
International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:3, No:2, 2009

158

Abstract—This paper presents an interactive modeling system of 
polyhedra using the isomorphic graphs. Especially, Conway 
polyhedron notation is implemented. The notation can be observed as 
interactive animation. 

Keywords—Conway polyhedron notation, Polyhedral graph, 
Visualization. 

I. INTRODUCTION

ONWAY polyhedron  notation is used for describing 
various polyhedra based on Platonic solids as seed 

polyhedra [1-2].  The author has recently developed an 
interactive modeling system of polyhedra by means of graph 
drawing and simulated elasticity, mainly for educational 
purpose [10-13]. In this paper, we present an implementation of 
the full set of the notation on the system. Using this 
implementation, we can observe all of the operations of the 
notation as animation interactively. 

II.CONWAY POLYHEDRON NOTATION

John Conway has proposed a notation for describing various 
polyhedra based on five Platonic solids as seed polyhedra. 
Table 1 shows the complete set of operations of the notation. 

TABLE 1 THE LIST OF OPERATORS OF CONWAY POLYHEDRON NOTATION.
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TABLE  II THE LIST OF PLATONIC SOLIDS, WHERE , ,p q r  ARE THE NUMBER OF 
VERTICES, EDGES, AND FACES, RESPECTIVELY.

Symbol Name of polyhedron p q r 

33
P Tetrahedron 4 6 4 

34
P Cube 8 12 6 

43
P Octahedron 6 12 8 

35
P Dodecahedron 20 30 12 

53
P Icosahedron 12 30 20 

TABLE  III THE LIST OF ARCHIMEDEAN SOLIDS, WHERE , ,p q r  ARE THE 
NUMBER OF VERTICES, EDGES, AND FACES, RESPECTIVELY.

Symbol Name of polyhedron p q r 

2(3 4)
A Cuboctahedron 12 24 14 

4 6 10A Great Rhombicosidodecahedron 120 180 62 

4 6 8A Great Rhombicuboctahedron 48 72 26 

2(3 5)
A Icosidodecahedron 30 60 32 

3 4 5 4A Small Rhombicosidodecahedron 24 48 26 

33 4
A Small Rhombicuboctahedron 24 60 38 

43 4
A Snub Cube 24 36 14 

43 5
A Snub Dodecahedron 60 150 92 

23 8
A Truncated Cube 24 36 14 

23 10
A Truncated Dodecahedron 60 90 32 

25 6
A Truncated Icosahedron 60 90 32 

24 6
A Truncated Octahedron 24 36 14 

23 6
A Truncated Tetrahedron 12 18 8 

Five Platonic solids and thirteen Archimedean solids are 
listed in Tables 2-3. For example, 2(3 4)

A indicates that two 
regular triangles and two squares are gathered alternately on 
each vertex. Archimedean solid can be expressed using 
Conway notation as follows: 

4 3(3 4) 3 4
A aP aP , 5 34 6 10 3 5

A bP bP ,

4 34 6 8 3 4
A bP bP , 52 33(3 5) 5

A aP aP ,

5 33 4 5 4 3 5
A eP eP , 3 4 33 4 3 4

A eP eP ,

4 4 33 4 3 4
A sP sP , 54 333 5 5

A sP sP , 2 33 8 4
A tP ,

2 33 10 5
A tP , 52 35 6

A tP , 2 44 6 3
A tP , 2 33 6 3

A tP ,
and additionally, 4 33 3

P aP , 5 33 3
P sP .                       (1) 
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Operator Name Description 

d dual Each vertex becomes a new face and 
each face becomes a new vertex 

t truncate Vertices are truncated 

a ambo Vertices are truncated to the edge mid 
point

b bevel New faces are added in place of edges 
and vertices 

e expand Each vertex makes a new face and 
each edge makes a new quadrangle 

s snub Each vertex makes a new face and 
each edge makes a pair of triangles 

k kiss Dual of truncate 

j join Dual of ambo 

m meta Dual of bevel 

o ortho Dual of expand 

g gyro Dual of snub 
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III. GRAPH OPERATION FOR POLYHEDRA

The author previously presented an operation-based notation 
for Archimedean graph [12]. Three operations are defined for 
polyhedral graph: edge contraction, vertex splitting, and 
diagonal addition (Figure 1 – 3). 

Fig. 1.  An example of edge contraction operations. 

Fig. 2.  An example of vertex splitting operations by the present 
definition in this paper. 

Fig. 3.  An example of diagonal addition operations. 

A polyhedral graph { , , }G V E F  is defined by the set of 
vertices 0 1{ , , }pV v v , edges 0 1{ , , }qE e e , and faces 

0 1{ , , }rF f f . G is planar and 3-connected graph. The set 

F is subdivided as follows: 

3,4,5, i j ki
F F F F j k ,        (2) 

where nF  denotes the set of faces with n sides. 

An edge contraction is a graph contraction of an edge 
(Figure 1). A vertex splitting is defined conventionally as the 
reverse of edge contraction, but in this paper, we define a 
vertex splitting of v V as the composition of the operations 
of subdivision of incident edges on v, connecting the new 
vertices in a proper order, and deleting the vertex v (Figure 2).
A diagonal addition to a face in 4F is an edge addition between 
a pair of non-adjacent vertices in a quadrangular face (Figure 
3). 

The operation of diagonal addition is applied only when the 
graph G is obtained by applying “expand” to other graph H.
Following statement holds for an arbitrary polyhedral graph G:

.( )G H G eH 0 1 .G G G u v w  [ 
0 1( )u V u V u V

0 1( )u V u V

0 1 1 0(( , ) ( ) ( ))u v E u V v V u V v V

0( deg( ) 3)w V w

1( deg( ) 4)u V u ],                                              (3) 

where { , , }G V E F is the dual of { , , }G V E F . The first 
three clauses inside of the bracket mean that G is a bipartite 
graph and V is subdivided to 0V and 1V . The fourth clause 
denotes that 0G  includes at least one vertex with degree 3, and 

0G contains at least one triangle. The last clause denotes that 
1G is a 4-regular graph, and all faces in 1G are quadrangles, 

which will be applied diagonal addition. Quadrangles in 
0G should not be applied. Consequently, the operation of 

diagonal addition is performed by following algorithm: 

1. Find a triangle f in G, and if not found, return false. 
2. Search the dual graph G from f in breadth-first way.  
3. If the depth is odd number, in other words, if the distance 

(path length) from f is odd number, add a diagonal to f.
4. If not all the nodes in G are traversed, go to step 2. 
5. Return true. 
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Fig.  4. Relations of 5 Platonic graphs and 13 Archimedean graphs induced by edge contraction (ec), vertex splitting (vs), and diagonal addition

(da).
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The operators of Conway notation can be expressed using 
graph operations for the isomorphic graph as follows. Truncate 
“t” is equivalent to vertex splitting. Ambo “a” is equivalent to 
the composition of vertex splitting and edge contraction for the 
original edges before applying vertex splitting. Bevel “b” is 
equivalent to “ta”. Expand “e” is equal to two consecutive 
ambos “aa”. Snub “s” is applying “e” followed by diagonal 
addition. The operators of the remainder are duals of above 
operators. Figure 4 shows the relations of 5 Platonic graphs and 
13 Archimedean graphs induced by the three graph operations, 
and they correspond to the expressions in (1). 

IV. INTERACTIVE MODELING SYSTEM OF POLYHEDRA

The interactive modeling system of polyhedron consists of 
three subsystems: graph input subsystem, wire-frame 
subsystem, and polygon subsystem [11]. 

Figure 5 shows a screen shot of graph input subsystem. The 
first step of the modeling of polyhedron is drawing a polyhedral 
graph isomorphic to the polyhedron. In the subsystem, vertex 
addition, vertex deletion, edge addition, and edge deletion are 
implemented as fundamental operations. 

Figure 6 shows a screen shot of wire-frame subsystem. After 
constructing a polyhedral graph, the next step is arranging 
vertices in 3D space with virtual springs and Hooke’s law. 
Wire-frame polyhedron can be formed by controlling the 
natural length of virtual spring corresponding to three types of 
binary relations between pairs of vertices. 

Figure 7 shows a screen shot of polygon subsystem. After 
arranging vertices in 3D space, the last step is detecting faces, 
selecting appropriate faces, and rendering the solid. Detecting 
n-regular polygon is equivalent to finding simple closed path 
with length n.

Fig. 5.  Screen shot of graph input subsystem. 

Fig.  6. Screen shot of wire-frame subsystem. 

Fig. 7. Screen shot of polygon subsystem. 

Figure 8 is a screen shot of the tool box for Conway 
polyhedron notation. The captions of buttons indicate the 
corresponding operations of Conway notation. These 
operations can be applied in both the wire-frame subsystem and 
the polygon subsystem.  

Fig.  8. Tool box for Conway polyhedron notation 
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By pressing a button on the tool box, corresponding 
operation is applied to the polyhedron with animation. The text 
box with spin buttons stands for an additional natural number n
used with “t” and “k”. If 3n  , “nt” means to “truncate” only 
vertices with degree n, and “nk” means to apply “kiss” only 
n-gons. Figure 9 shows a transition after pressing “s” for a 
icosahedron 53

P . As a result, snub dodecahedron 43 5
A is

obtained via several Archimedean solids: 25 6
A , 2(3 5)

A , 4 6 10A ,
and 3 4 5 4A .

The polyhedra formed by the system are not restricted to 
semi-regular polyhedra or uniform polyhedra. For example, by 
pressing the buttons “t” and “d” four times alternately for an 
icosahedron, a series of polyhedra are displayed with animation 
one after another, and finally a polyhedron depicted in Figure 
10 is obtained, however it is not a uniform polyhedron. It is 
expressed by Conway notation as 53

dtdtdtdtP .

     
                    (a) Wire-frame                                        (b) Polygon 

Figure 10. The result of pressing “tdtdtdtd” for an icosahedron 
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Fig.  9. Transition of polyhedron about every 0.5 seconds after applying “snub” for an icosahedron. During the animation, truncated icosahedron, 
icosidodecahedron, great rhombicosidodecahedron, small rhombicosidodecahedron, and finally, snub dodecahedron are observed. 


