
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:4, 2013

521

Abstract—High level synthesis (HLS) is a process which

generates register-transfer level design for digital systems from
behavioral description. There are many HLS algorithms and
commercial tools. However, most of these algorithms consider a
behavioral description for the system when a single token is
presented to the system. This approach does not exploit extra
hardware efficiently, especially in the design of digital filters where
common operations may exist between successive tokens. In this
paper, we modify the behavioral description to process multiple
tokens in parallel. However, this approach is unlike the full
processing that requires full hardware replication. It exploits the
presence of common operations between successive tokens. The
performance of the proposed approach is better than sequential
processing and approaches that of full parallel processing as the
hardware resources are increased.

Keywords—Digital filters, High level synthesis, Sub-token

forwarding.

I. INTRODUCTION
HE increasing capabilities of silicon technology and the
growing complexity of applications in recent times forced

design methodologies and tools to move to higher abstraction
levels. As a matter of fact, the process of hardware design has
evolved tremendously. Simulation at the gate level appeared in
the early 1970s, and cycle-based simulation became available
by 1979. In the mid eighties, hardware description languages
(HDL), such as Verilog and VHDL, have enabled large
adoption of simulation tools. During the 1990s, the first
generation of commercial high-level synthesis (HLS) tools
was available commercially [1].

HLS is the term used to describe the automated design
process that interprets an algorithmic description of a desired
system behavior and creates the hardware that implements that
behavior at the register-transfer level (RTL) [2] such that
design constraints are satisfied and the cost function is
optimized. The inputs to a HLS system are the behavioral
specification, design constraints and an optimization function.
The behavioral specification is expressed by the means of a
data-flow graph (DFG) which shows the data dependencies
between a number of ordered operations in an algorithm using
nodes and arcs. The nodes represent the processes that exist in

I. F. Jafar is with the Computer Engineering Department at The University

of Jordan, Amman 11942, Jordan (phone: +962-6-5355000; fax: +962-6-
5300813; e-mail: iyad.jafar@ju.edu.jo).

S. J. Alrawashdeh is with the Computer Engineering Department at The
University of Jordan, Amman 11942, Jordan (phone: +962-6-5355000; fax:
+962-6-5300813; e-mail: sandra.jamal.6@gmail.com).

B. K. Alhamayel with the Computer Engineering Department at The
University of Jordan, Amman 11942, Jordan (phone: +962-6-5355000; fax:
+962-6-5300813; e-mail: bonbonsweetcandy_89@yahoo.com).

the system, while the lines between the nodes represent the
links between those processes. On the other hand, the output
of the HLS is a register-transfer-level implementation of the
system.

The process of high level synthesis consists of several
procedures: system definition, scheduling, hardware
allocation, and generation of the control system. Out of these
procedures, scheduling and hardware allocation are the most
critical. Scheduling assigns the operation of the DFG nodes to
control steps which are the fundamental sequencing unit in
synchronous systems (clock cycle). Scheduling should be
done such that the minimum number of processing elements is
used and the rate and time optimality constraints are satisfied.
On the other hand, allocation consists of assigning the
operations to hardware units, i.e. allocating functional units,
storage and communication paths.

Several HLS tools that aim at designing optimal digital
systems are commercially available, such as CATHEDRAL II
[3], ALPS [4], BSSC [5] and MARS [6]. The main differences
between these tools lie in the way the design space is
explored, the representation of the behavioral description of
the system, and how the scheduling is performed. However,
most of the scheduling algorithms in these HLS tools ignore
the use of pipelined processing elements and assumed them to
be unified functional units that can perform multiple
operations. On the contrary, the scheduler found in the
pipelined heterogeneous high level synthesis algorithm
(PHHLS) [7] treats the processing elements as distinct
functional units each of which is responsible for a single task
instead of being unified functional units capable of performing
multiple tasks. Additionally, it employs the concept of
pipelining in the system design at the register-transfer level to
reduce the lower iteration period and the hardware resources.
In this case, the iteration period is not bounded by the highest
node computational delay in contrast to systems with non-
pipelined processing elements.

The PHHLS and other HLS algorithms were only tested
when the system to be designed considers the processing of
the data points one data point at a time, i.e. single token. This
in turn limits the system performance at some point even if
more hardware is available due to the sequential processing.
The increase in hardware resources can be exploited to
improve the performance of the system by processing multiple
tokens in parallel. However, processing the tokens in parallel
requires full replication of the hardware which might be
expensive and not affordable in case of processing large
number of tokens. This issue can be alleviated in the design of
digital filters by observing that there are some operations that
are repeated as the filter moves from one token to another.
Taking this into account, we propose modifying the behavioral

Iyad F. Jafar, Sandra J. Alrawashdeh, and Ban K. Alhamayel

High Level Synthesis of Digital Filters Based
On Sub-Token Forwarding

T

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:4, 2013

522

description, expressed as DFG, of the system to be designed to
operate on multiple tokens at once. However, and unlike the
full parallel approach, these multiple tokens are selected such
that they have some operations in common. Thus, when the set
of tokens are processed at the same time, the common
operations found in these multiple tokens are performed once
and saved in hardware registers such that they are forwarded
to other tokens in the set. Essentially, this approach processes
the tokens in parallel; however, forwarding the results of
common operations reduces the hardware requirements of the
full parallel processing. At the same time, the performance of
the proposed approach is expected to be better than sequential
processing, and it will approach that of the full parallel
approach depending on the available hardware resources.

In this paper, we investigate the use of the concept outlined
earlier in improving the performance of the PHHLS algorithm
in the design of digital image filters. We refer to this technique
as sub-token forwarding since some intermediate results of
tokens are forwarded to other tokens in the set. The rest of the
paper is organized as follows. In Section II, we explain the
concept of token packaging when considered for the design of
the 2-D arithmetic mean filter. Section III evaluates the
benefits of employing token packaging in PHHLS. Finally,
Section IV concludes the paper.

II. SUB-TOKEN FORWARDING
As outlined earlier, the behavioral description used by most

HLS algorithms to design digital systems is specified such that
tokens are assumed to be presented to the system one at a
time. However, this approach may not utilize the available
hardware efficiently, especially when there are common
operations between successive tokens. In order to improve the
performance of the HLS algorithms, we propose to make the
input to the system to consist of multiple tokens. Processing a
set of tokens in parallel by the system is expected to increase
the hardware requirements since the processes have to be
replicated. However, this cost can be reduced if some of the
operations in different tokens are the same. In this case,
common operations between different tokens in the set are
performed once and their results are forwarded to the
processing of the other tokens in the package. This
observation is strongly applicable to the operation of many 1-
D and 2-D digital filters. To demonstrate the idea, in the
following we consider the design of the 2-D arithmetic mean
filter that is commonly used in digital image processing for
blurring and noise suppression.

For an image F(x,y), the output of an arithmetic mean filter
of size (2m+1)×(2m+1) at pixel (x,y) is given by

2

1(,) (,)
(2 1)

m m

i m j m

G x y F x i y j
n =− =−

= + +
+ ∑ ∑ (1)

The filtered image is obtained by processing all tokens

(pixels in this case) by rolling the filter mask over all pixels in
the image and applying (1). Moving the filter mask can be in
any direction across the image. If the filter mask size is 3x3

and the filter is moved in scan-line order, then the output of
the filter at location (x,y) can be written as

1(,) ((1, 1) (, 1) (1, 1) ...
9

 (1,) (, 1) + (,) ...

 (, 1) (1,) (1, 1))

[
]

G x y F x y F x y F x y

F x y F x y F x y

F x y F x y F x y

= − − + − + + − +

− + + +

+ + + + + +
(2)

while the output at (x,y+1), which is the next token to be
presented to the system, can be expressed by

1(, 1) ((1, 2) (, 2) (1, 1) ...
9

 (1,) (, 1) + (,) ...

 (, 1) (1,) (1, 1))

[
]

G x y F x y F x y F x y

F x y F x y F x y

F x y F x y F x y

+ = − + + + + + + +

− + + +

+ + + + + +
(3)

Comparing (2) and (3) reveals that the addition operations

enclosed in brackets are the same when the two token are
processed. Thus, if the behavioral description of the system is
modified to accept the two tokens at once, these common
operations can be performed once when processing the first
token and saved in hardware registers such that they are used
when the second token is processed. Apparently, for some
given hardware resources, this would result in reducing the
time required to process the two tokens as opposed when the
two tokens are processed separately since some operations are
eliminated when the second token is processed.

In this example, only 11 addition operations are needed to
process two tokens in the sub-token forwarding approach,
while processing the tokens sequentially requires 16 addition
operations. If the two tokens are processed in a full parallel
fashion, there are also 16 additions operations to process the
two tokens; however, the time required to process them is half
that of the sequential approach since the full parallel approach
will have twice the number of adders. In this case, we can see
that the performance of sub-token forwarding performing is
somewhere between the sequential and full parallel approach,
but with less hardware resources than the parallel approach.
The performance of the proposed approach is expected to
approach that of the full parallel approach if more hardware
resources are available to the design process.

For further improvement, we can consider increasing the
number of tokens per package and search for common
operations between the tokens in the package. For example, if
the number of tokens is 3, there are 24, 15, and 24 addition
operations for the sequential, sub-token forwarding, and full
parallel approaches, respectively. The additional cut achieved
by the sub-token forwarding over the sequential approach is
obtained because some addition operations in the first token
are also present in the third token, thus they can be forwarded
from the first token to the third token.

Another one way to improve the performance of sub-token
forwarding is to increase the filter size as this would result in
more common operations between the tokens. For example,
with a 5x5 filter mask, if we package five tokens then we will
have common operations between all tokens in the set. The

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:4, 2013

523

first token will require 24 additions, while each of the next
four tokens will require four additions. Thus there are 40

additions in sub-token forwarding when compared to 120
additions in the sequential case. Of course the full parallel

Fig. 1 Data-flow graph of the 3x3 arithmetic mean filter for different number of tokens

approach requires 120 additions as well but since the adders
are replicated, the processing time of the full parallel approach
is effectively that of performing 24 additions.

Again, it might be argued that token packaging is the same
as processing the tokens in parallel and independently.
Nonetheless, the additional hardware needed by sub-token
forwarding is less than that of the parallel approach since
common operations are done once and forwarded to other
tokens in the set.

In order to design a system that exploits the sub-token
forwarding concept, the data-flow graph of the system has to
be modified before it is processed by the HLS algorithm. The
modifications introduced to the DFG depend on the number of
tokens and type and number of the common operations that
are determined by investigating the filtering operation. For
example, the left most box in Fig. 1 is the DFG for the 3×3
arithmetic mean filter that operates on a single token. Here,
eight addition and one division operations are required. In case
of full parallel processing of K tokens, the DFG is simply K
replicas of the DFG included in this box. In sub-token
forwarding, when the number of tokens is two, this requires
expanding the DFG in the left most box by adding the DFG in
the second left most box. As can be seen in the figure, the part
of the intermediate results in the computation of the first token
are forwarded to the second token. This is indicated by the
dashed red arc. In case of three and four tokens, the right most
boxes are added to the DFG. Again, note how the third token
is reusing some of the values that are computed in the first and

second tokens. The same applies when the number of tokens is
four where the processing of the fourth token reuses values
from the second and third tokens.

At the hardware level, forwarding is achieved by storing
these values in registers until they are needed. Hardware
registers are not only needed in the sub-token forwarding. The
sequential approach in the 3x3 arithmetic mean requires three
registers to save three intermediate values between successive
cycles in the processing of the token. In case of the full
parallel approach, the number of required registers is 3xK,
where K is the number of tokens. As for the sub-token
forwarding, the number of registers is 3 + (K-1) since we need
to add one register per additional token to save the new
intermediate result.

III. EXPERIMENTAL RESULTS
In this section, we evaluate the performance of the proposed

approach, sub-token forwarding, in the design of a 3x3
arithmetic mean filter and compare it with the performance of
sequential and full parallel approaches when the PHHLS
scheduler is used. In sequential approach, tokens are processed
one after another. On the other hand, the full parallel approach
accepts more than one token at once and processes them in
parallel. However, the system in this case is designed
assuming that each token has dedicated hardware units that are
not used by other tokens. Since the common operations found
between different tokens in the arithmetic mean filtering are
addition operations, our evaluation is based on varying the

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:4, 2013

524

number of available adders that can be used in designing the
system, and fixing the number of dividers to one. The number
of tokens in the full parallel and sub-token forwarding is
varied from 2 to 4.

To quantify the performance of different approaches, we
use the number of cycles required to finish one token in each

(a)

(b)

(c)

Fig. 2 Performance results for sequential, full parallel, and sub-token
forwarding approaches for (a) two tokens (b) three tokens (c) four

tokens

approach as a performance metric when changing the number
of adders and the number of tokens. Higher performance is
achieved if lower number of cycles is required to process the

tokens. The cycle duration is defined to be the delay of the
slowest unit in the system, which is the divider in this case.

In the following experiments, it is assumed that the system
is defined using the DFGs shown in Fig. 1. The sequential
approach is basically represented by the box labeled “First
Token” in Fig. 1, while the DFG of the full parallel approach
is basically K copies of this DFG. In sub-token forwarding,
the DFG in the “First Token” box is expanded by including

TABLE I

 NUMBER OF REGISTERS IN DIFFERENT APPROACHES
No.

tokens Sequential Full Parallel Sub-token
Forwarding

1 3 - -
2 3 6 4
3 3 9 5
4 3 12 6

other boxes depending on the number of tokens.

In the first experiment, the number of tokens used in sub-
token forwarding and parallel approaches is set to 2. The
number of adders is varied between 1 and 8. The results are
shown in Fig. 2(a). For the sequential case, the number of
cycles per token is 9 while it is 6 and 5 cycles, for the sub-
token forwarding and parallel approaches, respectively, when
the system has one adder (two adders in the case of full
parallel design). As the number of adders is increased, the
performance of all approaches improves and the performance
of sub-token forwarding approaches that of the full parallel
approach. When the number of adders is above three, the
performance of sub-token forwarding and parallel approaches
are the same.

Additionally, note that how the performance of the sub-
token forwarding and the full parallel approaches does not
improve when the number of adders is greater than four
(effectively 8 adders in the full parallel approach),
respectively. This can be explained by referring to Fig. 1. In
the full parallel approach, the maximum number of additions
that can be performed in parallel per token is 3. The next
addition operations use the results of previous additions and
cannot be performed even if more adders are available. The
same discussion applies to sub-token forwarding. Investigating
the left most two blocks of Fig. 1, reveals that the maximum
number of additions than can be carried out for the two tokens
is 4. Thus, adding more adders to the systems is also of no use.

An important factor to be considered in the evaluation is the
required number of registers. Table I shows that for the
sequential approach, the number of registers is always 3
regardless of the number of tokens. This is logical since three
registers are required to process one token and these same
three registers are reused when the second token is processed.
For the full parallel approach, the number of adders is twice
that of the sequential case, since each token is processed
independently and the registers in one token cannot be used in
the other token. Note how the sub-token forwarding with two
tokens requires only 4 registers which is less than that of the
parallel approach. This can be easily seen in Fig. 1 where three

1 2 3 4 5 6 7 8
2

3

4

5

6

7

8

9

10

Number of Adders

C
yc

le
s/

To
ke

n

Sequential
Parallel
Sub-token

1 2 3 4 5 6 7 8

2

3

4

5

6

7

8

9

10

Number of Adders

C
yc

le
s/

To
ke

n

Sequential
Parallel
Sub-token

1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

8

9

10

Number of Adders

C
yc

le
s/

To
ke

n

Sequential
Parallel
Sub-token

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:4, 2013

525

registers are used in the first token and only one register is
needed to save the results of the second token.

The results for the three-token and four-token cases are
shown in Fig. 2(b) and Fig. 2(c). In these figures, we see that
the performance of the sequential approach is the worst, and
the performance of sub-token forwarding approaches that of
the full parallel approach as the number of adders is increased.
Nonetheless, we need to keep in mind that the number of
adders in the parallel approach is K times that in the sub-token
forwarding approach, where K is the number of tokens. In
terms of required registers, Table I shows that the sub-token
forwarding requires few additional registers when compared to
the sequential approach while the number of registers in the
full approach is the highest.

Comparing the performance of the three approaches using
different number of tokens, we see that the sequential
approach requires the same number of cycles per token.
However, the performance of the full parallel approach
increases since lower number of cycles are required to process
one token at the expense of replicating hardware units. In case
of the sub-token forwarding, the performance also improves as
the number of tokens is increased since forwarding is
exploited better as shown in Fig. 1.

In summary, the sub-token forwarding approach utilizes the
available processing hardware units efficiently to achieve a
performance that is the same or very close to that of the full
parallel approach depending on the number of tokens and the
available hardware resources. The only requirement for the
sub-token forwarding approach when compared to the
sequential approach is additional registers.

IV. CONCLUSION
High level synthesis is extensively used in the design of

digital systems as it gives full control over optimizing the
design process. In this paper, we investigate the concept of
sub-token forwarding in specifying the behavioral description
of digital systems, specifically digital filters, that is used in the
synthesis process. The proposed approach relies on
parallelizing the processing of tokens with lower hardware
resources by exploiting the existence of common operations
between different tokens with less hardware requirements
when compared to full parallel processing of the tokens. Thus,
these values can be saved in hardware registers and forwarded
to successive tokens when needed. The performance of the
proposed approach is much better than that of sequential
processing and approaches that of full parallel processing
without the need to replicate hardware resources. The
proposed idea can be easily extended to the design of other

filters by simply investigating the common operations between
successive tokens.

REFERENCES
[1] P. Coussy, M. Meredith, D. Gajski, and A. Takach, “An Introduction to

high-level synthesis,” ,” IEEE Design & Test of Comuters, vol. 26, no. 4,
pp. 8-17, Aug. 2009.

[2] P.Coussy and A. Morawiec, High-Level Synthesis from Algorithm to
Digital Circuit, Springer, 2008.

[3] H. Deman, J. Rabaey, P. Six, and L. Claesen, “Cathedral II: A silicon
compiler for digital signal processing,” IEEE Design & Test of
Comuters, vol.3, no. 6, pp. 13-25, Dec. 1986.

[4] C.-T. Hwang, J.-H. Lee and Y.-C. Hsu, “A formal approach to the
scheduling problem in high level synthesis,” IEEE Trans. Computer-
Aided Design Integrated Circuits Syst., vol.10, no. 4, pp. 464–475, 1991.

[5] F. F. Yassa, J.R. Jasica, R.L. Hartley, and S.E. Noujaim, “A silicon
compiler for digital signal processing: Methodology, implementation,
and applications,” Proceedings of IEEE, vol. 75, no. 9, pp. 1272–1282,
Sept. 1987.

[6] C.-Y. Wang and K.K Parhi, “High-level DSP synthesis using concurrent
transformations, scheduling, and allocation,” IEEE Trans. Computer-
Aided Design Integrated Circuits Syst., vol. 14, no. 3, pp. 274–295, Mar.
1995.

[7] A. Shatnawi, J.Ghanim, and M. Ahmad, “High level synthesis of
integrated heterogeneous pipelined processing elements for DSP
applications,” Computer and Electrical Engineering, vol. 30, no. 8, pp.
543-567, Nov. 2004.

