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Abstract—This paper addresses the problem of trajectory 

tracking control of an underactuated autonomous underwater vehicle 
(AUV) in the horizontal plane. The underwater vehicle under 
consideration is not actuated in the sway direction, and the system 
matrices are not assumed to be diagonal and linear, as often found in 
the literature. In addition, the effect of constant bias of environmental 
disturbances is considered. Using backstepping techniques and the 
tracking error dynamics, the system states are stabilized by forcing 
the tracking errors to an arbitrarily small neighborhood of zero. The 
effectiveness of the proposed control method is demonstrated through 
numerical simulations. Simulations are carried out for an 
experimental vehicle for smooth, inertial, two dimensional (2D) 
reference trajectories such as constant velocity trajectory (a circle 
maneuver – constant yaw rate), and time varying velocity trajectory 
(a sinusoidal path – sinusoidal yaw rate). 
 

Keywords—autonomous underwater vehicle, system matrices, 
tracking control, time – varying feed back, underactuated control. 

I. INTRODUCTION 
ODERN developments in the field of control, sensing, 
and communication have made increasingly complex 

and dedicated underwater robot systems a reality. Used in a 
highly hazardous and unknown environment, the autonomy 
and control of the robot is the key to mission success. Though 
the dynamics of underwater vehicle system is highly coupled 
and non-linear in nature, decoupled linear control system 
strategy is widely used for practical applications. As 
autonomous underwater vehicle needs intelligent control 
system, it is necessary to develop control system that really 
takes into account the coupled and non-linear characteristics 
of the system. In addition, most of the AUVs are 
underactuated, i.e., they have fewer actuated inputs than the 
degrees of freedom (DOF), imposing non-integrable 
acceleration constraints. A summary of the recent 
development in this area can be found in [1], [2]. 

Control of underactuated system is a continuation of the 
research on nonholonomic system. In recent years, 
nonholonomic systems have been a topic of much interest in 
the control society. Control of nonholonomic systems has 
proved to be a challenging problem, inherently nonlinear and 
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not amenable to linear control theory. Since, Nonholonomic 
and underactuation systems do not satisfy the conditions of 
Brockett’s theorem [3], several approaches have been 
proposed for the stabilization of these systems. A review of 
nonholonomic system control is given in [4]. Nonholonomic 
and underactuation systems rule out the use of trivial control 
schemes, e.g., full state-feedback linearization [5], and the 
complex hydrodynamics of non-actuated states exclude the 
kinematic control. Trajectory tracking control requires the 
design of control laws that guide the vehicle to track an 
inertial reference time varying geometric path (trajectory). In 
the past, the tracking controller designs for underactuated 
underwater vehicles used to follow classical approaches such 
as local linearization and decoupling of the multivariable 
model to steer as many DOF as the available control inputs, 
i.e., the six DOF vehicle is decoupled into two reduced 
dynamical systems: a depth—pitch model that considers the 
motion in the vertical plane and a plane—yaw model that 
studies the motion in the horizontal plane [6]. Note that when 
AUV is moving on a horizontal plane, it presents similar to 
the dynamic behavior of underactuated surface vessels [1], 
[7]. A practical result on stabilization and tracking was given 
in [8] using a dynamic feedback approach. Leonard [9] 
considered several control configurations, and a technique for 
synthesizing open-loop controls. A high-gain-based local 
tracking result was proposed in [10]. Based on Lyapunov’s 
direct method and passivity approach, two global tracking 
solutions were proposed in [11]. Lefeber [12] proposed a 
simple global tracking controller using cascade approach and 
linear time-varying system theory. It is noted that in [10] – 
[12] the yaw reference velocities required being nonzero. This 
restrictive assumption was removed in [13]. In [14], a 
trajectory planning and a tracking control algorithm for an 
underactuated AUV moving on the horizontal plane was 
studied but the model of drag force used in this work was 
linear with respect to velocities; this confining assumption is 
rectified in [6]. However in [6] the system matrices are 
assumed to be diagonal. In [15], the above issue is conquered 
for the underactuated surface vessel by applying a simple back 
stepping control algorithm. However in this work the system 
matrices are assumed to be linear.  

In most of the above works, the mass and damping matrices 
of the AUVs were assumed to be diagonal and / or linear. 
These restrictive assumptions imply that the vehicle must be a 
semi-submerged sphere. In reality, these assumptions do not 
hold for underwater vehicles. Relaxing these assumptions will 
affect the control design and stability analysis. In fact, the 
authors of the aforementioned papers recognized difficulties 
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caused by the nonzero off-diagonal terms of system matrices. 
They neglected these terms and left the topic of dealing with 
these terms for the future work. In addition, the vehicles 
usually operate in real time subject to environmental 
disturbances. A good controller should compensate the 
constant or slow-varying biases of the disturbances. The 
controller should not react to high-frequency components of 
the disturbances, since this increases wear on the actuators. 
The above discussion poses a problem of designing a 
controller that forces the position and orientation of the 
underactuated vehicles with non-zero off-diagonal terms and 
nonlinearity in the system matrices and subject to disturbances 
to track a reference trajectory. In this paper, we propose a 
simple existing solution (developed for underactuated surface 
vessels [15]) to overcome these problems for the tracking 
control of underactuated AUVs moving in a horizontal plane 
(constant depth motion). 

II. MODELLING OF AUV KINEMATICS AND DYNAMICS 
Here, we consider an experimental autonomous underwater 

vehicle that is not having any side thruster to control the sway 
direction (this is not implemented because of economical and 
weight considerations). There are only two stern propellers 
which are offering control inputs as the force in surge and the 
control torque in yaw on the horizontal plane (by differential 
mode operation of propellers) [refer Fig.1].  

 
Assumptions: Vehicle has an xz-plane of symmetry; surge 

is decoupled from sway and yaw; heave, pitch and roll modes, 
and these axes terms are neglected. We leave relaxation of 
these assumptions as a topic for future research. 

Under these realistic assumptions, the motion of the vehicle 
in the yaw plane is described by the following ordinary 
differential equations [1], [15] 

 

 
Fig. 1. Body-fixed frame and earth-fixed reference frame for AUV 

The kinematics of the vehicle on the horizontal plane is given 
as: 

ν)(Jη  ψ=  (1) 

where,  
[ ]Tψyx =η is the displacement vector with respect to 

inertial frame, [ ]Trvu=ν is the velocity vector with 
respect to body fixed frame and  )(ψJ is the transformation 

matrix and is given as :
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The dynamic model of the vehicle in the presence of constant 
disturbances on the horizontal plane is as given by 

disττν)ν(Dν)ν(CνM ++−−=  (2) 
where, 
M – inertia matrix, C(ν) – Coriolis and Centripetal matrix,  
D(ν) – Damping matrix, τ - input vector and τdis – external 
disturbance vector, the components of which are as follows: 
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[ ] [ ]Trvudis
T

ru disdisdis
τττττ == ττ  and 0  

(x, y) are the surge and sway displacements, ψ is the yaw 
angle in the earth fixed frame, u, v, r denote surge, sway and 
yaw velocities; m11 >0, m22 >0, m23, m32, m33 >0, l11, n l11 >0, 
l22, nl22 >0, l23, nl23, l32, nl32, l33, nl33 >0 denote the 
hydrodynamic damping and vehicle inertia including added 
mass, the controls τu and τr are the surge force and yaw 
moment.  

III. CONTROLLER DESIGN 
The main objective of this controller design is that the 

vehicle tracks a reference trajectory Ω parameterized by (xd(s), 
yd(s)) with s being the path parameter through the help of τu 

and τr. The vehicle’s total linear velocity is tangential to the 
reference trajectory Ω, and the desired surge velocity can be 
adjusted on-line [15]. 

Since vehicle system given in the (2) is underactuated, it is 
not expected to force the vehicle to track an arbitrary path 
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Ω.We here impose the following sufficient conditions on the 
path Ω [15]: 

Condition 1: There exist strictly positive constants εi, where   
i = 1, 2, 3 and 4 such that 

ssysx dd ∀≥+ ,1
22 )()( ε  (3) 

0)(250 221 ≥∀≥+− ttu d ,. εγγα  (4) 

0)()()( 321 ≥∀≥++ ttutu dd ,εββ  (5) 

and the solution of the following differential equation: 
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A. Coordinate Transformation 
We introduce the following coordinate transformation to 

the vehicle (changing the vehicle position, see Fig.2) for 
getting the vehicle system matrix in to a diagonal form: 

rvv
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where, offset distance (ε) = m23 / m22. 

 
Fig. 2. AUV moving on a planar path and interpretation of path 

following errors [15] 

Using the above change of coordinates, the vehicle dynamics 
in (2) (matrix form) can be rewritten as in the form of 
equations 
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here, we have chosen primary controls τu and τr as 
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with ru ττ  and are considered as new controls which design is 
as follows in the next subsection. Now onwards ),( yx are 
considered as the vehicle position instead of (x, y). We now 
interpret the tracking errors in a frame attached to the path Ω 
[15] as follows (refer Fig. 2) 

[ ] [ ]T
ddd

T
eee yyxxyx ψψψψ −−−= )(J T  (13) 

where dψ is the angle between the path and the X-axis defined 
by  

))(/)(arctan( sxsy ddd =ψ  (14) 
In Fig.2, O denotes centre of earth-fixed inertial frame and 

OXiYi is the earth-fixed inertial frame; Oc denotes the center of 
gravity of the vehicle and Os is referred to as the center of 
oscillation of the vehicle. ObXbYb is a moving frame attached 
to the path Ω such that ObXb and ObYb are parallel to the surge 
and sway axes of the vehicle; du  is tangential to the path; 
Therefore xe, ye and eψ can be referred to as tangential tracking 
error, cross-tracking error and heading error, respectively. 
Differentiating (13) along the solutions of the first three 
equations of (11) results in the kinematic error dynamics 
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 (15) 

From the above equation, we can see that the equilibrium 
point is origin i.e. ),,(),,( 000=eee yx ψ if only the transformed 
sway velocity ( v ) is zero, which means that the vehicle must 
move on a straight line at the steady state. However our 
desired path Ω to be different from straight line and the 
transformed sway velocity is generally different from zero. To 
overcome this problem, we introduce an angle δ to the 
orientation error eψ by defining 

δψψ += ee  (16) 
For getting the sway velocity error ( ev ) as zero at the 

steady state, the desired sway velocity is chosen as follows 
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ddddd rvruv )()( 2121 γγββα +++−−=  (17) 

Substituting (15), (16) and (17) in (11) and rewriting the path 
tracking error dynamics as: 
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B. Kinematic and Dynamic Control design 
The control design is divided into two parts; kinematic and 

dynamic control. For kinematic control, first four equations 
from (18) are taken and in this case ‘u’ and ‘r’ are considered 
as controlled variables (controls). Similarly, the next two 
equations are considered for the dynamic control and for this 
case ru ττ  and are considered as controls which are derived 
from backstepping techniques [15], [16], and as given in (19). 
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where, .constants positive are  and 21321 K,K,C,CC  

( ))1)(cos()sin(        
))}(({1

1

1arcsin(

)/(
))/((  

21
212

2
2

2
2

21

2
1212

2211

2111

−−×
Δ++−−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

Δ−+
−

=

−−=

+=ΔΔ−=

−=++=
++=+−=−=

−−

eded

21d
r

rde

eee

21deuue

vu
γγuK

Kz
zC

rrr

zKzK

zvyz
γγKuxKuu

e

e

ψψ
ββα

α

α
α

αψββ
ββαα

ψ

ψ

/

)(),/

,
,,

 (20) 

From (18), (19) and (20), the time derivates of the tracking 
errors are rewritten as follows: 
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For appropriate choices of 21321  and KKCCC ,,, , the 
controls ru ττ  and given by (13) and (19) forces the 

transformed tracking errors )( eee yx ψ,,  to converge to zero 
asymptotically. This can be proved with the help of 
Lyapunov’s method and Barbalat’s lemma [15], [16]. 

IV. SIMULATION RESULTS 
To demonstrate the performance of the proposed scheme, 

typical simulation results are presented. A large number of 
simulation results have shown that the proposed control 
scheme performs well in terms of smooth transient response, 
quick convergence of tracking errors to zero, less control 
input, and robustness, even in the case of disturbed conditions.  

For this study, JUBILEE, a test bed AUV being developed 
at IITM, is selected as an experimental set-up. Fig. 3 shows 
the first prototype of this AUV, along with its specifications in 
Table I. and the parameters used for simulation are shown in 
Table II.  

TABLE I  
SPECIFICATIONS OF JUBILEE AUV 

Items Specifications and details 
Hull dimension 0.25m (Diameter) x1.065m (Length) Cylinder shape 
Buoyancy Neutrally buoyant in water 
Working Depth 50m 
Power  Lithium ion batteries (DC 12V,20Ahr & 24V,22Ahr) 
Endurance 1hr 
Speed 2m/s (4knots) 

Thrusters Two twin blade Thrusters with differential actuation 
(2.9kgf) 

Control Planes Two independent stern planes (actuated by brushless 
DC motors) 

Sensors 

Miniature Pressure sensor (for Depth) 
2 axis Tilt sensor ( for Attitude) 
3 axis Accelerometer 
Leak sensor (leakage measurement) 

Controller Atmega 128 micro controller 
Camera CCD camera with servo actuated Pan tilt mechanism 
Allowable error 
limits 

In linear displacements (in x, y and z axes) : ±0.5m,  
In angular displacements (in φ, θ, and ψ angles): ±2º 

 

 
Fig. 3. Photo of JUBILEE AUV 

 
There are two desired trajectories considered here: a 

constant velocity trajectory (circular path), and a time varying 
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velocity trajectory (sinusoidal path). The simulation results 
were obtained with controller constants chosen as: 

2 K21.5,K0.1,C0.1,CC 21321 ===== and .  
The vehicle starts from rest, accelerates for first 50 seconds 

to achieve the desired forward speed of 1m/s and to attain this 
speed the vehicle accelerated for first 50 seconds. For the 
circular path tracking, the desired path is chosen as follows:   
For first 50 seconds: xd (s) = 0.01s2, yd (s) = 0, and 
 xd (s) = 25 sin (0.08(s-50)) + 25,  yd(s) = 25cos (0.08(s-50))-2 
for the rest of testing time, similarly, for sinusoidal tracking, 
the chosen desired path is as follows:  
For first 50 seconds: xd(s) = 0.01s2, yd(s) = 0, and 
xd (s) = (s-50) + 25,  yd(s) = 10sin (0.32(s-50)) for the rest of 
testing time. The initial errors are assumed to be zero for all 
the states. The disturbances are assumed to be constant and 
which magnitudes are 5N, 5N and 2Nm acting in the surge, 
sway and yaw axis respectively. 

TABLE I I 
RIGID BODY AND HYDRODYNAMIC PARAMETERS OF THE JUBILEE AUV 

Parameter Symbol Value Unit 
Mass m  39 kg 
Rotational Inertia zI  3.7 kg.m2 

Added mass in surge uX  -1.17 kg 
vY  -34.84 kg 

Added mass in sway 
rY  1.04 kg.m/rad 

vN  -1.04 kg.m 
Added (mass) inertia in yaw 

rN  -2.66 kg.m2/rad 
Surge linear drag uX  -2.12 kg/s 
Surge quadratic drag uuX  -7.41 kg/m 

vY  -62.45 kg/s 
Sway linear drag 

rY  0.12 kg.m/s 

vvY  -112.21 kg/m 
Sway quadratic drag 

rrY  0.25 kg.m/rad 

vN  1..2 kg.m/s 
Yaw linear drag 

rN  -31.25 kg.m2/s 

vvN  2.24 kg 
Quadratic yaw drag 

rrN  -59.75 kg.m2/rad2 

 
The circular tracking simulation results are presented in   

Figs. 4-6. From the Fig.4, it is found that the control 
performance is quite well even in the disturbed condition. The 
tracking position errors are converging into a small bounded 
value which is near to zero (refer Fig. 5).  

 

 
Fig. 4. AUV reference and actual path (with and without 

disturbances) for circular tracking, (right side plot: enlarged view) 

 
Fig. 5. Tracking errors (with and without disturbances) for circular 

tracking 

 
Fig. 6. Port side (np) and starboard side (ns) thruster rotations (with 

and without disturbances) for circular tracking  

 
Fig.7. AUV reference and actual path (with and without 

disturbances) for sinusoidal tracking, (Plot in down: enlarged view)  

Simulation results for sinusoidal path are presented in     
Figs. 7-9, where the required velocities are not to be constant. 
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The results show that the control strategy presented is 
applicable in the case where the velocities vary with time. 

It was observed that the errors are converged into a small 
bound after a smooth transient time interval. However, in the 
disturbed condition the errors of the earlier case are high 
compared to the present case, but those errors are also 
converging to a bounded region after a short interval.  

 
Fig. 8. Tracking errors (with and without disturbances) for sinusoidal 

tracking 

 
Fig. 9. Port side (np) and starboard side (ns) thruster rotations (with 

and without disturbances) for sinusoidal tracking 

V. CONCLUSION 
In this paper, a trajectory tracking control scheme for an 

underactuated underwater vehicle in the horizontal plane is 
presented, in which the system matrices of the vehicle are not 
assumed to be diagonal and linear. It is shown that the   
backstepping technique can be used for stabilizing the AUV 
and bringing the tracking error to a neighborhood of zero for 
given reference, smooth, inertial 2D trajectories. Computer 
simulations showed very good tracking performance and 
robustness of the proposed method even in the presence of 
constant disturbances. The proposed control design is simple 
in structure and it provides a chance to extend the same 
technique to the three dimensional tracking control as well. 

Experimental verification of the planar tracking control will 
be taken up in the near future to validate the simulation 
results. 
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