
International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:2, 2008

316

Abstract—In this paper an efficient implementation of Ripemd-

160 hash function is presented. Hash functions are a special family
of cryptographic algorithms, which is used in technological
applications with requirements for security, confidentiality and
validity. Applications like PKI, IPSec, DSA, MAC’s incorporate
hash functions and are used widely today. The Ripemd-160 is
emanated from the necessity for existence of very strong algorithms
in cryptanalysis. The proposed hardware implementation can be
synthesized easily for a variety of FPGA and ASIC technologies.
Simulation results, using commercial tools, verified the efficiency of
the implementation in terms of performance and throughput. Special
care has been taken so that the proposed implementation doesn’t
introduce extra design complexity; while in parallel functionality was
kept to the required levels.

Keywords—Hardware implementation, hash functions, Ripemd-
160, security.

I. INTRODUCTION
OWADAYS many applications like the Public Key
Infrastructure (PKI) [1], IPSec [2], Secure Electronic

Transactions (SET) [3], and the 802.16 [4] standard for Local
and Metropolitan Area Networks incorporate authenticating
services. All these applications pre-suppose that an
authenticating module that includes a hash function is nested
in the implementation of the application. Moreover, digital
signature algorithms like DSA [5] that are used for
authenticating services like electronic mail, electronic funds
transfer, electronic data interchange, software distribution,
data storage etc are based on using a critical cryptographic
primitive like hash functions. Hashes are used also to identify
files on peer-to-peer filesharing networks for example, in an
ed2k link. Furthermore, hashing cores are also essential for
security in networks and mobile services, as in SSL [6], which
is a Web protocol for establishing authenticated and encrypted
sessions between Web servers and Web clients. They are also
the main modules that exist in the HMAC implementations
that produce Message Authentication Codes (MAC’s) [7].

This work was supported by the project PENED 2003 No 03ΕD507, which
is funded in 75% by the European Union- European Social fund and in 25%
by the Greek state-Greek Secretariat for Research and Technology.

H. E. Michail, V. N. Thanasoulis, G. A. Panagiotakopoulos, A. P.
Kakarountas and C. E. Goutis are with the Department of Electrical &
Computer Engineering, University of Patras, Patras, GR-26500, Greece (e-
mail: michail@ece.upatras.gr, kakarountas@ieee.org, goutis@ece.upatras.gr;
corresponding author: Harris E. Michail phone: 0030697487335; e-mail:
michail@ece.upatras.gr).

Taking into consideration the rapid evolution of the
communication standards that include message authenticity,
integrity verification and nοn-repudiation of the sender’s
identity, it is obvious that hash functions are very often used
to most popular cryptographic schemes like those in IPSec in
conjunction with other cryptographic primitives. All the pre-
mentioned applications which incorporate hash functions are
being used more and more widely lately. In many of these
cryptographic schemes the performance of the incorporated
hash functions determines the performance of the whole
security scheme.

From the latter it is also quite clear that all applications that
incorporate hash functions are addressing numerous users-
clients and thus throughput increase is the prior requirement,
particularly for the corresponding server of these services.
This is because the cryptographic system, especially from the
server part, has to reach the highest degree of throughput in
order to satisfy immediately and securely all requests for
service from the users-clients.

In many of these cryptographic schemes, the throughput of
the incorporated hash functions specifies the throughput of the
system. High-speed calculation of the hash functions is
strongly related to the streamlined communication of the two
subscribers of the latter mentioned applications. Especially in
applications that transmission and reception rates are high, any
latency or delay on calculating the digital signature of the data
packet leads to degradation of the network’s quality of
service.

The latter mentioned facts were a strong motivation for the
proposition of a novel cryptographic algorithm strong in
cryptanalysis. RIPEMD proposal was developed in the
framework of the EU project RIPE (Race Integrity Primitives
Evaluation). In addition to the demanded high security level,
the need for effective security implementation is a significant
factor for the selection of a hardware implementation. In this
work we propose an efficient hardware implementation of
Ripemd-160 hash function. Our implementation is structured
in such way so that it can be used in a variety of applications,
maintaining the flexibility of similar software constructions.
The cryptographic core maintains the functionality of the
algorithm, keeps the area small enough with achieving both
high operating frequency and throughput (primary due to the
4-pipeline stage that has been applied), as required by most
portable communication devices.

This paper is organized as follows: In section 2 the Ripemd-
160 hash function is presented. In section 3 follows the

Efficient Pipelined Hardware Implementation of
RIPEMD-160 Hash Function

H. E. Michail, V. N. Thanasoulis, G. A. Panagiotakopoulos, A. P. Kakarountas, and C. E. Goutis

N

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:2, 2008

317

presentation of the cryptographic core. The synthesis results
are discussed in section 4. Finally, in section 5 follow the
conclusions derived from the proposed implementation.

II. RIPEMD-160 HASH FUNCTION
The fixed length of each of the processed blocks is 512 bits.

As it is described in [8] Ripemd-160 hash function has a
bitsize of the hash-result and chaining variable of 160 bits
(five 32-bit words). Ripemd-160 uses two parallel processes
of five rounds, with sixteen operations for each round (5 x 16
operations for the process).The inputs for in every round is
five bit words of data, the message word Xi and a 32 bit
constant Ki.

Unfolding the expressions of at, bt, ct, dt, et that describes
the five input words, it is observed that bt-1, ct-1 , dt-1 , et-1

values are assigned directly to outputs ct, dt, et, at respectively.
In Eq. (1) the expressions of at, bt , ct , dt , et are defined.

e t = dt-1

dt = ROL10(ct-1)
ct = bt-1 (1)

bt = et-1 + ROLs[ft(bt-1,ct-1, dt-1) +at-1+Xi + Kj]
at = et-1

where ROLx(y) represents cyclic shift (rotation) of word y to
the left by x bits and ft(z, w, v) denotes the non-linear
function which depends on the round being in process.

From Eq.(1), it is derived that the maximum delay is
observed on the calculation of the bt, value. Obviously the
critical path consists of three addition stages as it can be seen
observing Fig. 1 and a multiplexer via which the values pass
each time to/and feed the operation block.

RIPE-MD can also be used in the HMAC implementation
in order to authenticate both the source of a message and its
integrity without the use of any additional mechanisms.

III. RIPEMD-160 CORE

The proposed system architecture is illustrated in the
following Fig. 2. This implementation is suitable for any
system that uses the Ripemd-160 hash function, constrained
only by the assumption that the start_counter1 signal is
applied one clock cycle before the final padded message is
available in the 512-bit input block_in of Ripemd-160 core.
Concurrently to the arrival of the 512-bit input block_in the
signal start_round1 has to be applied and 80 clock cycles later
the hash value is pending on the 160-bit output ripemd-160
hash value of the Ripemd-160 core.

The Ripemd-160 hash function consists of two parallel
processes of five rounds, with sixteen transformations for each
round (5 x 16 transformations for the process). All the rounds
in the processes are similar but each one performs a different
operation on five 32-bit inputs. The data (input message) are
processed 16 times in each transformation round resulting in
80 transformations performed in total per process. Each
operation is performed in every time instance. In each process

Fig. 1 RIPEMD - 160 operation block of a round

a certain 32-bit word Xi must be supplied to the
transformation round. This 32-bit Xi results from a specific
process on the 512-bit input block_in through appropriate
permutations on the initial 16 Xi word blocks that are exported
from 512-bit input block. The computation of each Xi (beyond
the first 16 Xi that are computed by a simple split of the 512-
bit input block_in) takes place in “Xi’ permutation” unit as it
is shown in Fig. 1. The implemented Ripemd-160 core has
five primary inputs h0, h1, h2, h3, h4 where the initial values are
supplied. These can be the ones specified by the standard [7]
or others that have occurred from process of the former block
of the message.

In order to apply pipeline stages to the Ripemd-160 core,
ten 160-bit registers have to be used between the data
transformation rounds. In Fig. 2, these registers are implanted
at the end of each transformation round and this technique
ensures that five 512-bit data blocks can be processed at the
same time and finally a 160-bit message digest is produced
every 16 clock cycles.

All multiplexers are controlled by the Count_16
component. The Count_16 component also arranges when the
16 Xi’s - that are pending in the input of the register and are
related to the process in the next round - will be stored in the
register.

 For the five messages that can be concurrently processed,
2*5*16 Xi’s (160 Xi’s for every message) must be computed
and stored. Instead of this, for every message only 2*16 Xi’s
are computed and saved, those used in the currently processed
transformation round for the two processes. So, this way only
2*5*16 Xi’s (32 Xi’s for every message) must be computed
and stored.

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:2, 2008

318

The Xi’s for the next transformation round of every
message are computed and pending in the “Xi’ permutation”
units. When the message proceeds to the next transformation
round the Xi’s needed in the new round are stored in registers.
These registers supply the new round with the 16 Xi’s and at
the same time the 16 Xi’s required for the next round, for the
same message, are computed and pending on the
corresponding “Xi’ permutation” unit.

Implanting registers at the end of every transformation
round and considering the fact that the process in every round
lasts 16 clock cycles leads to the following conclusion; the
implemented Ripemd-160 core can be supplied with a new
512-bit input block_in if only 16 clock cycles have past from
the last time instance that the Ripemd-160 core was again
supplied. This leads to a maximum throughput limit for the
Ripemd-160 core which is determined by the fact that at each
processing instance only 5 different messages at most can be
concurrently at process. During this 16 clock cycles the 512-
bit input block_in must remain stable in order for the Ripemd-
160 core to function properly. This way we save up time (1
clock cycle) and hardware that would be spent if it was
decided to store in registers the 512-bit input block_in. This
wouldn’t improve at all the implementation and it doesn’t
incur any design or functional problems. The 512-bit input
block_in is kept stable to the output of the unit that is
responsible for the padding procedure and will be mentioned
to the next section.

The five Count_16 components are responsible for the
synchronization of all procedures that have to be done in order
to obtain the hash value. Each one is enabled only when in the

corresponding transformation round there is a message that is
being processed. When the process in that round reaches the
end the Count_16 component arranges that the process will
continue to the next round. The five Mux_A multiplexers for
each process ensure that every time the process of a message
ends in one round, the process will be continued in the next
round. The five Mux_B multiplexers also for each process,
ensure at any time instance that the correct Xi is supplied to
each operation of the round during the process of a message.

The presented implementation illustrates all the necessary
implementation details and it is also indented to serve as a
reference implementation to compare with in order to propose
some improvements in its architecture which correspondingly
are going to increase the performance of the whole RIPE-MD
hashing core.

IV. SYNTHESIS RESULTS
The latter presented hashing core was captured in VHDL

and was fully simulated and verified using the Model
Technology’s ModelSim Simulator. Verification of the
designs’ operation was achieved using a large set of test
vectors, apart from the test example proposed by the
standards.

The synthesis tool used to port VHDL to the targeted
technologies was Synplicity’s Synplify Pro Synthesis Tool.
Simulation of the designs was also performed after synthesis,
exploiting the back annotated information that was extracted
from the synthesis tool. Further evaluation of the designs was
performed using the prototype board for the Xilinx Virtex
device family.

Fig. 2 Ripemd-160 Core

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:2, 2008

319

Probing of the FPGA’s pins was done using a logic
analyzer. No scaling frequency technique was followed,
selecting one master clock for the system, which was driven in
the FPGA from an onboard oscillator. The behavior of the
implementation was verified exploiting the large capacity of
the FPGA device. Thus, a BIST unit was developed which
was responsible for providing predefined inputs to the
RIPEMD and monitoring of the output response. This allowed
additionally to cope with high output throughput. Further
evaluations of the designs were performed using the prototype
boards for the Xilinx Virtex device family.

The achieved operating frequency, the required integration
area and the corresponding throughput in three different
FPGA families are pictured in Table I. The throughput it is
calculated from Eq.2.

#
#

operationbits f
Throughput

operations
⋅

= (2)

where #bits is equal to the number of bits processed by the
hash function, #operations corresponds to the required clock
cycles between successive messages to generate each Message
Digest and foperation indicates the maximum operating
frequency of the circuit.

The results of Table I give a rough estimation of the
performance of the proposed implementation in various FPGA
platform boards. When placement and routing take place
using vendor’s tools, a more realistic performance of the
RIPE-MD implementation arises that slight a bit from the
reported results stated in Table I. The implementation is
synthesizable in most FPGA families, resulting in a reusable,
general purpose implementation.

TABLE I

IMPLEMENTATION SYNTHESIS RESULTS

Technology

Area
(CLBs)

Frequenc
y

(MHz)

Throughput
(Gbps)

Virtex

1798 51.6 1.65

Virtex-E

1856 64.6 2.08

Virtex-II

1985 74.6 2.38

V. CONCLUSION
 In this paper, an efficient hardware implementation of the
Ripemd-160 hash function has been presented. The introduced
implementation is targeting general purpose applications and
therefore can be integrated in a wide range of systems
requiring safety, such as systems for digital signatures, data
integrity and message authentication. Our implementation
maintains the functionality of the algorithm, keeps the area
small enough with acceptable operating frequency and
throughput. All this make the application of this

implementation successful in communication protocols such
as IPsec, WAP and security schemes in general. This
implementation is also intended to serve as a reference one for
future optimized implementations of RIPE-MD algorithm
providing as well all low-level implementation details.

ACKNOWLEDGMENT
This work was supported by the project PENED 2003 No

03ΕD507, which is funded in 75% by the European Union-
European Social fund and in 25% by the Greek state-Greek
Secretariat for Research and Technology.

REFERENCES
[1] RFC 2510 - Internet X.509 PKI - Certificate Management Protocols,

available at www.ietf.org/rfc/rfc2510.txt
[2] SP800-77 , Guide to IPSec VPN’s, National Institute of Standards and

Technology (NIST).
[3] Secure Electronic Transactions: An Overview, available at

www.davidreilly.com/topics/electronic_commerce/essays/secure_electro
nic_transactions.html

[4] Johnston D, Walker J, Overview of IEEE802.16 Security, IEEE Security
and Privacy, May-June 2004.

[5] FIPS 186, (DSS), Digital Signature Standard Federal Information
Processing Standard, (FIPS), Publication 180-1, NIST, US Dept of
Commerce.

[6] Introduction to SSL, available at http://docs.sun.com/source/816-6156-
10/contents.htm

[7] FIPS 198, The Keyed-Hash Message Authentication Code (HMAC)
Federal Information Processing Standard, (FIPS), Publication 180-1,
NIST, US Dept of Commerce.

[8] H. Dobbertin, A. Bosselaers, B. Preneel, RIPEMD-160: A Strengthened
Version of RIPEMD, 18 April 1996.

