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Abstract—This paper investigates the problem of tracking spa-
tiotemporal changes of a satellite image through the use of Knowl-
edge Discovery in Database (KDD). The purpose of this study is
to help a given user effectively discover interesting knowledge and
then build prediction and decision models. Unfortunately, the KDD
process for spatiotemporal data is always marked by several types
of imperfections. In our paper, we take these imperfections into
consideration in order to provide more accurate decisions. To achieve
this objective, different KDD methods are used to discover knowledge
in satellite image databases. Each method presents a different point of
view of spatiotemporal evolution of a query model (which represents
an extracted object from a satellite image). In order to combine
these methods, we use the evidence fusion theory which considerably
improves the spatiotemporal knowledge discovery process and in-
creases our belief in the spatiotemporal model change. Experimental
results of satellite images representing the region of Auckland in New
Zealand depict the improvement in the overall change detection as
compared to using classical methods.

Keywords—Knowledge discovery in satellite databases, knowledge
fusion, data imperfection, data mining, spatiotemporal change detec-
tion.

1. INTRODUCTION

EMOTELY sensed imagery in spatiotemporal context is

an invaluable tool for scientists, governments and the
military. It has several applications to include land change de-
tection, land use monitoring and management, fire protection,
and so on. However, the amount of information received from
satellites is constantly increasing. Therefore, automatic knowl-
edge discovery and content-based retrieval is becoming very
valuable as they help develop intelligent interpretation systems
based on remote sensing image databases. Indeed, knowledge
discovery in satellite image databases denotes the association
of data mining and satellite image processing technology help
analyze, discover and interpret data in an image-rich domain.
It is a disciplinary endeavor that draws upon expertise in
image processing and retrieval, data mining, machine learning,
database, and artificial intelligence. Knowledge Discovery in
Databases (KDD) has been defined as the non-trivial process
of discovering valid, original, potentially useful and ultimately
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understandable patterns of data [8]. In this context, a pattern
is a model which describes a satellite image, the objects
contained in that image and their spatiotemporal evolution.
Besides data complexity (spatiotemporal context), the KDD
process is facing a major problem which can lead to erroneous
discovered knowledge. This problem is the imperfections as-
sociated with satellite images [7] [6]. Thus, in order to produce
conclusions and predictions useful to the image interpretation
field, KDD systems should be able to analyze such informa-
tion. Much work has investigated problems related to KDD,
particularly the issue of spatiotemporal image modeling and
knowledge discovery [10] [12] [14] [15] [16]. However, most
works focus on the KDD process and neglect handling imper-
fections related to processed data or to the KDD process itself.
Indeed, few works have explored the problem of imperfections
in KDD. We can refer to Kriegel and Pfeifle in [11] where
they describe a density-based clustering algorithm founded
on vague and uncertain information. The proposed method
integrates a fuzzy distance concept to perform clustering and
assign a probability for each possible distance value. The
resulting algorithm FDBSCAN helps the user get an overview
over a large set of fuzzy objects. In [3], Chau et al. propose
a UKmeans algorithm, which aims to improve the accuracy
of clustering by considering uncertainty associated with data.
Authors describe how uncertainty can be incorporated in data
mining by using data clustering (k-means algorithm) as a
motivating example. In [9], authors propose centroid-linkage-
based agglomerative hierarchical algorithm (named U-AHC)
for clustering uncertain objects. They introduce a notion of
uncertain prototype according to univariate and multivariate
uncertainty models. These prototypes are represented as mix-
ture densities that summarize the pdfs (probability density
function) of all the uncertain objects in the clusters.

As we can notice, the minority of KDD systems that addresses
the issue of uncertain spatiotemporal data, only takes into
consideration very restricted parameters of processed data
and models for the mining process. In this paper, we study
the problem of knowledge discovery from satellite image
databases while considering imperfections related to KDD and
images. We focuse our efforts on using several KDD methods
to extract spatiotemporal knowledge and then combine them
to provide a new and more relevant knowledge. In this paper,
we start by proposing our approach in Section 2, then we
present the experimental results in Section 3 and we end by
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Fig. 1. Transition for an M), spatiotemporal model.

illustrating our conclusions in section 4.

II. THE PROPOSED APPROACH
A. Prototype System Design

This section describes in more details the framework that
we propose for uncertain knowledge discovery from satel-
lite image databases. This framework uses a multi-approach
knowledge discovery component to improve the reliability of
discovered spatiotemporal patterns. Indeed, each KDD ap-
proach presents a given point of view about the evolution of an
object extracted from a satellite image which may differ from
others KDD approaches; combining these methods enhances
the image interpretation process. Let us suppose that we have
a query model M, (which represents an object in a satellite
image such as “vegetation”, “urban”, ’road” or “lake”). Each
KDD method provides a set of spatiotemporal models which
are similar to this query model. Let M, be a retrieved model
which is similar to M,. Figure 1 presents the evolution of the
M,, model between two dates ¢; and t3. For example, the M,
evolves at date 2 to M, model with a percentage of change
Pery, and to M, model with a percentage of change Per,,.

Let us consider two models M, as a query model and M,
as a retrieved model.

Ay Al
As A
M, = . M, = . (D
An Al
where Ay, ..., Ay and A}, ..., A}y are the attributes of

M, and M,

Let, also, consider two functions:
1) similar(Mg, My, w,p,) which provides an M, model similar
to a query model M, with a degree of similarity wg, and 2)
change(Mgy, M, t, Perq,) which depicts the evolution of the
M, model to an M,, model at instant ¢. Pery, denotes the
percentage of evolution from an M, to M, models.
The similarity degree wg,, is computed as follow:

Wep =1 — d(My, Mp) (2

Where d() is the normalized cosine distance as shown in
equation 3.

Zk 1 Ar X A
VR A /T a2

d(M,, M,) = cos(M,, M,)

The percentage of change Perg, is found using equation 4
which computs the difference between all attributes of the M,
and M, models.

iy JAi - Al

N “

Perg, =

Once we obtain an M, model similar to the query model
My, we conclude that the M, model has the same evolution
compared to the M, model with a given degree of confidence
for this change. After applying the multi-approach KDD
method, we obtain a set of rules having the following structure:
R1: If similar(M,,M,,w,,) then change(Mg,M,,ts, Perg,)
and change(M,, M, tz,Perqo) and change(M,, fp,tg,Perqp)
and change(M,,M,,t3, Perg,) and change(]% My, ts3, Pergs)
(conf).

Where “conf” indicates the confidence that the expert grants
for the rule RI1.

Rules obtained by the application of several KDD methods
present, always, different situations of redundancy and con-
tradiction. In order, to take advantage of these situations and
give a more accurate evolution for a query model, we choose
to follow a fusion approach.

B. Fusion Process

As we stated earlier, the proposed framework is based
on multi-approach knowledge discovery from satellite image
databases. Each KDD approach is adapted to a specific type of
imperfection. Additionally, each approach provides a distinct
knowledge model. Combining these models will reduce im-
perfections related to KDD process and significantly improve
image interpretation results. The goal behind fusion module
is to increase our belief in a model change. By combining
multiple changes (given by several KDD methods as rules) of
the same model, we can build a more relevant model that is
close to reality. To achieve this goal, we develop an evidence
fusion method that allows combining knowledge obtained after
the multi-approach KDD process. The fusion process is shown
in Figure 2. Each KDD method provides a local decision about
the spatiotemporal change. The fusion of these local decisions
generates a global one which is more relevant and certain.
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Fig. 2. The fusion process.
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The fusion process has four main steps: 1) modeling; 2)
estimation; 3) combination; and 4) decision.
Let Q={dy, do, ..., dc} be a frame of discernment; dj, (1
k  C) are hypotheses in favor of which a decision can be
taken. dj, are the possible spatiotemporal models to which a
query model can evolve. An example of these decisions for
the R1 rule is Q={M,, M,, M,, M}
Dempster —Shafer theory, or evidence theory, allows the repre-
sentation of imprecision and uncertainty using the mass "m”,
belief “bel”, and plausibility ”pl” functions [7] which are then
defined from 2% to [0, 1], such that [1]:

Z m(A) =1 3)

ACQ
A Qbel(A)= > m(B) (6)
0#ABCA
A Qpl(A)= Y m(B) @)
BNA#()

In our approach, masses are estimated by computing the
percentage of change of a query model to each model in the
frame of discernment.

In order to improve the estimation of spatiotemporal model
change, we assign a degree of reliability to each KDD method.
This degree is computed according to the similarity of models
mentioned in the section 2.1.

Let w be the degree of reliability of a KDD method. The mass
of A(A ) can be computed as follows:

m® =w m(A) (8)
m¥(Q)=01-w)+w m(Q) )

The third step in the fusion process is combination. We use
the Dempster’s orthogonal rule depicted by the equation 10.

my)(A)

m(A) = (m1  me

Y Bin..ap M (B1)ma(B2)..m(B)
B 1-K

10)

where

K=Y

BiN...NnB;=0

ml(Bl)mQ(Bg)...ml(Bl) (11)

K represents the conflict degree between the / decisions.
Decisions in the evidence method are taken using one of
several rules [1]:

o The maximum of plausibility is defined as

M, diifpl(d;,)(My) = max{pl(d)(My),1 k n}
(12)
e The maximum of belief is defined as

M,  diifbel(d;)(My) = max{bel(dy)(My),1  k n}
(13)
The evidence fusion algorithm (Algorithm 1) operates on
a set of spatiotemporal rules R. It has four steps. The first
aims at determining the frame of discernment, the reliability

of KDD methods and the possible evolution status of the query
model. The second step computes mass, belief and plausibility
functions based on the reliability of KDD methods and the
change rate of retrieved models. The third step applies the
Dempster’s orthogonal rule for each query model’s decision
existing in 2. The last step is devoted to determining the right
change rate for the query model. This step depends on the rule
chosen to make decision in the evidence theory. The output of
Algorithm 1 is a spatiotemporal tree representing the evolution
of query model between two dates 7 and ¢’.

Algorithm 1 The Fusion Algorithm Based on Evidence The-
ory
Require: R: set of spatiotemporal rules
Ensure: T': spatiotemporal evolution tree
%% Modeling Step
1: Determine €2
2: Determine reliability of KDD methods
3: Determine the possible evolution of query model
%% Estimation Step
4: for all Possible status M; for the query model in R do
Compute m(M;), bel(M;) and pl(M;)
6: end for
%% Combination Step
7. for all M; in Q2 do
Combine masses by the Dempster’s orthogonal rule
9: end for
%% Decision Step
10: Choose the decision rule for evidence theory
11: Determine the change rate for query model
12: Compute the evolution date for query model
13: Construct the spatiotemporal evolution tree T for the query
model

To better explain the fusion of spatiotemporal change mod-
els, let us consider that a query model M, (taken at ¢ date)
is similar to M; with 0.9 and to M, with 0.8. Here, M,
represents a lake in Tunisia, M; is a lake in France and M,
is a lake in Italy. If we suppose that M; and Ms have the
following spatiotemporal evolution trees:

Fig. 3. Examples of spatiotemporal models change.

Where M1 and Moy represent lakes, Mio and Moy repre-
sent urban zones and M3 represents a vegetation zone.
The two trees shown in Figure 3 can be translated into the
following spatiotemporal rules:
IF similar(M,,M;,0.9) THEN change(M,,M;,t’,60) AND
change(M,,M;2,t°,20) AND change(M,,M3,t’,20)
IF similar()M,,M5,0.8) THEN change(M,,M>q,t’,70) AND
change(My,Mao,t’,30).
The focus of this study is to determine the spatiotemporal tree
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which results from combining trees obtained by the application
of several KDD methods. As a consequence, we obtain an
estimation of the evolution of a query model which is more
accurate and certain. Let us consider that the tree depicted in
Figure 4 is the tree resulting from the fusion of the two trees
in the Figure 3. The main challenge is to determine Perl,
Per2, and Per3 which represent respectively, the percentage
of evolution of M, model to lake, urban and vegetation.
Figure 4 depicts the spatiotemporal evolution of the M, model
between two dates ¢ and ¢’; where ¢ is the present date of the
query model M, and t’'=t+(t>-t1) .

SR ——— M,

Parl % ¥t
Parl?

" cews| Lake TUrban “egetaraon

Fig. 4. The spatiotemporal evolution of the M, model after applying the
evidence fusion method of My and Mo.

We have:
mq (M11)=0.6, my (]V[12)=0.2, ml(M13)=0.2.
mz(A/fgl):Oj, mg(M22)=0.3.
Then, it is possible to include reliability into modeling belief
for each source before fusion to compensate for their different
reliability according to values granted to the two methods.
We obtain:
mq (Mi1)=0.6%0.9=0.54, mq (My2)=0.2%0.9=0.18,
mq (M3)=0.2*%0.9=0.18, m1(Q)=1-0.9=0.1.
m2(]\/[21)=07*082056, 77’7@(”.{22)203*08:024, mg(Q)=l—
0.8=0.2.
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Fig. 5. The mutual mass’s part between the two KDD methods.

Figure 5 depicts the mutual part between the two KDD
methods. The contradictory mass between these methods
is equal to 0.3744=(0.1296+0.1008+0.1008+0.0432). As we
notice, the contradictory mass between the two KDD methods
is big. The integration of the reliability degree lets appear a
belief degree (£2) for each source.

Masses are, then, combined using the Dempster’s orthogonal
rule, we obtain the following values for Perl, Per2 and Per3:
79.1, 17.5 and 3.4 respectively.

As we note, integrating reliability of the beliefs computed
within our framework introduces a second uncertainty level
(uncertainty of evaluation of uncertainty) and represents
an adequacy measure for our system and the observed
environment.

Additionally, We notice that following a fusion concept
helps us resolve two types of situations: redundancy and
complementarity rules. Redundancy rules involve fusing rules
with the same model transition but with different percentages
of change and different confidence degrees. Complementarity
rules, however, involve fusing rules with different model
transitions, different percentages of change and different con-
fidence degrees.

III. EXPERIMENTAL EVALUATION

In the experimental evaluation section, we conduct a series
of experiments to show the effectiveness of our system and to
analyze the fusion process’s contribution in improving change
detection accuracy. Figure 6 (at left) represents a satellite
image acquired in 1998 showing the region of Auckland in
New Zealand'. This image covers a region of 20 x 20 km.

Bare Soil

Course Zone
Forest Zone
Urban Zone

Water Zone

[N

Fig. 6. Satellite and classified image for the 1998 date.

We start by performing a segmentation of the satellite image
shwon in Figure 6 (at left). Then, a collaborative step is per-
formed based on three segmentation methods, namely: FCM,
Fuzzy IsoData and Cobweb [2]. Figure 6 (at right) presents
the classified image after the collaborative segmentation. This
image is composed of five land cover types which are: bare
soil, course, forest, urban and water.

Fig. 7. The query object.

In this study, we intend to follow the evolution of the
object shown in Figure 7 representing “’the course zone”.
We start by generating metadata related to this object which
represents the query model M, [2]. To follow the change of
this model over time, we look for the most similar model to

!'Source: http://www.landcareresearch.co.nz/
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My, and then we obtain with a certain degree of confidence
the change made throughout time for the model M.

In order to determine the evolution of the query model in
1999, we construct a base enclosing models which have
an evolution after one year. Indeed, the validation of our
approach is dedicated to predict the change of the query
model between 1998 and 1999 (after one year).

By applying three knowledge discovery methods (decision
tree ’C4.5” [13], rule induction "CN2” [4] and Nearest-
Neighbor [5]), we obtain a set of rules expressing the change
made by the model M, between 1998 and 1999.

The final step in our approach is fusion. As mentioned in
section 4.3, we used the evidence fusion method in our
approach. Thus, all generated rules by C4.5, CN2 and NN
are fused to obtain more relevant ones. Table 1 describes
the evolution of an M, model (which represents the query
object in Figure 7) between 1998 and 1999. The change is
performed according to four KDD methods: C4.5, CN2, NN
and fusion of the latter methods.

TABLE I
CHANGE DETECT FOR Mq MODEL AMONG THE FOUR METHODS

98 — 99 | Meth 1 2 3 4 5
[€)) 34.17 | 2334 | 3.59 | 13.49 | 2541
My (2) 33.12 | 22,18 | 4.89 | 11.16 | 28.65

3) 30.20 | 37.36 | 9.04 | 4.02 19.38
4) 38.15 | 289 | 934 | 634 | 17.27

Where
(1): C4.5, (2): CN2, (3): NN, (4): Fusion of C4.5, CN2 and
NN.
1: Bare soil, 2: Course zone, 3: Forest zone, 4: Urban zone
and 5: Water zone.
In order to evaluate the performance of KDD methods, we
use an image acquired in 1999 representing the same region
(Fig. 8). Then, we perform the same process to this image
(the process previously described for the image at the date
1998) and we compute the change rates. Table 2 depicts the
real change of the M, model between 1998 and 1999. It also
describes the best method approaching the real result for each
land cover type. We remark that the proposed method has
the best change rate (compared with the real one) for the
evolution of M, model into bare soil, course zone and urban
zone. Whereas, the C4.5 has the best rates for the evolution of
M, model into forest, and the best evolution into water zone
is achieved by the NN method.

Fig. 8. Satellite and classified image for the 1999 date.

TABLE II
EVALUATION OF THE BEST CHANGE DETECT METHOD FOR EACH CLASS

Change 98-99 1 2 3 4 5
Real change 36.42 | 3227 | 01.93 | 08.18 | 21.20
Best method @) @) (1) @) 3

The cumulative error for each method is listed in Table 3; we
notice that the fusion of C4.5, CN2 and NN outperforms others
methods even though it is not the best method approaching the
real result for all land cover types.

TABLE III
CHANGE DETECT ACCURACY COMPARISON AMONG THE FOUR KDD
METHODS
KDD methods Cumulative error

C4.5 22.36

CN2 26.78

NN 24.4

Fusion of C4.5, CN2 and NN 18.28

IV. CONCLUSION

In this paper, we presented our approach for intelli-

gent spatiotemporal knowledge discovery from satellite im-
age databases. Our method outperforms other spatiotemporal
knowledge discovery methods in image interpretation field.
Indeed, the majority of KDD systems focus their efforts to
develop efficient techniques for discovering knowledge from
satellite images and disregard the problem of managing imper-
fections related to the KDD process. The main contribution in
our work is to propose a fusion scheme to combine knowledge
extracted from different KDD methods. This scheme is based
on evidence theory and aims to reduce imperfections related
to KDD process in order to improve the image interpretation
results, to increase our belief in a model change and to pick
up relevant and hidden knowledge.
The developed system is evaluated by comparing the results
obtained by applying several KDD methods and the fusion of
these methods, to an image acquired on an upcoming date.
Results show the effectiveness of the proposed approach. As
a perspective for this paper, we might consider the integration
of user interestingness in the KDD process, which allows for
better control of output results.
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