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Floating-Point Scaling for BSS Gain Control
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Abstract—In Blind Source Separation (BSS) processing, taking
advantage of scaling factor indetermination and based on the floating-
point representation, we propose a scaling technique applied to the
separation matrix, to avoid the saturation or the weakness in the
recovered source signals. This technique performs an Automatic Gain
Control (AGC) in an on-line BSS environment. We demonstrate
the effectiveness of this technique by using the implementation of
a division free BSS algorithm with two input, two output. This
technique is computationally cheaper and efficient for a hardware
implementation.

Keywords—Automatic Gain Control, Blind Source Separation,
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I. INTRODUCTION

D IGITAL Signal Processing (DSP) algorithms are typi-
cally some of the most challenging computations. They

are often need to be done in real-time, and require a large
dynamic range. The requirements for performance and a large
dynamic range lead to the use of floating-point number system
[1].

Recently, BSS has received attention because of its potential
applications such as speech recognition systems, telecommu-
nications and medical signal processing. The problem consists
of identifying a system where only output is observed. Source
separation may be obtained by first identifying the directional
vectors associated to each source and then by projecting the
array signal onto the estimated vectors. This is a standard
problem in array processing except that in BSS problem,
we perform system identification without resorting to the
knowledge of the directional vectors. Hence, blind source
separation is essentially unaffected by errors in the propagation
model or in array calibration.

In VLSI implementation, divisions are more complex to
implement than multiplications and require more resources
[2]. In this sense, a specific Analytical Second Order Blind
Identification (ASOBI) algorithm has been derived considering
the temporal coherence properties of the input sources as
well as the inherent indeterminacies of the BSS processing.
The ASOBI algorithm is division free and more suitable for
hardware implementation [3].

The main contribution of this paper is a new technique for
solving the recovered source signals errors by taking advantage
of the scaling factor indetermination in blind processing and
the floating-point representation.

The paper is organized as follows: The ASOBI algorithm is
briefly presented in section II. Section III describes the imple-
mentation of BSS block processing environment. The solution
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for the scaling problem by using floating-point representation
is presented in section IV. Section V describes the evaluation
experiments and shows the results. Finally, we discuss related
issues and conclude this paper in Section VI.

II. THE ASOBI ALGORITHM

Consider an array of 2 sensors receiving signals from 2
narrow band sources. The array output denoted x(t) is a 2×1
random vector, corrupted by additive white noise denoted n(t)
and classically modeled as:

x(t) = y(t) + n(t) = Hs(t) + n(t) (1)

where s(t) is a 2×1 vector whose p-th component denoted
sp(t) is the signal emitted by the p-th source. The 2×2 matrix:

H =

[
h11 h12

h21 h22

]

is assumed to be full rank but otherwise unknown. The
source signals are temporally colored, second order stationary
and mutually uncorrelated processes.

The correlation matrices of x(n) are given by:

Rx1x1 = h2
11Rs1s1 + h2

12Rs2s2 + σ2I (2)

Rx2x2 = h2
21Rs1s1 + h2

22Rs2s2 + σ2I (3)

Rx1x2 = h11h21Rs1s1 + h12h22Rs2s2 (4)

where x(n) = [x1(n) x2(n)]
T , I is the N × N identity

matrix, and Rxy is defined as

Rxy = E([x(1), · · · , x(N)]T [y(1), · · · , y(N)]) (5)

E(.) being the expectation operator and N is some chosen
window length which can be a power of 2 so that a division
by N becomes a simple bit shifting.

The aim is to calculate the separation matrix W and then
use it for recovering the emitted sources. The solution for this
blind identification system is obtained using ASOBI algorithm
which requires three processing steps:

A. The Correlation Parametres (Fi and Ti)

Two operators Off(.) and Tr(.) are defined as:

Off(M) =
∑
i�=j

Mij (6)

Tr(M) =
1

N

∑
i

Mii (7)
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where M is any square matrix of dimension N×N and Mij

are the entries of M. By applying these operators to equations
(2), (3) and (4), the following set of relations is obtained,

F1 = off(Rx1x1) = h2
11R1 + h2

12R2 (8)

F2 = off(Rx2x2) = h2
21R1 + h2

22R2 (9)

F3 = off(Rx1x2) = h11h21R1 + h12h22R2 (10)

T1 = tr(Rx1x1) = h2
11 + h2

12 + σ2 (11)

T2 = tr(Rx2x2) = h2
21 + h2

22 + σ2 (12)

T3 = tr(Rx1x2) = h11h21 + h12h22 (13)

where Ri = off(Rsisi), i = 1, 2. In (11), (12) and
(13), we use the fact that, under unit-variance assumption,
tr(Rsisi) = 1, i = 1, 2.

B. The Mixing Matrix (H)

Solving equations (8)-(13) and taking advantage of the
inherent indeterminacies of the blind processing, leads to the
following simplified solution:

H =

(
bF1 − (T1 − σ2)d1 bF3 − T3d2

bF3 − T3d1 bF2 − (T2 − σ2)d2

)
(14)

where d1 = a− c and d2 = a+ c, with

a = 2F3T3 − (F1(T2 − σ2) + (T1 − σ2)F2) (15)

b = 2(T 2
3 − (T1 − σ2)(T2 − σ2)) (16)

c2 = (F1(T2 − σ2)− (T1 − σ2)F2))
2 + 4(F3(T2

−σ2)− T3F2)(F3(T1 − σ2)− T3F1). (17)

Note that the obtained solution does not involve any division
operation and reduces in the same time the number of square
root operations needed for the channel identification.

C. The Separation Matrix (W)

Now, we need to calculate the weights W of the separation
filter to achieve our task of source signal recovery.

Taking into account the inherent indeterminacies of BSS,
the zero forcing solution which maximizes the signal to
interference at the output of the filter is given by

WH = PD

where P and D are a permutation matrix and a diagonal
matrix, respectively. The solution is given by

W =

[
h22 −h12

−h21 h11

]
(18)
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Fig. 1. Block diagram of BSS block processing

III. THE BSS ENVIRONMENT

To support the implementation of a BSS block processing
of algorithm, we propose the architecture of Fig. 1.

Figure 2 displays the three-stage pipeline composing the
BSS block processing implementation (Acq = Acquisition of
a frame of mixture samples, Est = Estimation of separation
matrix, Sep = Separation of sources). The vertical and the
horizontal axis represents successive frames and time respec-
tively. So in the gray column, the earliest frame is in separation
stage, the middle frame is in estimation operation and the latest
frame is undergoing acquisition.

Time

Frame

Acq Est Sep

Acq Est Sep

Acq Est Sep

Fig. 2. Frame scheduling on the BSS block processing

The BSS Environment contains the following main blocks:

A. The Memory System (Mem)

In block processing algorithms, we need a block of samples
available during each processing period. The ith frame is
stored in one of its two memory sub-blocks (Fig. 3). The
(i − 1)th frame is interfaced with the Alg as a read only
memory (Ap: Address, Xp: Data) to compute the separation
matrix Wp at the processing clock speed CLKp. The (i−2)th

frame is outputted at port Xs as a stream to the Filter block.
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Fig. 3. Memory system block diagram
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B. The Fx2Fp and Fp2Fx Blocks

Implement fix to floating-point conversion and vice versa,
respectively. For the implementation, the library FPLibrary of
parameterizable arithmetic operators for real numbers has been
used [4].

C. The BSS Algorithm (Alg)

The top level block diagram of the ASOBI algorithm
implementation (Fig. 4) has been modeled into three main
parts namely Correlation Matrix (CM), Mixing Matrix (HM)
and Separation Matrix (WM) as presented in [5]. This block
can seek each vector of mixed signals on the data port Xp
which corresponds to the address presented at port Ap from
the memory system. A high level of the frame synchronization
pulse Fp transmitted from the Mem block to the Alg block,
allows the initialization of the algorithm. The output of this
block is the estimated separation matrix Wp.
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CLKp

Xp Ap

Wp
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H Ti

 Clk
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CM

A X

 Rst
 Clk
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Ti

 En

WM
W H

 Clk

Fig. 4. ASOBI implementation block diagram

D. The Matrix Scaling (MatScal)

This block reduce the estimated separation matrix Wp dy-
namics through substraction operations, applying the proposed
technique presented in section IV. In result, the scaled matrix
Ws is used in the next block to recover the source signals
avoiding a saturation or a weakness at output.

E. The Separation Filter (Filter)

This block performs the separation itself using the weighting
vectors in the scaled separation matrix Ws and the samples of
the mixture signals Xs to recover the estimated sources S:

S = WsXs (19)

It include the sources number of beam former (Fig. 5).
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Fig. 5. Separation filter block diagram

IV. THE FLOATING-POINT SCALING

In blind context, complete identification of the mixture
matrix H is impossible as shown by the following relation:

x(t) = Hs(t) + n(t) =

2∑
p=1

hp

αp

αpsp(t) + n(t) (20)

where αp ∈ IR and hp denotes the p-th column of
H. Hence, the exchange of a fixed scalar factor between a
source signal and the corresponding column of H leaves the
observations unaffected [3].

In the same way, the exchange of a fixed scalar factor
between a mixture signal and the corresponding line of the
separation matrix Wp doesn’t affect the estimated source.

When the estimated separation matrix Wp can be written
as: Wp = Ws2α with |α| a large scaler, so the estimated
sources can be either saturated (α > 0) or weakened (α < 0).

To overcome this scaling problem, the floating-point repre-
sentation is used.

In general, a floating-point number F presented in Fig 6,
can be expressed as follows:

F = (−1)s1.f2e−b (21)

Where s is the sign bit, f is the fraction and e is the biased
exponent.

s e f

e
size (bits)

Fig. 6. Floating-Point number representation

The actual exponent is the value of the exponent field minus
the bias. The value of bias b depends on the size of exponent
esize as in equation (22).

b = 2esize−1 − 1 (22)

The idea is: for each source associated to the estimated
separation matrix Wp line i:

• keep all signs sij and fractions fij fields unchanged (the
same orientation of the directional vectors):

f ′
ij = fij , (23)

s′ij = sij ; (24)

• reduce the dynamic of the biased exponent eij (change
the directional vectors amplitude):

e′ij = eij − di, (25)

where di = ei1−b, represents the dynamic relative to the
reference ei1.

It is clear from equation (25), that the new exponent field
of the reference e′i1 will be:

e′i1 = ei1 − di = ei1 − (ei1 − b) = b, (26)
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so the reference element actual exponent of the scaled separa-
tion matrix will be equal to zero. The actual exponent for the
others elements is reduced with the same amount di and will
be near to zero for each line i. Hence, the result separation
matrix dynamics is decreased and adapted to a correct source
recovery.

The hardware implementation of this technique is presented
in Fig. 7, where we can notice that its need only one subtrac-
tion operation for each matrix element.

+ +

d

+

d

b

b d
___

Input: Estimated separation matrix line

s e f

s e f

s e f

s e f

s e f

s e f

Output: Scaled separation matrix line

Fig. 7. Floating-point based scaling technique implementation

V. THE IMPLEMENTATION RESULTS

We first present a sample run of the proposed hardware
implementation, consisting of two speech signals (Fig. 8.a),
which they are mixed (Fig. 8.b) by the following matrix,

H =

[
1.0 1.0
1.0 0.8

]
. (27)

It appears from figure 8.c that without using a scaling
technique, the recovered signals are saturated in this case. A
correct estimation of the source signals is provided (8.d), using
this new scaling technique.
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Fig. 8. Speech signals separation example

Also, we have used an FPGA Virtex-5 to assess the perfor-
mances of the implementation and to show the effect of the
word length and the sample size on the resource utilization,
the maximum working frequency and the separation quality.
This quality is characterized in terms of signal rejection ratio
as discussed in [3]. We recall that lower is this ratio better is
the separation quality.

TABLE I
FPGA IMPLEMENTATION RESULTS

Word Sample Number of Maximum Rejection
length size slices frequency ratio
(bits) Logic DSP48Es (MHz) (dB)

128 12716 26 34.00 -12.60
24 256 12892 26 34.00 -16.53

512 13176 26 33.98 -32.10
128 16269 52 26.93 -13.76

32 256 16465 52 26.93 -19.27
512 16770 52 26.93 -41.42

From Table I, we can see that the working frequency isn’t
affected by the sample size but only by the word length. This
due to the fact that the operation critical path is affected by
the word length. Furthermore, one can observe that when the
word length and/or the sample size increase the rejection ratio
decreases which means that we have a good separation.

VI. CONCLUSION

We have designed and implemented a BSS block processing
environment needed for the hardware implementation in real-
time applications of related algorithms such as ASOBI.

A scaling technique based on floating-point representation
is proposed and implemented to solve the separation matrix
scaling problem. We have overcome this problem and obtained
a correct source separation.

In blind context, this dynamic reduction technique perform
an Automatic Gain Control in Multiple-Input Multiple-Output
systems as BSS.

From hardware complexity point of view, this scaling tech-
nique can be achieved in one clock cycle and requires low
resources cost. We keep the entire architecture of BSS envi-
ronment division free as the ASOBI algorithm implementation.
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