matrix H = 1
2 (A+A

H),
where

A = (−ω2M +K) + i(ωCV + CH)

is a complex matrix with the inertia and a modified stiffness
matrices M, K, the viscous and the hysteretic damping
matrices CV , CH , and the driving circular frequency ω (see
[1], [2]). In our test, we also take (see [2]) CH = μK with μ
a damping coefficient, M = I, CV = 10I , and K the five-
point centered difference matrix approximating the operator
L = −Δ + γ(∂x + ∂y), γ ∈ R with homogeneous Dirichlet
boundary conditions on a uniform mesh in the unit square
[0, 1]× [0, 1] with the mesh-size h = 1

m+1 . In addition, we set
ω = π, μ = 0.02, and normalize coefficient matrix and right-
hand side by multiplying both by h2. The mesh-size m = 128
and the parameter γ = 8 is tested. The Hermitian matrix H
is positive definite. Thus for all shift α with Re(α) ≥ 0, the
MINRES method converges according to the theorem.

We reveal the convergence property of the MINRES method
for the shifted system with zero imaginary part of the shift α
(i.e. for the system (2)) and nonzero imaginary part of α (i.e.
for the system (1)) by showing convergence curves for norm
of residuals. We test two groups of values for the shift α: one
is with Re(α) = 0 (see the left of Fig. 1) and another is with
Re(α) = 0.2 (see the right of Fig. 1).

The curves in the Fig. 1 show the following facts:
1. the MINRES method for the linear system (1) converges

faster than that for the linear system (2); e.g., the method
converges respectively after 42 iteration (IT) steps for the
linear system (1) with the shift α = 0.2 + 0.5i; however it
converges after IT=56 for the linear system (2) with the real
shift Re(α) = 0.2;

2. for the complex shifted linear system, a larger the
imaginary part Im(α) has a better convergence property; e.g.,
IT=77 with α = 0 + 0.2i and IT=50 with α = 0 + 0.5i;

3. the convergence property is irrelevant to the sign of the
imaginary of the shift.

Experiment 2 We form a Hermitian matrix H = 1
2 (A+AH),

where
A =W + iZ

is a complex matrix with W = K+w1I, Z = K+w2I, w1 =
3−√

3
h , w2 = 3+

√
3

h (see [2], [10]) and the matrix K the five-
point centered difference matrix approximating the operator
L = −Δ + γ(∂x + ∂y), γ ∈ R with homogeneous Dirichlet
boundary conditions on a uniform mesh in the unit square
[0, 1]× [0, 1] with the mesh-size h = 1

m+1 . We also normalize
coefficient matrix and right-hand side by multiplying both by
h2. The mesh-size m = 128 and the parameter γ = 8 are
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Fig. 1. Norm of residuals for Ex. 1. Left: the first group with Re(α) = 0.
Right: the second group with Re(α) = 0.2.
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Fig. 2. Norm of residuals for Ex. 2. Left: the first group with Re(α) = 0.
Right: the second group with Re(α) = 0.2

tested, and in thus case, the Hermitian matrix H is positive
definite. Thus for all shift α with Re(α) ≥ 0, Re(α)I +H is
Hermitian positive definite matrix, and the MINRES method
converges according to the theorem.

We also test two groups of values for the shift α: one is
with Re(α) = 0 (see the left of Fig. 2) and another is with
Re(α) = 0.2 (see the right of Fig. 2).

The curves in the Fig. 2 show again the above three issues
for the experiment 1. These numerical results illustrate that the
method benefits from the imaginary part of a complex shift α
when solving the linear system (1).

Experiment 3 As a source of the shifted Hermitian linear
system and also as our motivation to discuss the linear system
(1), in this experiment we use the HSS iteration method with
a complex parameter α (see [10]) to solve the linear system

Ax = b, (6)

with respect to the positive definite complex matrix A of (6).
The mesh size m = 32 and the parameter γ = 2 are tested. In
the HSS iteration method, two shifted linear sub-systems with
respect to αI +H and (−αi)I+(−iS) have to be solved per
iteration step, where H = 1

2 (A + AH), S = 1
2 (A − AH).

Both sub-systems are the linear system (1) and we use the
D-MINRES method to solve these sub-systems in the HSS
iteration method. In [10], a suitable nonreal parameter αest =
0.3520+1.0835i could be estimated according to the extremal
eigenvalues of H and S. We test this estimated parameter αest
in the HSS iteration method to solve the linear system (6).
As a comparison, we also test an experimental optimal real
parameter α = aexp = 0.6819 in the HSS iteration method,

TABLE I
ρ(T (α)), IT AND CPU TIME FOR CONVERGENCE OF HSS FOR
EXPERIMENT 3, AND IT FOR CONVERGENCE OF MINRES FOR

SUB-SYSTEMS

α = a+ bi ρ(T (α)) IT CPU IT(H) IT(S)
αest = 0.3520 + 1.0835i 0.7368 55 1.48 32 16
aexp = 0.6819 0.8433 100 3.59 33 42

which is given by

aexp = argmin
αj

ρ(T (αj)),

where ρ(T (α)) is the spectral radius of the HSS iterative
matrix T (α), and real number αj (j = 1, · · · , 401) is the
equally-spaced points in [0, λmax(H)]; see [10]. In our test,
the eigenvalues of a matrix are solved by the function eig in
Matlab(7.4 ed).

In Table I, we show the spectral radius ρ(T (α)), IT and
CPU time (sec.) for convergence of the HSS iteration method
with the nonreal parameter α = αest and the real parameter
α = aexp, respectively. The stopping criterion is based on
the system (6) residual ‖r(k)‖ < 10−6. Also, we show IT
for convergence of the inner iteration using the D-MINRES
method for solving two shifted linear sub-systems with these
shift parameters, denoted by IT(H) for (αI + H)u = g,
and IT(S) for ((−αi)I + (−iS))u = (−ig). The stopping
criterion is based on the sub-system residual ‖r(l)in ‖ < 10−7.
The numbers shown in the last two columns of Table I are
stable iteration numbers for convergence of the inner iteration
after nearly 3 outer iteration steps k.

The numerical results in Table I show the following facts:
1) the HSS iteration method with the nonreal parameter

αest has a smaller spectral radius and a considerable faster
convergence rate than that with the experimental optimal real
parameter aexp;

2) in the inner iteration, the D-MINRES method converges
for the two shifted linear sub-systems with the nonreal shift
αest faster than that with the real shift aexp. In particular, for
the shifted linear sub-system ((−αi)I + (−iS))u = (−ig),
although the shift aexp = 0.6819 > Re(αest) = 0.3520,
but αest has its imaginary part Im(αest) = 1.0835, which
illustrates again that the method benefits from the imaginary
part of a complex shift when solving the linear system (1).

3. as above issue 1 and 2, it is possible that the HSS iteration
method with a suitable nonreal parameter αest take less CPU
time to solve the linear system (6) than with an experimental
optimal real parameter aexp, in particular, for the ′dominant′

imaginary part of the matrix; see [10].
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