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Computer Simulations of an Augmented Automatic
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Toshinori Nawata

Abstract—In this paper we consider a nonlinear feedback
control called augmented automatic choosing control (AACC)
using the automatic choosing functions of gradient optimization
type for nonlinear systems. Constant terms which arise from sec-
tionwise linearization of a given nonlinear system are treated as
coefficients of a stable zero dynamics. Parameters included in the
control are suboptimally selected by minimizing the Hamiltonian
with the aid of the genetic algorithm. This approach is applied to
a field excitation control problem of power system to demonstrate
the splendidness of the AACC. Simulation results show that the
new controller can improve performance remarkably well.

Index Terms—augmented automatic choosing control, nonlin-
ear control, genetic algorithm, zero dynamics.

I. INTRODUCTION

GENERALLY, it is easy to design the optimal control
laws for linear systems, but it is not so for nonlinear sys-

tems, though they have been studied for many years[1]∼[8].
One of most popular and practical nonlinear control laws
is synthesized by applying a linearization method by Taylor
expansion truncated at the first order and the linear optimal
control method. This is only effective in a small region around
steady state points or in almost linear systems[1]∼[3].

Another nonlinear control called an automatic choosing
control (ACC) has been studied [6]. This controller is effective
in nonlinear systems with high nonlinearity and wider regions.
But constant terms, which generally appear in equations when
linearized by Taylor expansion, lead the controller to have
bias at the origin, so the resulting ACC must be modified by
bothersome unbiased nonlinear functions in view of stability.

To overcome these weakness, in this paper we consider an
augmented automatic choosing control (AACC) for nonlinear
systems[7][8] and its design procedure is as follows.

Assume that a system is given by a nonlinear differential
equation. Choose a separative variable, which makes up non-
linearity of the given system. The domain of the variable
is divided into some subdomains. On each subdomain, the
system equation is linearized by Taylor expansion around
a suitable point so that a constant term is included in it.
This constant term is treated as a coefficient of a stable zero
dynamics. The given nonlinear system approximately makes
up a set of augmented linear systems, to which the optimal
linear control theory is applied to get the linear quadratic
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(LQ) controls[2]. These LQ controls are smoothly united by
automatic choosing functions of gradient optimization type to
synthesize a single nonlinear feedback controller.

This controller is of a structure-specified type which has
some parameters, such as the number of division of the
domain, regions of the subdomains, points of Taylor expan-
sion, and gradients of the automatic choosing function. These
parameters must be selected optimally so as to be just the
controller’s fit. Since they lead to a nonlinear optimization
problem, we are able to solve it by using the genetic algorithm
(GA)[9] suboptimally. In this paper the suboptimal values of
these parameters are selected by minimizing the Hamiltonian.

This approach is applied to a field excitation control
problem of power system, which is Ozeki-Power-Plant of
Kyushu Electric Power Company in Japan, to demonstrate the
splendidness of the AACC. Simulation results show that the
new controller using the GA is able to improve performance
remarkably well.

II. AUGMENTED AUTOMATIC CHOOSING CONTROL USING

ZERO DYNAMICS

Assume that a nonlinear system is given by

ẋ = f(x) + g(x)u, x ∈ D (1)

where · = d/dt, x = [x[1], · · · , x[n]]T is an n-dimensional
state vector, u = [u[1], · · · , u[r]]T is an r-dimensional control
vector, f : D → Rn is a nonlinear vector-valued function with
f(0) = 0 and is continuously differentiable, g(x) is an n× r
driving matrix with g(0) �= 0, D ⊂ Rn is a domain , and T
denotes transpose.

Considering the nonlinearity of f , introduce a vector-valued
function C : D → RL which defines the separative variables
{Cj(x)}, where C = [C1 · · ·Cj · · ·CL]

T is continuously
differentiable. Let D be a domain of C−1. For example, if
x[2] is the element which has the highest nonlinearity in f ,
then

C(x) = x[2] ∈ D ⊂ R (L = 1)

(see Section IV). The domain D is divided into some sub-
domains: D = ∪M

i=0Di, where DM = D − ∪M−1
i=0 Di and

C−1(D0) � 0. Di(0 ≤ i ≤ M) endowed with a lexicographic
order is the Cartesian product Di = ΠL

j=1[aij , bij ], where
aij < bij .

Introduce a stable zero dynamics :

ẋ[n+ 1] = −σix[n+ 1] (2)
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(x[n+ 1](0) 
 1, 0 < σi < 1).

Eq.(1) combines with (2) to form an augmented system

Ẋ = f̄(X) + ḡ(X)u (3)

where

X =

[
x

x[n+ 1]

]

∈ D×R

f̄(X) =

[
f(x)

−σix[n+ 1]

]

, ḡ(X) =

[
g(x)
0

]

.

We assume a cost function being

J =
1

2

∫ ∞

0

(
XTQX+ uTRu

)
dt (4)

where Q = QT > 0, R = RT > 0, and the values of
these matrices are properly determined based on engineering
experience.

On each Di, the nonlinear system is linearized by the
Taylor expansion truncated at the first order about a point
X̂i ∈ C−1(Di) and X̂0 = 0 (see Fig. 1):

f(x) + g(x)u 
 Aix+ wi +Biu on C−1(Di) (5)

where

Ai = ∂f(x)/∂xT |x=X̂i
, wi = f(X̂i)−AiX̂i ,

Bi = g(X̂i).

Make an approximation of (3) by

Ẋ = ĀiX+ B̄iu on C−1(Di)×R (6)

where

Āi =

[
Ai wi

0 −σi

]

, B̄i =

[
Bi

0

]

.

An application of the linear optimal control theory [2] to
(4) and (6) yields

ui(X) = −R−1B̄T
i PiX (7)

where the (n + 1) × (n + 1) matrix Pi satisfies the Riccati
equation :

PiĀi + ĀT
i Pi +Q−PiB̄iR

−1B̄T
i Pi = 0. (8)

Introduce an automatic choosing function of gradient opti-
mization type:

Ii(x) =

L∏

j=1

{
1− 1

1 + exp (2Ni (Cj(x)− aij))

− 1

1 + exp (−2Ni (Cj(x)− bij))

}
(9)

where Ni:positive real value, −∞ ≤ aij , bij ≤ ∞. Ii(x)
is analytic and almost unity on C−1(Di), otherwise almost
zero(see Fig. 2).

Expansion
point

D0 DM

f(x)

xX0 XM
^

D1

^X̂1

f(x)

A1x+w1

AMx+wMA0x

0

Fig. 1Sectionwize linearization

aij bij aij bij

Ni=3.0 Ni=6.00.5

1

Fig. 2Automatic Choosing Function(Ni=3.0, 6.0)

Uniting {ui(X)} of (7) with {Ii(x)} of (9), we have an
augmented automatic choosing control

u(X) =

M∑

i=0

ui(X)Ii(x). (10)

III. PARAMETER SELECTION BY GA

The Hamiltonian for Eqs.(3) and (4) is given by

H(X, u, λ) =
1

2

(
XTQX+ uTRu

)

+λT
(
f̄(X) + ḡ(X)u

)
. (11)

Assume that the adjoint vector λ ∈ Rn+1 is

λ =

M∑

i=0

PiXIi(x). (12)

The necessary condition of the optimality is ∂H/∂u = 0 or
u = −R−1ḡ(X)Tλ , which derives Eq.(10) using Eq.(12) and

H(X, u, λ) =
1

2
XTQX− 1

2
uTRu+ f̄T (X)λ (13)

using Eq.(11).
Thus we can define a performance

PI =

∫

D

|H(X, u, λ)|/XTXdX. (14)

A set of parameters included in the control of Eq.(10) is

Ω̄ = {M,Ni, aij , bij , X̂i} (15)
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which is suboptimally selected by minimizing PI with the aid
of GA[9] as follows.

<ALGORITHM>

step1:Apriori: Set values Ω̄apriori appropriately.
step2:Parameter: Choose Ω ⊂ Ω̄ to be improved

and rewrite

Ω = {Ni, ai, bi · ·} = {αk : k = 1, ··,K}.

step3:Coding:Represent each αk with a binary bit
string of L̃ bits and then arrange them into one
string of L̃K bits.

step4:Initialization:Randomly generate an initial
population of q̃ strings

{Ωp : p = 1, ··, q̃}.

step5:Decoding:Decode each element αk of Ωp by

αk = (αk,max − αk,min)Ak/(2
L̃ − 1) + αk,min

where αk,max:maximum, αk,min:minimum, and
Ak:decimal values of αk.

step6:Control: Design u = u(X)p (p = 1, ··, q̃) for
Ωp by using Eq.(10).

step7:Adjoint:Make λ = λ(X)p (p = 1, ··, q̃) for
Ωp by using Eq.(11).

step8:Fitness value calculation:Calculate

PIp =

∫

D

∣
∣
∣
1

2
XTQX− 1

2
u(X)Tp Ru(X)p

+f̄T (X)λ(X)p

∣
∣
∣/XTXdX (16)

by Eqs.(13) and (14), or fitness Fp = −PIp.

Integration of (16) is approximated by a finite
sum.

step9:Reproduction: Reproduce each of individual
strings with the probability of

Fp/
∑q̃

j=1 Fj .

step10:Crossover:Pick up two strings and exchange
them at a crossing position by a crossover
probability Pc.

step11:Mutation:Alter a bit of string (0 or1)
by a mutation probability Pm.

step12:Repetition:Repeat step5∼step11 until
prespecified G-th generation. If unsatisfied,
go to step2.

As a result, we have a suboptimal control u(X) for the
string with the best performance over all the past generations.

IV. NUMERICAL EXAMPLE

Fig. 3 Diagram of Ozeki-Power-Plant

Consider a field excitation control problem of power system.
Fig. 3 is a diagram of Ozeki-Power-Plant of Kyushu Electric
Power Company in Japan. This system is assumed to be
described[8] by

M̃
d2δ

dt2
+ D̃

dδ

dt
+ Pe = Pin

Pe = E2
IY11 cos θ11 + EI Ṽ Y12 cos(θ12 − δ)

EI + T ′
d0

dE′
q

dt
= Efd

EI = E′
q + (Xd −X ′

d)Id

Id = −EIY11 sin θ11 − Ṽ Y12 sin(θ12 − δ)

D̃ = Ṽ 2
{T ′′

d0(X
′
d −X ′′

d )

(X ′
d +Xe)2

sin2 δ

+
T ′′
q0(Xq −X ′′

q )

(Xq +Xe)2
cos2 δ

}
,

where δ: phase angle, δ̇: rotor speed, M̃ : inertia coefficient,
D̃(δ): damping coefficient, Pin: mechanical input power,
Pe(δ): generator output power, Ṽ : reference bus voltage,
EI : open circuit voltage, Efd: field excitation voltage, Xd:
direct axis synchronous reactance, X ′

d: direct axis transient
reactance, Xe: external impedance, Y11 � θ11: self-admittance
of the network, Y12 � θ12: mutual admittance of the net-
work, and Id(δ): direct axis current of the machine. Put
x=[x[1], x[2], x[3]]T =[EI−ÊI , δ− δ̂0, δ̇]

T and u = Efd−Êfd,
so that

⎡

⎣
ẋ[1]
ẋ[2]
ẋ[3]

⎤

⎦ =

⎡

⎣
f1(x)
f2(x)
f3(x)

⎤

⎦+

⎡

⎣
g1(x)
0
0

⎤

⎦u (17)

where

f1(x) = − 1

kTd0
(x[1] + ÊI − Êfd)

+
(Xd −X ′

d)Ṽ Y12

k
X3 cos(θ12 − x[2]− δ̂0)

f2(x) = x[3]

f3(x) = − Ṽ Y12

M̃
(x[1] + ÊI) cos(θ12 − x[2]− δ̂0)

−Y11 cos θ11

M̃
(x[1] + ÊI)

2 − D̃

M̃
x[3] +

P0

M̃

g1(x) =
1

kTd0
, k = 1 + (Xd −X ′

d)Y11 sin θ11.
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Parameters are

M̃ = 0.016095[pu] Td0 = 5.09907[sec]

Ṽ = 1.0[pu] P0 = 1.2[pu]
Xd = 0.875[pu] X ′

d = 0.422[pu]
Y11 = 1.04276[pu] Y12 = 1.03084[pu]
θ11 = −1.56495[pu] θ12 = 1.56189[pu]
Xe = 1.15[pu] X ′′

d = 0.238[pu]
Xq = 0.6[pu] X ′′

q = 0.3[pu]
T ′′
d0 = 0.0299[pu] T ′′

q0 = 0.02616[pu]

ÊI = 1.52243[pu] δ̂0 = 48.57◦
ˆ̇
δ0 = 0.0[deg/sec] Êfd = 1.52243[pu].

Set X = [xT , x[4]]T = [x[1], x[2], x[3], x[4]]T , n = 3,
X̂0 = δ̂0 = 48.57◦, C(x)=x[2], L = 1, Q=diag(1, 1, 1, 1),
R=1, σi = 0.33294(0≤i≤M), and x[4](0)=1. Experiments
are carried out for the new control(AACC), and the ordinary
linear optimal control(LOC)[2].

1) AACC(Ni : GA):
M=1, X̂1 = 80◦, D0 = (−∞, a − δ̂0], D1=[a − δ̂0,∞). The
parameters are suboptimally selected along the algorithm of
section III. Ω={Ni, a},G=100, q̃=100, L̃=8, Pc=0.8, Pm=0.03,
D=[0.0,2.0]×[-0.5,2.0]×[-5.0,5.0]×[0.0,1.5].
It results that N0=2.517647, N1=1.035294 and â=74.215686◦.

2) AACC(Ni : fix):
The parameters are suboptimally selected by using the same
way of the AACC(Ni : GA) which uses the fixed gradient of
the automatic choosing function[7]. Ω={N, a}. It results that
N=4.882353 and â=75.0◦.

Table1 shows performances by the AACC(Ni : GA), the
AACC(Ni : fix) and the LOC. The cost function of Table1 is

J̃ =
1

2

∫ 25

0

(
XTQX+ uTRu

)
dt.

Figs. 4, 5 and 6 show the responses in case of xT (0) =
[0, 1.2, 0]. Figs. 7, 8 and 9 show the responses in case of
xT (0) = [0, 1.0,−5]. Figs. 10, 11 and 12 show the responses
in case of xT (0) = [0, 1.298, 0]. These results indicate that the
AACC(Ni : GA) is better than the AACC(Ni : fix) and LOC.

V. CONCLUSIONS

We have studied an augmented automatic choosing control
using the automatic choosing functions of gradient optimiza-
tion type for nonlinear systems. This approach was applied
to a field excitation control problem of power system to
demonstrate the splendidness of the AACC. Simulation results
have shown that this controller could improve performance
remarkably well.
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TABLE I
PERFORMANCES

xT(0) : initial point
Method [0, 0.4, 0] [0, 0.5, 0] [0, 1.0,−5] [0, 1.2, 0] [0, 1.298, 0]

LOC 0.95375 × × × ×
AACC(Ni : fix) 0.94691 1.35947 7.60293 2.31948 ×
AACC(Ni : GA) 0.94224 1.23581 7.19167 1.90626 2.84883

× : very large value
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Fig. 6 Responses of LOC, AACC(Ni : fix), AACC(Ni : GA)
(xT (0) = [0, 1.2, 0])
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Fig. 7 Responses of AACC(Ni : fix), AACC(Ni : GA)
(xT (0) = [0, 1.0,−5])

t(sec)

x[
2]

[r
ad

] 
: p

ha
se

 a
ng

le

AACC(Ni : fix)

AACC(Ni : GA)

0 5 10 15 20 25

0

0.5

1

Fig. 8 Responses of AACC(Ni : fix), AACC(Ni : GA)
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Fig.11 Responses of AACC(Ni : fix), AACC(Ni : GA)
(xT (0) = [0, 1.298, 0])

t(sec)

x[
3]

[r
ad

/s
ec

] 
: r

ot
or

 s
pe

ed AACC(Ni : fix)

AACC(Ni : GA)

0 5 10 15 20 25
-1

-0.5

0

0.5

1

Fig.12 Responses of AACC(Ni : fix), AACC(Ni : GA)
(xT (0) = [0, 1.298, 0])


