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The 1nverse eigenvalue problem via orthogonal
matrices

A. M. Nazari*, B. Sepehrian**, M. Jabari***

Abstract—In this paper we study the inverse eigenvalue problem
for symmetric special matrices and introduce sufficient conditions for
obtaining nonnegative matrices. We get the HROU algorithm from
[1] and introduce some extension of this algorithm. If we have some
eigenvectors and associated eigenvalues of a matrix, then by this
extension we can find the symmetric matrix that its eigenvalue and
eigenvectors are given. At last we study the special cases and get
some remarkable results.
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[. INTRODUCTION

T first we recall some lemmas and theorems from

[1].

Lemma L1. . If (A, Ao, -+ A\y,) are eigenvalues of n X n
matrix A and (\,w) is a particular eigenpair, then for each
arbitrary vector v € R" the eigenvalues of matrix A + uv™
agree with those of A, except that \y, is replaced by M\, +vT u.

Theorem L.2. Let A be an n X n arbitrary matrix with

eigenvalues M1, o, -+ Ap. Let X = [X1|Xa| - |X,] be
such that rank(X) = r and AX; = \ X, i = 1,2, |1,
r < n. Let C be an r X n arbitrary matrix, then the matrix
A+ XC has eigenvalues i1, fi2, -+ fhry Ar1, Arg2, 5 Any
where [y, b2, - [ are eigenvalues of the matrix  + CX
with diagonal matrix Q = diag{\1, A2, - A\ }.

Theorem L3. Let {(\;, u;)}!, be eigenpairs of an n x

n matrix A, ulruj = 0 for any i # j, and let vy, =
A . .
% then {(Ni,ui)}iy ;z and (p, uk) are eigenpairs

of matrix A + ukva.

Theorem L4. Let A = 22T, where x € R, x > 0, and
Hz =| z |2 e1, then

1) all the columns of H constitute an orthogonal
eigenvectors set of A,

Lemma L5. The matrices hih¥ hohd,... h,hT are
linearly independent, if h; is the i-th column of a
Householder matrix H.

Recall the following problem from [1] .

Problem 1. Find a real symmetric matrix B € R™*"
with prescribed spectrum (A1, Aa,...,\,), and a positive
eigenvector x.
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Algorithm 1. (HROU : Householder - based rank one
updating )

1) Input z, A = (A1, Aa,..., A,) ; initial B =0;

2) Compute the Householder matrix, s.t. Hx =|| z ||2 €1 ;
3)fori=1,2,...,n

5) end for

6) output B, A1, h.

In above algorithm for given spectrum A = (A1, A2, ..., A\p)
and the positive eigenvector = we obtain the symmetric matrix
B =" X\ih;hl, where h; is the ith column of Householder
matrix H =1 — —#~vv” and v =2— || z ||z e1.

In fact by useing algorithm 1 matrix B = Y., A\;h;h! is
answer of problem 1.

II. SPECIAL FORMS OF PROBLEM 1

We are noting that the problem (1) for each eigenvector
x (not necessary positive ) is solving with same method.
In algorithm of HROU if assume input spectrum be
(A1, A2,..., ) and 2 = (1,0,...,0,1)T, then the matrix H
has a special form as follows

g0 0 B
5 0 1 0 0
HszT’U’UT: : : N : (1)
vTo : . : .
0o 0 --- 1 0
g 0 -+ 0 1l-—«
_ 1 _ 1
Whereﬁ—ﬁanda—m.

Now we obtain H; = h;h] for j =1,2,...,n:

g2 0 --- 0 p?
o 0 --- 0 0
Hy=hhi=| 1 &+ -~ 1 @)
0o 0 -~ 0 O
g2 0 --- 0 p?
and for j =2,...,n— 1, we have
jth
~~
0 0 0
T o Do
Hj = hjh; {0 - 1 0 )
0 0 0
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and also
B2 0 - 0 B(l-a)
0 0o -+ 0 0
Hy = hnhy, = S @)
0 0o --- 0 0
Bl—a) 0 --- 0 (1-a)?

therefore by notice to construction of H; the matrix B has
following form

bir = B2 (M + M) ®)
bin = B*A1 + B(1 — a)A, (6)
bnn = 52)\1 + (1 - a)Q)‘n (7)

the another elements of matrix B as follows :

b“:/\z, 7/:2,,11*1 (8)
Thus the matrix B has bordered diagonal form , this means
* 0 - 0 =
0O x --- 0 0
B= e T (10)
0 0 * 0
* 0 0 =
Since (1 —a) = 5! and (1 —a)? =1, 8% = 1, then we
can write the relations (5), (6), (7) as follows
A+ An
by = Q1A (11)
2
A — An
A D) (12)
2
A An
by = % (13)

Example II.1.

Let A = (3,1,—2,—2), find the bordered diagonal matrix
B in form (10) that A is its spectrum. By relations (11), (12),
(13) the matrix B is obtained as follows

05 0 0 25
0 1 O 0
B= 0 0 -2 0
25 0 0 05

Notice that we assume the vector z = (1,0,0,1)7 is eigen-
vector of B.
Let (A1, A2, 45 ) be  the

kth (n—14+1)th
= ~~

zx = (1,..., 1,0,...,0, 1 ,...,1)T be the

eigenvector of matrix B , then B has the following

form :

spectrum and

(Akxr 0 0 (Cxt
0 * 0 0
B = : R : (14)
0 0 * 0
(CT)ixre 0O 0 (D)ixi

Now we obtain the elements of matrix B from algorithm
HROU. Let FF = {1,...,k,n -1+ 1,...,n} and E =
{2,...,k,n—1+1,...,n} then we have

b1 = ﬁQ(Z Ai) (15)
i€F
blj = 52/\1 — Oéﬁz/\l + /B/\ja ] S (16)
i€E

by =52>\1+022Aj + (1 —2a)\, ieE (7

JjEE
bij =AM+ > M—a(\i+)),  i<j  i,jEE
keE
(18)
bii:)\i, i:k+1,...,n—l (19)

by =0, i<j,  dj=k+1....n—1  (20)

1 1
= Zrmivericy P

Example II.2.

Let A = (8,5,3,2,—1,—3), the matrix B that A is its
spectrum is in the following form.

2.20000  3.35065 0 2.00901 0.66737 —0.22705
3.35065  3.37467 0 —0.53991 0.54549
B 0 0 3 0 0
2.00901 —0.53991 0 2.54549 1.63090
0.66737 0.54549 0 1.63090 1.71631
—0.22705 1.26909 0 2.35450 3.43991
Notice that we assume the vector x = (1,1,0,1,1,1)7 is

eigenvector of B.
Now notice to the following lemma.

Lemma IL.3. For [ =k = 1,2 the matrix B be the symmetric
matrix in following form

(ADixke 0 -+ 0 (Chx
0 * - 0 0
B=| o (22)
0 0 - =x 0
(Chixr 0 0 (A
Proof. For k = [ = 1 the relations (11),(13) hold since

bln = bnn
For k = [ = 2 assume the matrix B that obtain from HROU
algorithm has form (15). By (22) for £ =1 = 2 we have

a2:[)"2:(17a)2:i (23)

from (18),(24) for : = 2,n — 1,n we have

bii = B2+ a2(X o N+ X, A) + (1= 20)); =
B2A + 042(2?:2,#1' )‘j2+ ;?=n—1,j¢i Aj)+

(0% — 20 + A== =0-0"32(5 4 522 N +
g N D) = B2 A A + An)Eémbu.

1.26909

2.35450
3.43991
1.16352
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Then, to be attention to form of matrix B the main diagonal
elements matrix A and D are equal. Also according to
relations (17),(19) we have

1 1 1
b2 = Z)\l - Z(Az + A1+ )+ 5)\2

1 1
= Z()\l + )\2) - Z(Anfl + >\n) (24)

1 1 1
bnfl,n = Z)\l + Z()Q + )\nfl + )\n) - 5()\n71 + )\n)

1 1
= 1(/\1 +A2) — Z()\n—l + An)- (25)
consequently from relations (25), (26) we deduce bi2 =
bp—1,,. since the main diagonal elements matrix A and D
are equal and B is symmetric matrix, from (15) we have form

(23) in this case.
Example 11.4.

Let A = (4,2,1,1,—2), the matrix B that A is its spectrum
is in the following form.

1.2500  1.7500 0 1.2500 —0.2500
1.7500  1.2500 0 —0.2500 1.2500
B= 0 0 1 0 0
1.2500 —0.2500 0 1.2500 1.7500
—0.2500 1.2500 0 1.7500 1.2500
Notice that we assume the vector x = (1,1,0,1,1)7 is

eigenvector of B.

III. SUFFICIENT CONDITIONS FOR NONNEGATIVE

In this section we introduce some conditions for nonnegative
solution of problem 1.
From relations (11)-(13) to fake into consideation that B
is nonnegative matrix if in addition to satisfy in following
condition
MA+X+...4+2, >0 (26)

‘/\1|2)\j, 2<ji<n 27

in another following conditions

A; >0, j=2,....,n—1 (28)
because according to (28) we have
M= < A <M= A=A >0 A +N, >0
Then from (11)-(13), we have

011,010, b5 >0 (29)

then by (27)-(29) all of entries of B matrix in the form (10)be
nonnegative.

Further more according to (16)-(20) moreover conditions
(26),(27) for nonnegative matrix we have following conditions

b =8O _N) >0 30)
i€EF

mingepbi; = B2A = aB Y N+ BAminjer 20 (31)
i€E

minicpbi = B2\ + o Z A+ (= 1)*Ainjer >0

JEE,j#i
(32)
mini<jijepbiy = B2 h+a’ Z Ar—a(mazijepAitA;) = 0
keE
(33)
/\minkJrlS,S,,,,, 2 0. (34)

Example IIL.1.

Let A = (4,3,1,—1,—2), the nonnegative matrix B that A
is its spectrum is in the following form.

0.3333 0 0 2.1220 1.5447
0 3 0 0 0
B = 0 0 1 0 0
2.1220 0 0 0.0447 1.8333
1.5447 0 0 1.8333 0.6220
Notice that we assume the vector x = (1,0,0,1,1)7 is

eigenvector of B.

IV. THE EXTENSION OF PROBLEM 1.

In this section we intend to solve the following problem.

problem 2. Find the real symmetric matrix B € R"*" ,
such that (A1,...,\,) be the its spectrum and = , y be two
orthogonal eigenvectors.

Recall theorem (1), from this theorem we have next lemma.

Lemma IV.1. Ler {(\;,x;)}", be the eigenpairs of n x n

matrix A and 1, x2 be two its orthogonal eigenvectors.
p1—A1 2T
zTxy 1

T
p2—Xs T )
zg‘zg 2

Let X = (z1,22), C = then the

2xn
matrix A+ XC has eigenvalues i1, 12, A3, . .., A\p and the
its eigenvectors are the eigenvectors of matrix A.

Proof. According to theorem (1) the eigenvalues of matrix
A+ XC, are pq,p2,As, ..., A\, Where py and uo are the
eigenvalues of matrix 2 + CX, where Q = diag{\1, A2}.

21T
MO B
Q“’X:(& A2>+<g5”&zé>(m 72 ) =

wTzs L2

)\1 0 + M1 — /\1 0 _ M1 0
0 )\2 0 Mo — )\2 0 1253

For solving problem (2) we need to a good candidate A =
zzT + ny.

Theorem IV.2. Let z,y € R™ are two orthogonal vectors and
A = 22T + yyT. Moreover let Hx = ||z||oe1 and Hy =
lyll2€2, then

1) the all of columns (h;,i=1,2,...
of an orthogonal eigenvectors set of A,
2) hn = z/||z|l2, ha = y/|lyll2 and aTzhi b +yTyhohy =
A.

,n) of HT constitute

Proof. Since
HAHT = H(zzT +yyT)HT = He(Hz)T + Hy(Hy)T

= |lzll3eret + Ilyll3ezes,
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H is orthogonal matrix, then we have HHT = I. Furthermore
according to above computations we have

HAH" =|| z |3 exe] + || y |I3 e2e3

= AHT = H'(| z |3 exe] + || y |13 e2e3) =
A(hy, ha, ... hy) = (@7 x)Herel + (yTy)Hegel
= (Ahy, Aho, ..., Ahy) = (z"2hi,y"yho,0,...,0) =
Ahy = 2T zhy, Ahy = yTyh/z,AhZ- =0, fori=3,....,n

Then all columns of H” (h;) are orthogonal eigenvectors of
A.
Also, we have

Hz = ||z|lze; = H He = H” ||z||2e1
=z =|z||:H e; = 2 = ||z]2h1 = h1 = z/||z||2,
Hy = |lyll2e2 = H' Hy = H' ||y |2¢2
=y = yll2H e2 = y = [lyllzhe = ha = /||y
Also we see that
:chhlth + yTyhohl =

g Ty = T = A,
|| H ly 113
and this complete the proof.
Now by above subjects we introduce the following algo-
rithm for solving problem (2). From now we assume that h;
denote the i-th column of matrix H7.

Algorithm 2.

1) Input two orthogonal vectors z, y, A = (A1, A2, ..., \p)
; initial B = 0;
2) Compute the orthogonal matrix, s.t. Hx = ||z||2e1, Hy =
yll2e2

3)fort=1,2,...,n

4) B < B+ A\;h;h!

5) end for

6) output B, A1, h1, A2, ho.

Now we study the some properties of above algorithm. By
lemma (4) we have B = A+ XC, where X = (h1, h2) and
C= (M —aTa)ht then B = A+ (A —aTz)h hT +

“\ Ge—yTyrl ) - ! i
(/\2 - yTy)hghg.

In order that the eigenvalues of B are (A1, A2,0,...,0)
(to take into consideration A = z2T 4 yyT has eigenvalues
(xTx, yTy,0,...,0).

Now according to then theorem(2) the other eigenvalues
change to \; as following

B=A+ (A —a"a)hi + (A2 =y y)hahd + > Aihih] .
i=3
On the other hands by theorem (4) we have

B=A+Y Nhh! — (@"whih{ 4y yhohs) =
=1

B= ikihihf.
i=1

The most important section of algorithm (2) is the computation
of Householder matrix H. we express the construction of
matrix H, this matrix obtain from product of two matrices H;
and H2 ie H = HQHl.

Let Hy =1— 7)Tvva where v = z— || = ||2 e1. To construct
the matrix Ho, since v = z— || = |2 e; we have :
2 2v
z=Hiy =~ —F-vv )Z/_y——UTy_

0 Y1

2v
2(aTz— | z |2 z1)

T T
y— (@y—lzl2e1y)=

[ [l2 vy
Il flo (I = [l2 —21)

z=Hy=y+

Pay attention that the first element of z,namely 2 is zero ,
because

(1=l = [l2)y

= — = 0
[el=ar — "%

21 =Y1+

Then the vector z separates to the

()

and Z is vector with n—1 elements. Now we construct the
Householder matrix Hy as following

v=2—|Z2e
and
0=
= — ———==U0v
2 T

Then the matrix Hs has the following form

1 0 ... 0
0
Hy=1] . -
: Hs>
0

For satisfying Hy =|| y ||2 e2must holds || z ||2=|| v || and
this is satisfy if y; = 0.Since z; = 0 and z; = y; + Hzﬁ;,—y—lm
fori=2,...,n,then z = y.

Remark 1. In the line 1 of algorithm (2) moreover two
vectors z and y must be orthogonal, the first element of y be

necessary zero.

V. NUMERICAL EXAMPLES
Example V.1.

Find the matrix B S K<™ such  that
(A = (A, A2,...,0)T be the its spectrum and
r = (1,0,...,0,1)T and y = (0,1,0,...,0,1,0)T be
its orthogonal eigenvectors.

Solution. We construct the Householder matrix H accord-
ing to the last of previous section :

(1-+2,0,...,0,1)T

v=r—|z2e1=
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and
8 0 ... 0 153
) 01 ... 0 0
_ T _ . .
Hl_I_va = : :
0 0 .1 0
B8 0 0 1-
where
oz—il B—L
V2(v2-1) V2

z = (1,0,...,0,1,0)T, then ¥ = Z2— || Z ||z e1 = (1 —

\/570a"'a071’0)T

B 0 0 8 0
) 0 1 0 0 0
7 T . .
HQ—I—%ZZ = : : .
8 0 0 1—-a O
0 0 0 0 1
and
1 0 0 0 0 0
0 8 0 0 B8 0
0 0 1 0 0 0
Hy = )
0 5 0 0 1—-a O
0 0 O 0 0 1
s 0 0 ... 0 0 B8
0 B8 0 0 B 0
0 0 1 0 0 0
H=HyH, = T : :
0O 0 0 ... 1 0 0
0 8 0 ... 01—« 0
s 0 0 ... 0 0 11—«
Now we obtain the matrices hihiT fori=1,...,n:
B2 0 ... 0 p?
0O 0 ... 0 O
hlh’{f I
0O 0 ... 0 O
B2 0 . 0 p?
0 0 O 0 0 O
0 B2 0 0 B2 0
hohd =
0 82 0 0 8 0
0 0 0 0 0 O
jth
~~
0 0 0
T . . . . N
Wi =1 o ... 1 o JT3eens
0 0 0

0 0 0
o B Al —a)
hn71h3;71 =
0 Bl-a) ... (1-a)?
0 0 0
B2 0 0 B(l-a)
0 0 0 0
hnhz = : : : :
0 0 0 0
B(l—a) 0 0 (1-a)?

Then the element of matrix B = Y.i", A\;h;hl is the

following form
bin = B%(M + An)

bin = B°A1 + B(L = a)An
bun = B2M + (1 —a)?\,
boz = B2 (An—1 + A2)
ban_1 = [*Xa+ B(1 — a)\y1
bo1mn-1= "X+ (1 —a)?\,1

b“:/\“ i:3,...,n—2
bi; =0, 1 <yg, ,j=3,...,n—2

where 1 1

B=—, a=

2 V2(vV2-1)

This means :

* 0 0 ... 0 0 =

0 = 0 x 0

0 0 = 0 0 0

0O 00 ... x 0O

0 = 0 ... 0 x O

* 00 ... 0 0 =«

Now notice that following example .

Example V.2.

(35)
(36)
(37)
(38)
(39
(40)
(41)
(42)

(43)

Let A =(8,5,4,4,3,1,—1,—2), the matrix B that A is its

spectrum is in the following form.

300 0 000 5
02000030
00400000
B 000 40000
00003 00O
000 0O01O00O0
03 00 0020
5 0 0 0 0 0 3

Notice that we assume the vectors = = (1,0,0,0,0,0,0,1)7

and
y =(0,1,0,0,0,0,1,0)"

are orthogonal eigenvectors of B.
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With changing the vectors  and y we can find the another
form for matrix B

* 0 0 ... 0 0 *
0 (Jrxk O 0 (Jrxt O
0 0 * 0 0 0
L L (44)
0 0 0 * 0 0
0 (Jixe O 0 (e O
* 0 0 0 *
where z = (1,0,...,0,1)T and
k l
— — 7
y=(0,1,...,1,0,...,0,1,...,1,0)
are two orthogonal eigenvectors of above matrix.
exe 0 (Dext
0 () o0 (45)

(Jixe 0 (ixe

k l
—
where z = (1,...,1,0,...,0,1,....,.)T and y =
k l
—N— —— .
0,...,0,1,...,1,0,...,0)T are two orthogonal eigenvectors

of above matrix.

(Dexke 00 ... 0 0 ()rx
0 * ... 0 «x 0
0 0 = 0 0 0
; (46)
0 0 0 x 0 0
0 x 0 0 = 0
(Jixe 0 0 0 0 ()i
where . .
— —7
z=(1,...,1,0,...,0,1,...,1)
and

— —\T
y=1(0,...,0,1,0,...,0,1,0,...,0)

are two orthogonal eigenvectors of above matrix.

VI. EXTENSION

In section 5 we explain problem (1)for two orthogonal
eigenvectors z and y. We can extend this problem for r vectors
that n > r > 2 and and integer number. In this case the
algorithm (3) reduce as following

Algorithm 3.

1) Input orthogonal vectors 1, ..., z, such that the vector
x;(i =2,...,7) has i —1 zero in the first elements and matrix
B=0
2) The matrix Householder H such that Hx; = ||a;||2e; for
i=1,...,7.
3)fori=1,2,...,n
5) end for
6) output B, \;, h; fori=1,... 7.

Now we introduce the interesting example that give us
matrix in form X ”.

Example VIL.1.

Find the matrix B such that the following vectors are its
eigenvectors and A = (A1, A2, ..., A\,)7 be its spectrum

x; = (1,0,...,0,1)7,
z2 =(0,1,0,...,0,1,0

)7,
kth (n—k+1)th
= = T
x = (0,...,0, 1 ,0,...,0, 1 ,0,...,0)

where k& = [n/2]. The element of matrix B is the following
form

bii = B2\ + Aniz1), i=1,...,[n/2] &7

bim—iv1 = B2Ai + B(L — ) An_it1, i=1,...,[n/2]
(48)
bn—itin—it1 = B2+ (1—a)*Auiy1, i=1,...,[n/2]
(49)
h
where , ) )
= —, 0=
7 VA1)
Also if n is odd
bin/2)+1,[n/2+1 = Aln/2)+1 (50)

Now notice that the following example .
Example VIL.2.

Find the matrix in form ”X” such that (8,5,3,2,—1,—3)
is its spectrum.

solution.
25 0 0 0 0 5.5
0 2 0 0 3 0
B_ 0 0 25 05 0 O
0 0 05 25 0 O
0 3 0 0 2 0
55 0 0 0 0 25

Notice that vectors
x; = (1,0,0,0,0,1)7,
z2 = (0,1,0,0,1,0)7,
x3=(0,0,1,1,0,0)T

are orthogonal eigenvectors of B.
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