
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:12, 2009

2935

Abstract—Fault-proneness of a software module is the

probability that the module contains faults. A correlation exists
between the fault-proneness of the software and the measurable
attributes of the code (i.e. the static metrics) and of the testing (i.e.
the dynamic metrics). Early detection of fault-prone software
components enables verification experts to concentrate their time and
resources on the problem areas of the software system under
development. This paper introduces Genetic Algorithm based
software fault prediction models with Object-Oriented metrics. The
contribution of this paper is that it has used Metric values of JEdit
open source software for generation of the rules for the classification
of software modules in the categories of Faulty and non faulty
modules and thereafter empirically validation is performed. The
results shows that Genetic algorithm approach can be used for
finding the fault proneness in object oriented software components.

Keywords—Genetic Algorithms, Software Fault, Classification,
Object Oriented Metrics.

I. INTRODUCTION

S the complexity and the constraints under which the
software is developed are increasing, it is difficult to

produce software without faults. Such faulty software classes
may increase development & maintenance cost, due to
software failures and decrease customer’s satisfaction [1].
Prediction of fault-prone modules provides one way to
support software quality engineering through improved
scheduling and project control. There are many metrics and
technique available for investigate the accuracy of fault prone
classes which may help software organizations for planning
and performing testing activities.

Being able to measure the fault-proneness of software can
be a key step towards steering the software testing and
improving the effectiveness of the whole process. In the past,
several metrics for measuring software complexity and testing
thoroughness have been proposed. Static metrics, e.g., the
McCabe's cyclomatic number or the Halstead's Software
Science, statically computed on the source code and tried to

Dr. Parvinder S. Sandhu is Professor with Computer Science &

Engineering Department, Rayat & Bahra Institute of Engineering & Bio-
Technology, Sahauran, Distt. Mohali (Punjab)-140104 INDIA

Mr. Anmol Goyal is working as Asstt. Professor (Deptt. Of Electronics &
Communication engineering), Rayat & Bahra Institute of Engineering & Bio-
Technology, Sahauran, Distt. Mohali (Punjab)-140104 INDIA

Mr. Satish Kumar Dhiman is doing his Masters in .Philosphy from M.M.
Universiyt, ullana, Ambala(Haryana) INDIA.

quantify software complexity. Dynamic metrics, e.g.,
structural and data flow coverage, measure the thoroughness
of testing as the amount of elements of the program covered
by test executions.

Genetic algorithm is being successfully applied for solving
both classification and regression problems. It is therefore
important to investigate the capabilities of this algorithm in
predicting software quality. In order to perform the analysis
we validate the performance of the GA method for dataset
derived from open source software JEdit
[http://promisedata.org/repository/]. The 274 classes in this
data were developed using Java language. In this study, we
investigate the capability of Genetic Algorithm in predicting
faulty classes. We investigate the accuracy of the fault
proneness predictions using object oriented design using
metrics suite given by Chidamber and Kemerer [2] and used
in [3] for fault prediction. By using Genetic Algorithm
technique on fault prone classes may enable the software
organizations for planning and performing testing by focusing
on accuracy of fault prone classes. This may result in
significant improvement in software quality

The objectives of the study may be described as follows:
• To find the structural code and design attributes of

software systems
• Developing the Fault Prediction model using the Genetic

algorithm
The contributions of the paper are summarized as follows:

First open source software systems analyzed. These systems
are developed with different development methods than
proprietary software. In previous studies mostly proprietary
software were analyzed. Second, we examine GA method to
predict the faulty classes with better accuracy.

The paper is organized as follows: section 2 discusses the
related work, Section 3 explains about the empirical data
collection and section 4 describes the GA based methodology.
The result of the study is given in section 5. Finally
conclusions of the research are presented in section 6.

II. RELATED WORK

Lanubile et. al. [4] presented an empirical investigation of
the modeling techniques for identifying fault-prone software
components early in the software life cycle. Using software
complexity measures, the techniques build models, which
classify components as likely to contain faults or not. The
modeling techniques applied in their study cover the main

A Genetic Algorithm Based Classification
Approach for Finding Fault Prone Classes

Parvinder S. Sandhu, Satish Kumar Dhiman, Anmol Goyal

A

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:12, 2009

2936

classification paradigms, including principal component
analysis, discriminate analysis, logistic regression and logical
classification models.

Saida Benlarbi et al [5] surveyed that the basic premise
behind the development of object-oriented metrics is that they
can serve, as early predictors of classes that contain faults or
that are costly to maintain. They showed that common
empirical validation methods to date could provide misleading
conclusions as to the validity of object-oriented metrics. They
presented the results of an empirical validation study of a set
of object-oriented metrics. In their paper they have shown that
size can have an important confounding effect on the validity
of object-oriented metrics.

Runeson et al [6] proposed that in striving for high-quality
software, the management of faults plays an important role.
The faults that reside in software products are not evenly
distributed over the software modules; some modules are
more fault-prone than others. Various models are presented in
the literature, which identify fault-prone modules, which can
be used in quality management processes. They proposed
schemes that would help researchers to compare the
capabilities of different models and to choose a suitable
model.

Atchara Mahaweerawat [7] analyzed that to remain
competitive in the dynamic world of software development,
organizations must optimize the usage of their limited
resources to deliver quality products on time and within
budget. This requires prevention of fault introduction and
quick discovery and repair of residual faults. In particular,
faults due to the use of inheritance and polymorphism are
considered, as they account for significant portion of faults in
object-oriented systems. The proposed fault prediction model
is based on supervised learning using Multilayer Perceptron
Neural Network and the results are analyzed in terms of
classification correctness and based on the results of
classification, faulty classes are further analyzed and classified
according to the particular type of fault.

P. Bellini et. al. [8] compared Fault-Proneness Estimation
Models that are developed using logistic regression and the
discriminate analyses. It is concluded that over the last years,
software quality has become one of the most important
requirement in the development of systems and fault-
proneness estimation could play a key role in quality control
of software products. In this area, much effort has been spent
in defining metrics and identifying models for system
assessment. Using these metrics to assess which parts of the
system are more fault-proneness is of primary importance.
The objective has been to find a compromise between the
fault-proneness estimation rate and the size of the estimation
model in terms of number of metrics used in the model itself.
The methodologies were the.

Yan Ma et. al. [9] suggested that accurate prediction of fault
prone modules in software development process enables
effective discovery and identification of the defects. Such
prediction models are especially valuable for the large-scale
systems, where verification experts need to focus their

attention and resources to problem areas in the system under
development. The paper [9] presents a methodology for
predicting fault-prone modules using a modified random
forests algorithm which improve classification accuracy by
growing an ensemble of trees and letting them vote on the
classification decision.

Eric Rotenberg [10] speculates that technology trends pose
new challenges for fault tolerance in microprocessors. The
paper proposed a new time redundancy fault-tolerance
approach in which a program is duplicated and the two
redundant programs simultaneously run on the processor. The
technique exploits several significant micro architectural
trends to provide broad coverage of transient faults and
restricted coverage of permanent faults. These trends are
simultaneous multithreading, control flow and data flow
prediction, and hierarchical processors - all of which are
intended for higher performance, but which can be easily
leveraged for the specified fault tolerance goals.

Arvinder Kaur et al [3] empirically evaluates the
performance of RF in predicting fault-prone classes using
open source software. The Random Forest algorithm is
evaluated using Object Oriented metrics proposed by
Chidamber and Kemerer [2].

Briand et al [11] extracted 49 metrics to identify a suitable
model for predicting fault proneness of classes. The system
under investigation was medium sized C++ software system
developed by undergraduate or graduate students. The eight
systems under study consisted of a total of 180 classes. They
used univariate and multivariate analysis to find individual
and combined impact of OO metrics and fault proneness.

Gyimothy et al empirically validated CK metrics on open
source software for fault prediction. They employed
regression (linear and logistic regression) and machine
learning methods (neural network and decision tree) for model
prediction [12].

Zhou and Leung validated the public domain NASA data
set as used in their study to predict fault proneness models
with respect to two categories of faults: high and low [13]. Pai
also used the same data set using a Bayesian approach to
predict fault proneness models [14]. Aggarwal et al. validated
object-oriented metrics to predict faulty classes [15, 16].

Khoshgaftaar et al. introduced the use of the neural
networks as a tool for predicting software quality [17]. They
presented a large telecommunication system, classifying
modules as fault prone or not fault prone. In this paper ANN
model is compared with a non-parametric discriminant model.

III. EMPIRICAL DATA COLLECTION

First of all, find the structural code and design attributes of
software systems. Thereafter, select the suitable metric values
as representation of statement. Next step is to analyze, refine
metrics and normalize the metric values. We used JEdit open
source software in this study [18]. JEdit is a programmer's text
editor developed using Java language. JEdit combines the
functionality of Window, Unix, and MacOS text editors. It
was released as free software and the source code is available

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:12, 2009

2937

on [19]. JEdit includes 274 classes. The number of developers
involved in this project was 144. The project was started in
1999. The number of bugs was computed using SVC
repositories. The release point for the project was identified in
2002. The log data from that point to 2007 was collected. The
header files in C++ were excluded in data collection. The
word bug or fixed was counted. Details on bug collection
process can be found in [20]. The following is the details of
the metrics used in the classification process:

TABLE I METRIC SUIT USED IN THE STUDY
Metric Definition

Coupling between
Objects(CBO)

CBO for a class is count of the number of
other classes to which it is coupled and
vice versa

Lack of Cohesion
(LCOM)

It measures the dissimilarity of methods in
a class by looking at the instance variable
or attributes used by methods

Number of Children
(NOC)

The NOC is the number of immediate
subclasses of a class in a hierarchy.

Depth of inheritance
(DOI)

The depth of a class within the inheritance
hierarchy is the maximum number of steps
from the class node to the root of the tree
and is measured by the number of ancestor
classes

Weighted Methods per
Class(WMC)

The WMC is a count of sum of
Complexities of all methods in a class
Consider a class K1, with Methods
M1…… Mn that are defined in the class.
Let. C1, C2....Cn be the complexity of the
methods

∑
=

=
n

i
iCWMC

1

If all the methods complexities are
considered to be unity , then WMC = n the
number of methods in the class.

Response for a class
(RFC)

The response set of a class (RFC) is
defined as set of methods that can be
potentially executed in response to a
message received by an object of that class.
It is given by

RFC= |RS|, where RS, the response set of
the class
RS = Mi U all j{Rij}

Number of Public
Methods(NPM)

It is count of number of Public methods in
a class

Lines of Code (LOC) It is the count of lines in the text of the
source code excluding comment lines

IV. GENETIC ALGORITHM BASED CLASSIFICATION

TECHNIQUE

A genetic algorithm (GA) is a search technique used in
computing to find exact or approximate solutions to
optimization and search problems. Genetic algorithms are
categorized as global search heuristics. Genetic algorithms are
a particular class of Evolutionary Algorithms that use
techniques inspired by evolutionary biology such as
inheritance, mutation, selection, and crossover. This
Technique used the feature of random search. Random search
feature selection searches the best possible solution over a
range of data. Random features and input given produce good

result. In the beginning start with a large “population” of
randomly generated “attempted solutions” to a problem then
repeatedly do the following:

• Evaluate each of the attempted solutions
• Keep a subset of these solutions (the “best” ones)
• Use these solutions to generate a new population
• Quit when you have a satisfactory solution (or you run

out of time)
With help of Genetic algorithm classification of the

software components into faulty/fault-free systems is
performed. The flowchart of the Genetic Algorithm based
approach is shown in the following figure:

Fig. 1 Flowchart of use of GA

V. RESULT & DISCUSSION

The rules for the classification of modules are generated
with help of Genetic Algorithm based approach as shown in
the flowchart of figure 1 and implemented in Visual Basic 6.0
environment. The snapshot of the GUI developed is shown in
figure 2.

Fig. 2 Snapshot of the GUI of Developed System

The accuracy of the developed system is measured as 80.14

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:12, 2009

2938

percent as shown in the figure 3.

Fig. 3 Snapshot of the Output of the Developed System

VI. CONCLUSION

This paper empirically evaluates performance of genetic
algorithm based classification technique in predicting fault-
prone classes using open source software. The proposed GA
based classification technique shows 80.14 percent accuracy.
This study confirms that construction of GA model is feasible,
adaptable to Object Oriented systems and useful in predicting
faulty prone classes. It is therefore concluded that model is
implemented using GA based technique for classification of
the software components into faulty/fault-free systems is
found satisfactory.

The future work can be extended in following directions:
• Most important attribute can be found for fault prediction

and this work can be extended to further programming
languages.

• More algorithms can be evaluated and then we can find
the best algorithm. We plan to replicate our study to predict
model based on hybrid genetic algorithms or soft computing
techniques.

REFERENCES
[1] Koru, H. Liu, "Building effective defect- prediction models in practice",

IEEE Software, 2005, pp.23-29.
[2] S. Chidamber, and C. Kemerer, "A metrics suite for object-oriented

design", IEEE Transactions on Software Engineering, 20(6), 1994,
pp.476-493.

[3] Arvinder Kaur and Ruchika Malhotra, “Application of Random Forest in
Predicting Fault-Prone Classes”, 2008 International Conference on
Advanced Computer Theory and Engineering ICACTE 2008, Pukhet,
Dec. 2008, pp. 37-43.

[4] Lanubile F., Lonigro A., and Visaggio G. (1995) “Comparing Models
for Identifying Fault-Prone Software Components”, Proceedings of
Seventh International Conference on Software Engineering and
Knowledge Engineering, June 1995, pp. 12-19.

[5] Saida Benlarbi,Khaled El Emam, Nishith Geol (1999), “Issues in
Validating Object-Oriented Metrics for Early Risk Prediction”, by Cistel

Technology 210 Colonnade Road Suite 204 Nepean, Ontario Canada
K2E 7L5.

[6] Runeson, Claes Wohlin and Magnus C. Ohlsson (2001), “A Proposal for
Comparison of Models for Identification of Fault-Proneness”, Dept. of
Communication Systems, Lund University, Profes 2001, LNLS 2188,
pp. 341-355.

[7] Mahaweerawat, A. (2004), “Fault-Prediction in object oriented
software’s using neural network techniques”, Advanced Virtual and
Intelligent Computing Center (AVIC), Department of Mathematics,
Faculty of Science, Chulalongkorn University, Bangkok, Thailand, pp.
1-8.

[8] Bellini, P. (2005), “Comparing Fault-Proneness Estimation Models”,
10th IEEE International Conference on Engineering of Complex
Computer Systems (ICECCS'05), vol. 0, 2005, pp. 205-214.

[9] Ma, Y., Guo, L. (2006), “A Statistical Framework for the Prediction of
Fault-Proneness”, West Virginia University, Morgantown.

[10] Eric Rotenberg (1999), “AR-SMT: A Microarchitectural Approach to
Fault Tolerance in Microprocessors”, Proceedings of the Twenty-Ninth
Annual International Symposium on Fault-Tolerant Computing, June 15-
18, pp. 84-90.

[11] L. Briand, J. Wilst, H. Lounis, "Replicated Case Studies for
Investigating Quality Factors in Object-Oriented Designs", Empirical
Software Engineering: An International Journal, 6(1), 2001, pp.11-58.

[12] T. Gyimothy, R. Ferenc, 1. Siket, "Empirical validation of object-
oriented metrics on open Trans. Software Engineering, 31 (10), 2005,
pp. 897 —910.

[13] Z. Yuming, and L. Hareton, "Empirical analysis of Object-Oriented
Design Metrics for predicting high severity faults", IEEE Transactions
on Software Engineering, 32(10), 2006, pp.771-784.

[14] G. Pai, "Empirical analysis of Software Fault Content and Fault
Proneness Using Bayesian Methods", IEEE Transactions on software
Engineering, 33(10), 2007, pp.675-686.

[15] K.K Aggarwal, Y. Singh, A. Kaur, R. Malhotra, "Empirical Analysis for
Investigating the Effect of Object-Oriented Metrics on Fault Proneness:
A Replicated Case Study", Published online in Software Process
Improvement and Practice, Wiley, 2008.

[16] K.K Aggarwal, Y. Singh, A. Kaur, R. Malhotra, "Investigating the Effect
of Coupling Metrics on Fault Proneness in Object-Oriented Systems",
Software Quality Professional, 8(4), 2006, pp.4-16.

[17] T.M. Khoshgaftaar, E.D. Allen, J.P. Hudepohl, S.J. Aud, Application of
neural networks to software quality modeling of a very large
telecommunications system, IEEE Transactions on Neural Networks,
8(4), 1997, pp. 902-909.

[18] Promise. http://promisedata.org/repository/.
[19] Website sourceforge: www.sourceforge.net/projects/jedit
[20] S. Watanabe, H. Kaiya, K. Kaijiri, Adapting a Fault Prediction Model to

Allow Inter Language Reuse, PROMISE'08, May 12-13, Leipzig,
Germany, 2008.

