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Abstract—In this paper an efficient implementation of Ripemd-

160 hash function is presented.  Hash   functions are a special family 
of cryptographic algorithms, which is used in technological 
applications with requirements for security, confidentiality and 
validity. Applications like PKI, IPSec, DSA, MAC’s incorporate 
hash functions and are used widely today. The Ripemd-160 is 
emanated from the necessity for existence of very strong algorithms 
in cryptanalysis. The proposed hardware implementation can be 
synthesized easily for a variety of FPGA and ASIC technologies. 
Simulation results, using commercial tools, verified the efficiency of 
the implementation in terms of performance and throughput. Special 
care has been taken so that the proposed implementation doesn’t 
introduce extra design complexity; while in parallel functionality was 
kept to the required levels. 
 

Keywords—Hardware implementation, hash functions, Ripemd-
160, security. 

I. INTRODUCTION 
OWADAYS many applications like the Public Key 
Infrastructure (PKI) [1], IPSec [2], Secure Electronic 

Transactions (SET) [3], and the 802.16 [4] standard for Local 
and Metropolitan Area Networks incorporate authenticating 
services. All these applications pre-suppose that an 
authenticating module that includes a hash function is nested 
in the implementation of the application. Moreover, digital 
signature algorithms like DSA [5] that are used for 
authenticating services like electronic mail, electronic funds 
transfer, electronic data interchange, software distribution, 
data storage etc are based on using a critical cryptographic 
primitive like hash functions. Hashes are used also to identify 
files on peer-to-peer filesharing networks for example, in an 
ed2k link. Furthermore, hashing cores are also essential for 
security in networks and mobile services, as in SSL [6], which 
is a Web protocol for establishing authenticated and encrypted 
sessions between Web servers and Web clients. They are also 
the main modules that exist in the HMAC implementations 
that produce Message Authentication Codes (MAC’s) [7].  
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Taking into consideration the rapid evolution of the 
communication standards that include message authenticity, 
integrity verification and nοn-repudiation of the sender’s 
identity, it is obvious that hash functions are very often used 
to most popular cryptographic schemes like those in IPSec in 
conjunction with other cryptographic primitives. All the pre-
mentioned applications which incorporate hash functions are 
being used more and more widely lately. In many of these 
cryptographic schemes the performance of the incorporated 
hash functions determines the performance of the whole 
security scheme.  

From the latter it is also quite clear that all applications that 
incorporate hash functions are addressing numerous users-
clients and thus throughput increase is the prior requirement, 
particularly for the corresponding server of these services. 
This is because the cryptographic system, especially from the 
server part, has to reach the highest degree of throughput in 
order to satisfy immediately and securely all requests for 
service from the users-clients.  

In many of these cryptographic schemes, the throughput of 
the incorporated hash functions specifies the throughput of the 
system. High-speed calculation of the hash functions is 
strongly related to the streamlined communication of the two 
subscribers of the latter mentioned applications. Especially in 
applications that transmission and reception rates are high, any 
latency or delay on calculating the digital signature of the data 
packet leads to degradation of the network’s quality of 
service. 

The latter mentioned facts were a strong motivation for the 
proposition of a novel cryptographic algorithm strong in 
cryptanalysis. RIPEMD proposal was developed in the 
framework of the EU project RIPE (Race Integrity Primitives 
Evaluation). In addition to the demanded high security level, 
the need for effective security implementation is a significant 
factor for the selection of a hardware implementation. In this 
work we propose an efficient hardware implementation of 
Ripemd-160 hash function. Our implementation is structured 
in such way so that it can be used in a variety of applications, 
maintaining the flexibility of similar software constructions. 
The cryptographic core maintains the functionality of the 
algorithm, keeps the area small enough with achieving both 
high operating frequency and throughput (primary due to the 
4-pipeline stage that has been applied), as required by most 
portable communication devices. 

This paper is organized as follows: In section 2 the Ripemd-
160 hash function is presented. In section 3 follows the 
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presentation of the cryptographic core. The synthesis results 
are discussed in section 4. Finally, in section 5 follow the 
conclusions derived from the proposed implementation. 

II. RIPEMD-160 HASH FUNCTION 
The fixed length of each of the processed blocks is 512 bits. 

As it is described in [8] Ripemd-160 hash function has a 
bitsize of the hash-result and chaining variable of 160 bits 
(five 32-bit words). Ripemd-160 uses two  parallel processes 
of five rounds, with sixteen operations for each round (5 x 16 
operations for the process).The inputs for in every round is 
five bit words of data, the message word Xi  and a 32 bit 
constant Ki. 

Unfolding the expressions of at, bt, ct, dt, et  that describes 
the five input words, it is observed that bt-1, ct-1 , dt-1 , et-1  

values are assigned directly to outputs ct, dt, et, at respectively. 
In Eq. (1) the expressions of at, bt , ct , dt , et are defined. 

 
e t = dt-1 

dt = ROL10(ct-1) 
ct = bt-1                                                            (1) 

bt = et-1 + ROLs[ ft(bt-1,ct-1, dt-1) +at-1+Xi + Kj ] 
at = et-1 

 
where ROLx(y) represents cyclic shift (rotation) of word y to 
the left by x bits and  ft(z, w, v) denotes the non-linear 
function which depends on  the round being in process. 

From Eq.(1), it is derived that the maximum delay is 
observed on the calculation of the bt, value. Obviously the 
critical path consists of three addition stages as it can be seen 
observing Fig. 1 and a multiplexer via which the values pass 
each time to/and feed the operation block. 

RIPE-MD can also be used in the HMAC implementation 
in order to authenticate both the source of a message and its 
integrity without the use of any additional mechanisms. 

III.  RIPEMD-160 CORE 

The proposed system architecture is illustrated in the 
following Fig. 2. This implementation is suitable for any 
system that uses the Ripemd-160 hash function, constrained 
only by the assumption that the start_counter1 signal is 
applied one clock cycle before the final padded message is 
available in the 512-bit input block_in of Ripemd-160 core. 
Concurrently to the arrival of the 512-bit input block_in the 
signal start_round1 has to be applied and 80 clock cycles later 
the hash value is pending on the 160-bit output ripemd-160 
hash value of the Ripemd-160 core. 

The Ripemd-160 hash function consists of two parallel 
processes of five rounds, with sixteen transformations for each 
round (5 x 16 transformations for the process). All the rounds 
in the processes are similar but each one performs a different 
operation on five 32-bit inputs. The data (input message) are 
processed 16 times in each transformation round resulting in 
80 transformations performed in total per process. Each 
operation is performed in every time instance. In each process  

 
 

Fig. 1 RIPEMD - 160 operation block of a round 
 

a certain 32-bit word Xi must be supplied to the 
transformation round. This 32-bit Xi results from a specific 
process on the 512-bit input block_in  through appropriate 
permutations on the initial 16 Xi word blocks that are exported 
from 512-bit input block. The computation of each Xi (beyond 
the first 16 Xi that are computed by a simple split of the 512-
bit input block_in) takes place in “Xi’ permutation” unit as it 
is shown in Fig. 1. The implemented Ripemd-160 core has 
five primary inputs h0, h1, h2, h3, h4 where the initial values are 
supplied. These can be the ones specified by the standard [7] 
or others that have occurred from process of the former block 
of the message.  

In order to apply pipeline stages to the Ripemd-160 core, 
ten 160-bit registers have to be used between the data 
transformation rounds. In Fig. 2, these registers are implanted 
at the end of each transformation round and this technique 
ensures that five 512-bit data blocks can be processed at the 
same time and finally a 160-bit message digest is produced 
every 16 clock cycles.  

All multiplexers are controlled by the Count_16 
component. The Count_16 component also arranges when the 
16 Xi’s - that are pending in the input of the register and are 
related to the process in the next round - will be stored in the 
register. 

 For the five messages that can be concurrently processed, 
2*5*16 Xi’s (160 Xi’s for every message) must be computed 
and stored. Instead of this, for every message only 2*16 Xi’s 
are computed and saved, those used in the currently processed 
transformation round for the two processes. So, this way only 
2*5*16 Xi’s (32 Xi’s for every message) must be computed 
and stored.  
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The Xi’s for the next transformation round of every 
message are computed and pending in the “Xi’ permutation” 
units. When the message proceeds to the next transformation 
round the Xi’s needed in the new round are stored in registers. 
These registers supply the new round with the 16 Xi’s and at 
the same time the 16 Xi’s required for the next round, for the 
same message, are computed and pending on the 
corresponding “Xi’ permutation” unit. 

Implanting registers at the end of every transformation 
round and considering the fact that the process in every round 
lasts 16 clock cycles leads to the following conclusion; the 
implemented Ripemd-160 core can be supplied with a new 
512-bit input block_in if only 16 clock cycles have past from 
the last time instance that the Ripemd-160 core was again 
supplied. This leads to a maximum throughput limit for the 
Ripemd-160 core which is determined by the fact that at each 
processing instance only 5 different messages at most can be 
concurrently at process. During this 16 clock cycles the 512-
bit input block_in must remain stable in order for the Ripemd-
160 core to function properly. This way we save up time (1 
clock cycle) and hardware that would be spent if it was 
decided to store in registers the 512-bit input block_in. This 
wouldn’t improve at all the implementation and it doesn’t 
incur any design or functional problems. The 512-bit input 
block_in is kept stable to the output of the unit that is 
responsible for the padding procedure and will be mentioned 
to the next section. 

The five Count_16 components are responsible for the 
synchronization of all procedures that have to be done in order 
to obtain the hash value. Each one is enabled only when in the 

corresponding transformation round there is a message that is 
being processed. When the process in that round reaches the 
end the Count_16 component arranges that the process will 
continue to the next round. The five Mux_A multiplexers for 
each process ensure that every time the process of a message 
ends in one round, the process will be continued in the next 
round. The five Mux_B multiplexers also for each process, 
ensure at any time instance that the correct Xi is supplied to 
each operation of the round during the process of a message. 

The presented implementation illustrates all the necessary 
implementation details and it is also indented to serve as a 
reference implementation to compare with in order to propose 
some improvements in its architecture which correspondingly 
are going to increase the performance of the whole RIPE-MD 
hashing core.  

IV. SYNTHESIS RESULTS 
The latter presented hashing core was captured in VHDL 

and was fully simulated and verified using the Model 
Technology’s ModelSim Simulator. Verification of the 
designs’ operation was achieved using a large set of test 
vectors, apart from the test example proposed by the 
standards. 

The synthesis tool used to port VHDL to the targeted 
technologies was Synplicity’s Synplify Pro Synthesis Tool. 
Simulation of the designs was also performed after synthesis, 
exploiting the back annotated information that was extracted 
from the synthesis tool. Further evaluation of the designs was 
performed using the prototype board for the Xilinx Virtex 
device family.  

Fig. 2 Ripemd-160 Core 
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Probing of the FPGA’s pins was done using a logic 
analyzer. No scaling frequency technique was followed, 
selecting one master clock for the system, which was driven in 
the FPGA from an onboard oscillator. The behavior of the 
implementation was verified exploiting the large capacity of 
the FPGA device. Thus, a BIST unit was developed which 
was responsible for providing predefined inputs to the 
RIPEMD and monitoring of the output response. This allowed 
additionally to cope with high output throughput. Further 
evaluations of the designs were performed using the prototype 
boards for the Xilinx Virtex device family. 

The achieved operating frequency, the required integration 
area and the corresponding throughput in three different 
FPGA families are pictured in Table I. The throughput it is 
calculated from Eq.2. 

 
#
#

operationbits f
Throughput

operations
⋅

=                             (2) 

where #bits is equal to the number of bits processed by the 
hash function, #operations corresponds to the required clock 
cycles between successive messages to generate each Message 
Digest and foperation indicates the maximum operating 
frequency of the circuit.  

The results of Table I give a rough estimation of the 
performance of the proposed implementation in various FPGA 
platform boards. When placement and routing take place 
using vendor’s tools, a more realistic performance of the 
RIPE-MD implementation arises that slight a bit from the 
reported results stated in Table I. The implementation is 
synthesizable in most FPGA families, resulting in a reusable, 
general purpose implementation. 

 
TABLE I 

IMPLEMENTATION SYNTHESIS RESULTS 

Technology 
 

Area 
(CLBs) 

Frequenc
y 

(MHz)

Throughput 
(Gbps) 

Virtex 
 

1798 51.6 1.65 

Virtex-E 
 

1856 64.6 2.08 

Virtex-II 
 

1985 74.6 2.38 

 

V. CONCLUSION 
    In this paper, an efficient hardware implementation of the 
Ripemd-160 hash function has been presented. The introduced 
implementation is targeting general purpose applications and 
therefore can be integrated in a wide range of systems 
requiring safety, such as systems for digital signatures, data 
integrity and message authentication. Our implementation 
maintains the functionality of the algorithm, keeps the area 
small enough with acceptable operating frequency and 
throughput. All this make the application of this 

implementation successful in communication protocols such 
as IPsec, WAP and security schemes in general. This 
implementation is also intended to serve as a reference one for 
future optimized implementations of RIPE-MD algorithm 
providing as well all low-level implementation details.  
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