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Abstract—High level synthesis (HLS) is a process which 

generates register-transfer level design for digital systems from 
behavioral description. There are many HLS algorithms and 
commercial tools. However, most of these algorithms consider a 
behavioral description for the system when a single token is 
presented to the system. This approach does not exploit extra 
hardware efficiently, especially in the design of digital filters where 
common operations may exist between successive tokens. In this 
paper, we modify the behavioral description to process multiple 
tokens in parallel. However, this approach is unlike the full 
processing that requires full hardware replication. It exploits the 
presence of common operations between successive tokens. The 
performance of the proposed approach is better than sequential 
processing and approaches that of full parallel processing as the 
hardware resources are increased. 

 
Keywords—Digital filters, High level synthesis, Sub-token 

forwarding.  

I. INTRODUCTION 
HE increasing capabilities of silicon technology and the 
growing complexity of applications in recent times forced 

design methodologies and tools to move to higher abstraction 
levels. As a matter of fact, the process of hardware design has 
evolved tremendously. Simulation at the gate level appeared in 
the early 1970s, and cycle-based simulation became available 
by 1979. In the mid eighties, hardware description languages 
(HDL), such as Verilog and VHDL, have enabled large 
adoption of simulation tools. During the 1990s, the first 
generation of commercial high-level synthesis (HLS) tools 
was available commercially [1].  

HLS is the term used to describe the automated design 
process that interprets an algorithmic description of a desired 
system behavior and creates the hardware that implements that 
behavior at the register-transfer level (RTL) [2] such that 
design constraints are satisfied and the cost function is 
optimized. The inputs to a HLS system are the behavioral 
specification, design constraints and an optimization function. 
The behavioral specification is expressed by the means of a 
data-flow graph (DFG) which shows the data dependencies 
between a number of ordered operations in an algorithm using 
nodes and arcs. The nodes represent the processes that exist in 
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the system, while the lines between the nodes represent the 
links between those processes. On the other hand, the output 
of the HLS is a register-transfer-level implementation of the 
system.  

The process of high level synthesis consists of several 
procedures: system definition, scheduling, hardware 
allocation, and generation of the control system. Out of these 
procedures, scheduling and hardware allocation are the most 
critical. Scheduling assigns the operation of the DFG nodes to 
control steps which are the fundamental sequencing unit in 
synchronous systems (clock cycle).  Scheduling should be 
done such that the minimum number of processing elements is 
used and the rate and time optimality constraints are satisfied. 
On the other hand, allocation consists of assigning the 
operations to hardware units, i.e. allocating functional units, 
storage and communication paths. 

Several HLS tools that aim at designing optimal digital 
systems are commercially available, such as CATHEDRAL II 
[3], ALPS [4], BSSC [5] and MARS [6]. The main differences 
between these tools lie in the way the design space is 
explored, the representation of the behavioral description of 
the system, and how the scheduling is performed. However, 
most of the scheduling algorithms in these HLS tools ignore 
the use of pipelined processing elements and assumed them to 
be unified functional units that can perform multiple 
operations. On the contrary, the scheduler found in the 
pipelined heterogeneous high level synthesis algorithm 
(PHHLS) [7] treats the processing elements as distinct 
functional units each of which is responsible for a single task 
instead of being unified functional units capable of performing 
multiple tasks. Additionally, it employs the concept of 
pipelining in the system design at the register-transfer level to 
reduce the lower iteration period and the hardware resources. 
In this case, the iteration period is not bounded by the highest 
node computational delay in contrast to systems with non-
pipelined processing elements.  

The PHHLS and other HLS algorithms were only tested 
when the system to be designed considers the processing of 
the data points one data point at a time, i.e. single token. This 
in turn limits the system performance at some point even if 
more hardware is available due to the sequential processing. 
The increase in hardware resources can be exploited to 
improve the performance of the system by processing multiple 
tokens in parallel. However, processing the tokens in parallel 
requires full replication of the hardware which might be 
expensive and not affordable in case of processing large 
number of tokens. This issue can be alleviated in the design of 
digital filters by observing that there are some operations that 
are repeated as the filter moves from one token to another. 
Taking this into account, we propose modifying the behavioral 
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description, expressed as DFG, of the system to be designed to 
operate on multiple tokens at once. However, and unlike the 
full parallel approach, these multiple tokens are selected such 
that they have some operations in common. Thus, when the set 
of tokens are processed at the same time, the common 
operations found in these multiple tokens are performed once 
and saved in hardware registers such that they are forwarded 
to other tokens in the set. Essentially, this approach processes 
the tokens in parallel; however, forwarding the results of 
common operations reduces the hardware requirements of the 
full parallel processing. At the same time, the performance of 
the proposed approach is expected to be better than sequential 
processing, and it will approach that of the full parallel 
approach depending on the available hardware resources.  

In this paper, we investigate the use of the concept outlined 
earlier in improving the performance of the PHHLS algorithm 
in the design of digital image filters. We refer to this technique 
as sub-token forwarding since some intermediate results of 
tokens are forwarded to other tokens in the set. The rest of the 
paper is organized as follows. In Section II, we explain the 
concept of token packaging when considered for the design of 
the 2-D arithmetic mean filter. Section III evaluates the 
benefits of employing token packaging in PHHLS. Finally, 
Section IV concludes the paper. 

II. SUB-TOKEN FORWARDING 
As outlined earlier, the behavioral description used by most 

HLS algorithms to design digital systems is specified such that 
tokens are assumed to be presented to the system one at a 
time. However, this approach may not utilize the available 
hardware efficiently, especially when there are common 
operations between successive tokens.  In order to improve the 
performance of the HLS algorithms, we propose to make the 
input to the system to consist of multiple tokens. Processing a 
set of tokens in parallel by the system is expected to increase 
the hardware requirements since the processes have to be 
replicated. However, this cost can be reduced if some of the 
operations in different tokens are the same. In this case, 
common operations between different tokens in the set are 
performed once and their results are forwarded to the 
processing of the other tokens in the package. This 
observation is strongly applicable to the operation of many 1-
D and 2-D digital filters. To demonstrate the idea, in the 
following we consider the design of the 2-D arithmetic mean 
filter that is commonly used in digital image processing for 
blurring and noise suppression.  

For an image F(x,y), the output of an arithmetic mean filter 
of size (2m+1)×(2m+1) at pixel (x,y) is given by    

 

2
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The filtered image is obtained by processing all tokens 

(pixels in this case) by rolling the filter mask over all pixels in 
the image and applying (1). Moving the filter mask can be in 
any direction across the image. If the filter mask size is 3x3 

and the filter is moved in scan-line order, then the output of 
the filter at location (x,y) can be written as  
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while the output at (x,y+1), which is the next token to be 
presented to the system, can be expressed by 
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Comparing (2) and (3) reveals that the addition operations 

enclosed in brackets are the same when the two token are 
processed. Thus, if the behavioral description of the system is 
modified to accept the two tokens at once, these common 
operations can be performed once when processing the first 
token and saved in hardware registers such that they are used 
when the second token is processed. Apparently, for some 
given hardware resources, this would result in reducing the 
time required to process the two tokens as opposed when the 
two tokens are processed separately since some operations are 
eliminated when the second token is processed.  

In this example, only 11 addition operations are needed to 
process two tokens in the sub-token forwarding approach, 
while processing the tokens sequentially requires 16 addition 
operations. If the two tokens are processed in a full parallel 
fashion, there are also 16 additions operations to process the 
two tokens; however, the time required to process them is half 
that of the sequential approach since the full parallel approach 
will have twice the number of adders. In this case, we can see 
that the performance of sub-token forwarding performing is 
somewhere between the sequential and full parallel approach, 
but with less hardware resources than the parallel approach. 
The performance of the proposed approach is expected to 
approach that of the full parallel approach if more hardware 
resources are available to the design process.  

For further improvement, we can consider increasing the 
number of tokens per package and search for common 
operations between the tokens in the package. For example, if 
the number of tokens is 3, there are 24, 15, and 24 addition 
operations for the sequential, sub-token forwarding, and full 
parallel approaches, respectively. The additional cut achieved 
by the sub-token forwarding over the sequential approach is 
obtained because some addition operations in the first token 
are also present in the third token, thus they can be forwarded 
from the first token to the third token.  

Another one way to improve the performance of sub-token 
forwarding is to increase the filter size as this would result in 
more common operations between the tokens. For example, 
with a 5x5 filter mask, if we package five tokens then we will 
have common operations between all tokens in the set.  The 
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first token will require 24 additions, while each of the next 
four tokens will require four additions. Thus there are 40 

additions in sub-token forwarding when compared to 120 
additions in the sequential case. Of course the full parallel

 

 
Fig. 1 Data-flow graph of the 3x3 arithmetic mean filter for different number of tokens  

 
approach requires 120 additions as well but since the adders 
are replicated, the processing time of the full parallel approach 
is effectively that of performing 24 additions.   

Again, it might be argued that token packaging is the same 
as processing the tokens in parallel and independently. 
Nonetheless, the additional hardware needed by sub-token 
forwarding is less than that of the parallel approach since 
common operations are done once and forwarded to other 
tokens in the set.  

In order to design a system that exploits the sub-token 
forwarding concept, the data-flow graph of the system has to 
be modified before it is processed by the HLS algorithm. The 
modifications introduced to the DFG depend on the number of 
tokens and type and number of the common operations that 
are determined by investigating the filtering operation. For 
example, the left most box in Fig. 1 is the DFG for the 3×3 
arithmetic mean filter that operates on a single token. Here, 
eight addition and one division operations are required. In case 
of full parallel processing of K tokens, the DFG is simply K 
replicas of the DFG included in this box. In sub-token 
forwarding, when the number of tokens is two, this requires 
expanding the DFG in the left most box by adding the DFG in 
the second left most box. As can be seen in the figure, the part 
of the intermediate results in the computation of the first token 
are forwarded to the second token. This is indicated by the 
dashed red arc. In case of three and four tokens, the right most 
boxes are added to the DFG. Again, note how the third token 
is reusing some of the values that are computed in the first and 

second tokens. The same applies when the number of tokens is 
four where the processing of the fourth token reuses values 
from the second and third tokens.  

At the hardware level, forwarding is achieved by storing 
these values in registers until they are needed. Hardware 
registers are not only needed in the sub-token forwarding. The 
sequential approach in the 3x3 arithmetic mean requires three 
registers to save three intermediate values between successive 
cycles in the processing of the token.  In case of the full 
parallel approach, the number of required registers is 3xK, 
where K is the number of tokens. As for the sub-token 
forwarding, the number of registers is 3 + (K-1) since we need 
to add one register per additional token to save the new 
intermediate result.       

III. EXPERIMENTAL RESULTS 
In this section, we evaluate the performance of the proposed 

approach, sub-token forwarding, in the design of a 3x3 
arithmetic mean filter and compare it with the performance of 
sequential and full parallel approaches when the PHHLS 
scheduler is used. In sequential approach, tokens are processed 
one after another. On the other hand, the full parallel approach 
accepts more than one token at once and processes them in 
parallel. However, the system in this case is designed 
assuming that each token has dedicated hardware units that are 
not used by other tokens. Since the common operations found 
between different tokens in the arithmetic mean filtering are 
addition operations, our evaluation is based on varying the 
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number of available adders that can be used in designing the 
system, and fixing the number of dividers to one. The number 
of tokens in the full parallel and sub-token forwarding is 
varied from 2 to 4.  

To quantify the performance of different approaches, we 
use the number of cycles required to finish one token in each  

 
(a) 

 
(b) 

 
(c) 

Fig. 2 Performance results for sequential, full parallel, and sub-token 
forwarding approaches for (a) two tokens (b) three tokens (c) four 

tokens 
 

approach as a performance metric when changing the number 
of adders and the number of tokens. Higher performance is 
achieved if lower number of cycles is required to process the 

tokens. The cycle duration is defined to be the delay of the 
slowest unit in the system, which is the divider in this case.  

In the following experiments, it is assumed that the system 
is defined using the DFGs shown in Fig. 1. The sequential 
approach is basically represented by the box labeled “First 
Token” in Fig. 1, while the DFG of the full parallel approach 
is basically K copies of this DFG. In sub-token forwarding, 
the DFG in the “First Token” box is expanded by including  

 
TABLE I 

 NUMBER OF REGISTERS IN DIFFERENT APPROACHES 
No. 

tokens Sequential Full Parallel Sub-token 
Forwarding 

1 3 - - 
2 3 6 4 
3 3 9 5 
4 3 12 6 

 
other boxes depending on the number of tokens.  

In the first experiment, the number of tokens used in sub-
token forwarding and parallel approaches is set to 2. The 
number of adders is varied between 1 and 8. The results are 
shown in Fig. 2(a). For the sequential case, the number of 
cycles per token is 9 while it is 6 and 5 cycles, for the sub-
token forwarding and parallel approaches, respectively, when 
the system has one adder (two adders in the case of full 
parallel design). As the number of adders is increased, the 
performance of all approaches improves and the performance 
of sub-token forwarding approaches that of the full parallel 
approach. When the number of adders is above three, the 
performance of sub-token forwarding and parallel approaches 
are the same. 

Additionally, note that how the performance of the sub-
token forwarding and the full parallel approaches does not 
improve when the number of adders is greater than four 
(effectively 8 adders in the full parallel approach), 
respectively. This can be explained by referring to Fig. 1. In 
the full parallel approach, the maximum number of additions 
that can be performed in parallel per token is 3. The next 
addition operations use the results of previous additions and 
cannot be performed even if more adders are available. The 
same discussion applies to sub-token forwarding. Investigating 
the left most two blocks of Fig. 1, reveals that the maximum 
number of additions than can be carried out for the two tokens 
is 4. Thus, adding more adders to the systems is also of no use.  

An important factor to be considered in the evaluation is the 
required number of registers. Table I shows that for the 
sequential approach, the number of registers is always 3 
regardless of the number of tokens. This is logical since three 
registers are required to process one token and these same 
three registers are reused when the second token is processed. 
For the full parallel approach, the number of adders is twice 
that of the sequential case, since each token is processed 
independently and the registers in one token cannot be used in 
the other token. Note how the sub-token forwarding with two 
tokens requires only 4 registers which is less than that of the 
parallel approach. This can be easily seen in Fig. 1 where three 

1 2 3 4 5 6 7 8
2

3

4

5

6

7

8

9

10

Number of Adders

C
yc

le
s/

To
ke

n

 

 

Sequential
Parallel
Sub-token

1 2 3 4 5 6 7 8

2

3

4

5

6

7

8

9

10

Number of Adders

C
yc

le
s/

To
ke

n

 

 

Sequential
Parallel
Sub-token

1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

8

9

10

Number of Adders

C
yc

le
s/

To
ke

n

 

 

Sequential
Parallel
Sub-token



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:4, 2013

525

 

 

registers are used in the first token and only one register is 
needed to save the results of the second token.  

The results for the three-token and four-token cases are 
shown in Fig. 2(b) and Fig. 2(c). In these figures, we see that 
the performance of the sequential approach is the worst, and 
the performance of sub-token forwarding approaches that of 
the full parallel approach as the number of adders is increased. 
Nonetheless, we need to keep in mind that the number of 
adders in the parallel approach is K times that in the sub-token 
forwarding approach, where K is the number of tokens. In 
terms of required registers, Table I shows that the sub-token 
forwarding requires few additional registers when compared to 
the sequential approach while the number of registers in the 
full approach is the highest.  

Comparing the performance of the three approaches using 
different number of tokens, we see that the sequential 
approach requires the same number of cycles per token. 
However, the performance of the full parallel approach 
increases since lower number of cycles are required to process 
one token at the expense of replicating hardware units. In case 
of the sub-token forwarding, the performance also improves as 
the number of tokens is increased since forwarding is 
exploited better as shown in Fig. 1.  

In summary, the sub-token forwarding approach utilizes the 
available processing hardware units efficiently to achieve a 
performance that is the same or very close to that of the full 
parallel approach depending on the number of tokens and the 
available hardware resources. The only requirement for the 
sub-token forwarding approach when compared to the 
sequential approach is additional registers. 

IV. CONCLUSION 
High level synthesis is extensively used in the design of 

digital systems as it gives full control over optimizing the 
design process. In this paper, we investigate the concept of 
sub-token forwarding in specifying the behavioral description 
of digital systems, specifically digital filters, that is used in the 
synthesis process. The proposed approach relies on 
parallelizing the processing of tokens with lower hardware 
resources by exploiting the existence of common operations 
between different tokens with less hardware requirements 
when compared to full parallel processing of the tokens. Thus, 
these values can be saved in hardware registers and forwarded 
to successive tokens when needed. The performance of the 
proposed approach is much better than that of sequential 
processing and approaches that of full parallel processing 
without the need to replicate hardware resources. The 
proposed idea can be easily extended to the design of other 

filters by simply investigating the common operations between 
successive tokens.   
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