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Abstract—The Helmholtz equation often arises in the study of 

physical problems involving partial differential equation. Many 
researchers have proposed numerous methods to find the analytic or 
approximate solutions for the proposed problems. In this work, the 
exact analytical solutions of the Helmholtz equation in spherical 
polar coordinates are presented using the Nikiforov-Uvarov (NU) 
method. It is found that the solution of the angular eigenfunction can 
be expressed by the associated-Legendre polynomial and radial 
eigenfunctions are obtained in terms of the Laguerre polynomials. 
The special case for k=0, which corresponds to the Laplace equation 
is also presented. 
 

Keywords—Helmholtz equation, Nikiforov-Uvarov method, 
exact solutions, eigenfunctions. 
 

I. INTRODUCTION 
HE Helmholtz equation is used to describe many 
mathematical and physical applications including 

electromagnetics, wave propagation [1], heat conduction [2], 
acoustic cavity problem [3] and many others. It has also been 
used to describe the vibration of a structure [4] and the 
scattering of a wave [5]. Many different techniques such as 
the finite difference method [6], the homotopy perturbation 
method [7], [8] and the variational iteration method [9] have 
been introduced to solve the Helmholtz equation numerically 
and analytically. The NU method has been introduced for 
solving the hypergeometric type second-order differential 
equations [10] appeared in the time-independent problems. 
Recently, this method has been used to solve Schrödinger 
equation for some well known potentials [11]–[16], Dirac, 
Klein–Gordon equations for Coulomb potential [17], [18] and 
some physical potentials such as Woods-Saxon potential [19], 
Poschl-Teller potentials [20], Hulthen potentials [21], the 
Manning-Rosen potential [22], and the Eckart potential [23]-
[25].  

In the present work, our main objective is to solve 
Helmholtz equation in spherical polar coordinates by the NU 
method. 

This paper is organized as follows: In Section II, we briefly 
introduce the NU method. We consider the separation of 
variables to obtain the eigenfunctions of the Helmholtz 
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equation in spherical polar coordinates in Section III. Finally, 
conclusions are drawn in Section IV. 

II. NIKIFOROV-UVAROV METHOD 
The NU Method [26] is based on the solutions of general 

second-order linear differential equation with special 
functions. It has been extensively used to solve the non 
relativistic Schrödinger equation and Schrödinger-like 
equations. This method in general reduces the second-order 
linear differential equation to the following form 
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where )s(σ  and )s(σ  are polynomials, at most second 

degree, and )s(τ  is a polynomial, at most first degree. To 
find the particular solution of (1), one can use the following 
form 
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It reduces to an equation of hypergeometric type 
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where λ  is a constant given in the form 
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)s(φ is defined as logarithmic derivative 
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)s(yn  is the hypergeometric-type function whose 

polynomials solutions are given by Rodrigues relation 
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where nB  is the normalization constant and )s(ρ  is the 
weight function satisfying 
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where )s(2)s()s( π+τ=τ  satisfies the condition 0)s(' <τ  
[26].  

The function )s(π  and the parameter λ , required for this 
method, are defined as follows: 
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In order to find the value of κ , the expression under the 

square root must be square of polynomial 

III. HELMHOLTZ EQUATION   
  Let us consider the Helmholtz equation,  
 

0UkU 22 =+∇          (10) 
 
which represents the time-independent linear partial 
differential equation, results from applying the technique of 
separation of variables to reduce the complexity of the 
analysis. The interpretation of the unknown U depends on 
what the equation models. The most common areas are wave 
propagation problems and quantum mechanics, in which case 
U is the amplitude of a time-harmonic wave and the orbitals 
for an energy state, respectively. 

Here 2∇  is the Laplacian and k is the wavenumber. In 
spherical polar coordinates, (1) can be written 
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We seek the solutions to (11) in the form 
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Substituting (12) into (11) and dividing by U gives 
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where 2m  and )1( +  are separation constants. The solution 
in (15) is periodic and must satisfy the periodic boundary 
condition ),()2( ϕΦ=π+ϕΦ  from which we obtain 
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Furthermore, (13) and (14) are radial and polar angle 

equations respectively and may be solved using the 
Nikiforov-Uvarov Method in the following sections. 

A. Solutions of Polar Angle Equation 
In order to apply the NU Method; we introduce a new 

variable θ= coss . Hence (14) becomes 
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To solve (17) by means of the NU method, we should 

compare it with (1), we get 
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Substituting the above expressions into relation (8) leads to 
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According to the NU method, the constant parameter κ  can 
be determined from the condition that the expression under 
the square root must be the square of a polynomial of first 
degree, so we have the following four possible values: 
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After proper choice of the polynomial )s(π and κ , we can 

write the function )s(τ which has a negative derivative as 
follows: 
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According to (4) and (9) the values n can be obtained    
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m2 )s1()s( −=ρ                          (24) 
 

Inserting (24) into (6), )s(yn  can be found as follows: 
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The polar part of the (12) is found to be 
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where nC  is the normalization constant 
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 and )(Tn θ  is for the associated-Legendre function )s(Pm . 
Thus the angle part solution of the Helmholtz equation can be 
written as 
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B. Solutions of Radial Equation 
We now focus on the radial eigenfunction of the Helmholtz 

equation, with change variable sr = . Equation (13) takes the 
form  
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By comparing (29) with (1) we have 
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Making the appropriate choice for the polynomials as 
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gives the )s(τ  function 
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The corresponding weight function )s(ρ has the form 
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Using the condition (5) )s(φ is given by 
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By substituting (36) into the Rodrigues relation (6) we 
obtain 
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where )s(Ln being the Laguerre polynomials and nC is the 
normalization constant. 

The radial part of the eigenfunction of the Helmholtz 
equation has the form 
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with N is a new normalization factor. 

The associated Laplace equation solutions are obtained by 
setting 0k =  in (29). The )s(T  solution is unchanged but 
the solution (39) becomes 
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The total eigenfunction of the Helmholtz equation can be 
obtained from the combined solutions of (16), (28) and (39) as 
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IV. CONCLUSION 
We have obtained the exact solutions of the Helmholtz 

equation using the NU method. We have found that the 
angular and radial eigenfunctions can be expressed in terms of 
the associated-Legendre and Laguerre polynomials 
respectively. In the case of 0k = (Laplace equation), the 
radial solutions are given by (40). It may be concluded that the 
NU method is simple and powerful in finding the analytical 
solutions for a wide class of such problems. 
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