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Abstract—Propagation of solitons in single-mode birefringent 

fibers is considered under the presence of third-order dispersion 
(TOD). The behavior of two neighboring solitons and their 
interaction is investigated under the presence of third-order 
dispersion with different group velocity dispersion (GVD) 
parameters. It is found that third-order dispersion makes the resultant 
soliton to deviate from its ideal position and increases the interaction 
between adjacent soliton pulses. It is also observed that this deviation 
due to third-order dispersion is considerably small when the optical 
pulse propagates at wavelengths relatively far from the zero-
dispersion. Modified coupled nonlinear Schrödinger’s equations 
(CNLSE) representing the propagation of optical pulse in single 
mode fiber with TOD are solved using split-step Fourier algorithm. 
The results presented in this paper reveal that the third-order 
dispersion can substantially increase the interaction between the 
solitons, but large group velocity dispersion reduces the interaction 
between neighboring solitons. 
 

Keywords—Birefringence, Group velocity dispersion, 
Polarization mode dispersion, Soliton interaction, Third order 
dispersion. 
 

I. INTRODUCTION 
INGLE-mode fibers are generally bimodal due to the 
existence of birefringence[1]. Polarization mode 

dispersion occurs because of the slight elliptical nature of the 
core in birefringent fibers. Hence the condition of having 
input polarization angle θ=0o or 90o is not satisfied in practice. 
As a result the propagating light is split into two local 
orthogonally polarized components that travel with different 
velocities results in group velocity mismatch between them. 
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The resulting difference in propagation times between the two 
polarization modes is known as differential group delay 
(DGD) ∆τ. The dispersion-induced pulse broadening is due to 
the lowest-order group velocity dispersion term D 
proportional to group velocity dispersion coefficient β2. 
Although the contribution of this term dominates in most 
cases of practical interest, it is sometimes necessary to include 
the third-order dispersion term. When optical pulses propagate 
at relatively far from the zero-dispersion wavelength; the 
affects of third-order dispersion on solitons are almost 
negligible. For fundamental soliton, with order N=1, the 
soliton peak shifts linearly with distance. Physically speaking, 
the third-order dispersion slows down the soliton and, as a 
result, the soliton peak is delayed by an amount that increases 
linearly with distance. 

It has been shown [2] that in the case of constant 
birefringence, the two partial pulses in each of the polarization 
states are in each other’s frequency shift, such that any initial 
difference in group velocity is eliminated, as a result they are 
self-trapped [3]. When the pulses propagate at a wavelength in 
the vicinity of the zero group velocity dispersion, the third-
order dispersion plays a crucial role and is potentially a major 
impairment for soliton transmission system. For a nonlinear 
pulse, in particular of soliton, its propagation in the zero-
dispersion region of the single-mode fiber has been the object 
of much interest in the past decade.  
 Solitons have been considered best information carriers for 
very large bandwidth optical fiber communication systems. 
However, the mutual interaction between the neighboring 
solitons increases with polarization mode dispersion [3], so 
that the useful bandwidth of the optical fibers reduces. It is 
further found in [4] that, if the fiber is operated near zero-
dispersion wavelength, where the second-order dispersion 
(GVD) vanishes, soliton pulse gets broadened due to third-
order dispersion. This further reduces the useful bandwidth. 

In this paper, we study numerically the propagation of 
solitons and their interaction due to third-order dispersion. 
The remainder of this paper is organized as follows. In 
Section II the mathematical model of the pulse propagation in 
fibers with third-order dispersion is formulated. Simulation 
results and discussions are presented in Section III and finally 
Section IV concludes the paper. 
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II. MATHEMATICAL MODEL OF THE FIBER WITH THIRD-ORDER 
DISPERSION 

In this paper we use the slowly varying envelop 
approximation of fibers by considering third-order dispersion. 
It is found that the wave envelopes of electric field in each of 
the polarizations satisfy the following modified coupled 
equations, which can be derived from Maxwell’s equations 
using the reductive perturbation method. 
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the dispersion relations in each of the polarization states, 
)()( 0000 ωωβ lk −=Δ is the wave-vector mismatch  due to 

linear birefringence of the fiber, γ  is the nonlinearity 
coefficient and α  is the attenuation coefficient. xA and yA are 
the wave amplitude envelops in each of the polarization states. 
The third-terms on the left-hand side of Eqs.(1) represent the 
second order dispersion terms and fourth terms are responsible 
for third-order dispersion. The last terms on the right-hand 
side of Eqs.(1) are due to coherent coupling between two 
polarization components which lead to degenerate four-wave 
mixing. If the fiber length L  is much larger than the beat 
length BL , the sign of the last term in (1) rapidly changes and 
its contribution averages out to zero. For highly birefringent 
fibers (LB~1cm), the four-wave-mixing term can often be 
neglected for this reason [1]. 

In anomalous-dispersion regime, by neglecting the last 
terms in Eqs.(1), the normalized equations can be obtained as 
follows: 
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dL is the dispersion length related to the group velocity 

dispersion parameter D  as 2
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2 =  is called the group velocity dispersion 

coefficient in ps2/km, β is the third-order dispersion parameter 
in ps3/km, nΔ  is the constant birefringence, 0t is the initial 
pulse width in ps. D  is the group velocity dispersion 
parameter in ps/km.nm, τ is the full width at half maximum 
(FWHM) of pulse intensity and for a hyperbolic secant pulse 
it is given by 0763.1 t=τ . 
The usual model of birefringent fiber can be considered as 
cascade of many short fibers with constant birefringence [5], 
[6]. We assume that all the fiber pieces have identical 
length cL , which is the mode coupling length, and identical 
magnitude of linear birefringence nΔ . With this model, the 
polarization-mode dispersion parameter in ps/√km is given 
by zcnLD cp /)/()3/(8 τπ Δ=Δ=  where c is the 

velocity of light and τΔ  is the average differential group 
delay (DGD) [7]. The equations under study are the perturbed 
modified coupled nonlinear Schrödinger equations which are 
not integrable using the techniques of the inverse scattering 
theory. However numerical simulations using split-step 
Fourier algorithm can be performed to study the effects of 
third-order dispersion on soliton propagation in single-mode 
fibers. In this algorithm the fiber is subdivided into small 
sections in which the dispersion and the nonlinearity can be 
taken into account individually in time domain and frequency 
domain respectively [8]. 

III. SIMULATION RESULTS AND DISCUSSIONS 
We did comprehensive simulations using split-step Fourier 

algorithm to solve the modified coupled nonlinear 
Schrödinger’s equations (2a) and (2b). Numerical results 
obtained show that, deviation of resultant soliton from its ideal 
position and interaction between adjacent solitons enhance 
with increase in third order-dispersion parameter. However if 
the fibers are operated at GVD parameters other than those at 
zero-dispersion wavelength the interaction is considerably 
small. 

A. Effects of TOD and GVD on single soliton pulse 
We considered the single soliton pulse propagation by 

choosing the initial soliton conditions, of hyperbolic secant 
pulse profiles, given by  

 
)(sec)cos()0( ThNZU θ==                   (3a) 

)(sec)sin()0( ThNZV θ==                         (3b) 
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The angle θ  is the initial polarization angle, which determines 
the relative strengths of the two partial polarizing 
components. N is the order of the soliton [4] ,[9]. Numerical 
analysis of single pulse propagation through birefringent 
optical fibers in the presence of third-order dispersion is 
carried out by solving (2a) and (2b) using split-step Fourier 
algorithm [10] with initial conditions given by (3a) and (3b) 
respectively. 

We analyse the variation in threshold of soliton trapping 
under the presence of third-order dispersion and the 
interaction between the adjacent solitons by considering the 
following quantities of the pulse: 
The resultant soliton amplitude R which is related to two 
polarizing components U, V  by the expression 

 
22 ),(),( TZVTZUR +=  and              (4)  

 
The separation between the maximum locations of two 
polarizing components given by 

 
   )()()( ZTZTZT V

peak
U
peakpeak −=Δ                          (5) 

 
where )(ZT U

peak and )(ZT V
peak are the positions at which 

),( TZU and ),( TZV have maximum values i.e. the Maximum 
locations of the two polarizing components ),( TZU  and 

),( TZV . In our simulations, where the effect of GVD is 
analysed, we use the full width half maximum pulse width 
τ=4.452ps this gives an initial pulse width t0 of 2.525ps, the 
normalized mode coupling length Lc/Ld=1, and the 
polarization-mode dispersion parameter of DP = 0.2 ps√km. 
The length of the fast Fourier- transform vector, used in split-
step Fourier algorithm, is taken as 1024.  

Fig. 1 shows the evolution of resultant soliton amplitudes 
for different values of third-order dispersion parameters after 
travelling a normalized distance of 30 soliton periods (Z=15π). 
It is also observed that soliton trapping is more severe near 
zero-dispersion wavelength and large GVD counter balances 
this deviation of soliton due to third-order dispersion as shown 
in Fig. 2. 

The surface plot and its 3-dimentional plot showing the 
variation in soliton amplitude over the normalized distance of 
40 soliton periods (Z=20π) with the TOD parameters β=0 are 
depicted in Figs. 3(a) and 3(b) respectively and Figs. 4(a) and 
4(b) depicts similar plots with β=1. From these plots it is 
observed that the soliton pulse deviates more from its 
reference position and sheds its energy with increase in TOD 
parameter β. Figs. 5(a) and 5(b) depicts the surface plot and its 
3-dimensional plot representing the variation of soliton 
amplitude over the normalized distance Z=20π at zero-
dispersion wavelength with β=0.6, where as Fig. 6(a) and 6(b) 
show the similar plots with GVD parameter D=1.  These 

 
Fig. 1 Comparison of resultant soliton amplitudes for different values of β and 
Input soliton with δ=0.15 after 30 soliton periods (Z=15π). 
 
 

 
Fig. 2 Comparison of resultant soliton amplitudes for different values of group 

velocity dispersion parameters with β=0.6 after 30 soliton periods (Z=15π). 
 
 

 
Fig. 3(a) Surface plot of resultant soliton amplitude without third-order 
dispersion parameter β=0 and δ=0.5 for 40 soliton periods (Z=20π). 
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Fig. 3(b) 3-Dimentinal plot of resultant soliton amplitude without third-order 
dispersion parameter β=0 and δ=0.5 for 40 soliton periods (Z=20π). 

 
results confirm that the affect of third-order dispersion is more 
prominent near zero-dispersion wavelength. But as the 
operating wavelength of the fibers deviate from zero- 
dispersion, the robustness of solitons to third-order dispersion 
can be improved significantly. 

Fig. 7 illustrates the maximum locations of two polarizing 
components )(ZT U

peak  and )(ZT V
peak along the length of fiber 

over a normalized distance of 30 soliton periods for different 
values of TOD parameters (β=0, 0.5 and 1) with δ=0.5. When 
there is no third-order dispersion (β=0) the maximum 
locations of U and V are close together, and deviates 
significantly with increase in the value of β. The separation 
between the maximum locations of the two polarizing 
components ∆Tpeak(Z) decreases with increase in soliton order 
and illustrated in Fig. 8. These results are in agreement with 
the results obtained in [4], [6]. 

B. Soliton Interaction due to TOD  
In our simulations to find the interaction between adjacent 

solitons we use two parallel polarized hyperbolic secant pulse 
profiles with normalized initial time shift of 5ps around the 
vicinity of origin as initial soliton conditions given by 
 

[ ])5(sec)cos()5(sec)cos()0( ++−== ThThNZU θθ   (6a) 
 

[ ])5(sec)sin()5(sec)sin()0( ++−== ThThNZV θθ    (6b) 

The interaction between the neighbouring soliton pulses is 
analysed by using initial soliton pair conditions of (6a) and 
(6b) to solve the modified CNLSE (2a) and (2b) respectively.  
 From the numerical results obtained it can be seen that, 
interaction between the soliton becomes severe with 
increasing third-order dispersion parameter and it becomes 
worse at zero-dispersion wavelength. The initial normalized 
time shift between the solitons is assumed as 10ps which 
corresponds to a bit rate of 100Gbps. The dispersion length 
assumed is DL =20km. this corresponds to an actual distance 
of approximately 1000km.if Z=15π and 1300km. if Z=20π. 
 

 
Fig. 4(a) Surface plot of resultant soliton amplitude without third-order 
dispersion parameter β=1 and δ=0.5 for 40 soliton periods (Z=20π). 
 
 

 
Fig. 4(b) 3-Dimentinal plot of resultant soliton amplitude with TOD parameter 
β=1 and δ=0.5 for 40 soliton periods (Z=20π). 

 
 

 
Fig. 5(a) Surface plot of resultant soliton amplitude at zero-dispersion 
wavelength with TOD parameter β=0.6 for 40 soliton periods (Z=20π). 
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Fig. 5(b) 3-Dimentinal plot of resultant soliton amplitude at zero-dispersion 
wavelength with TOD parameter β=0.6 for 40 soliton periods (Z=20π). 
 
 

 
Fig. 6(a) 3-Dimentinal plot of resultant soliton amplitude with GVD parameter 
D=1 and TOD parameter β=0.6 for 40 soliton periods (Z=20π). 
 
 

 
Fig. 6(b) 3-Dimentinal plot of resultant soliton amplitude with GVD parameter 
D=1 and TOD parameter β=0.6 for 40 soliton periods (Z=20π). 
 

 
Fig. 7 Maximum locations of U and V components ( )(ZT U

peak , )(ZT V
peak ) with 

δ=0.5, soliton order N=1 and for different TOD parameters β=0.0, β=0.5, 
β=1.0. 
 

 
Fig. 8 Separation between the maximum locations of the two polarizing 
components ∆Tpeak(Z) for different soliton orders N and β with δ=0.5 
 
 

 
Fig. 9 Interaction between the adjacent soliton pulses without TOD (β=0) and 
δ=0.5 after 40 soliton periods (Z=20π). 
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Fig.10 Interaction between the adjacent soliton pulses with TOD β=1 and 
δ=0.5 after 40 soliton periods (Z=20π). 
 

 
Fig. 11(a) Surface plot for interaction between the adjacent soliton pulses 
without TOD (β=0) and δ=0.5 after 40 soliton periods (Z=20π). 
 

 
Fig. 11(b) 3-Dimentinal plot for interaction between the adjacent soliton 
pulses without TOD (β=0) and δ=0.5 after 40 soliton periods (Z=20π). 
 

 
Fig. 12(a) Surface plot for interaction between the adjacent soliton pulses with 
TOD β=1 and δ=0.5 after 40 soliton periods (Z=20π). 
 

 
Fig. 12(b) 3-Dimentional plot for interaction between the adjacent soliton 
pulses with TOD β=1 and δ=0.5 after 40 soliton periods (Z=20π). 
 

 
Fig. 13 Interaction between the adjacent soliton pulses at zero-dispersion 
wavelength with β=0.6 after 40 soliton periods (Z=20π). 
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Fig. 14 Interaction between the adjacent soliton pulses with D=0.2 and β=0.6 
after 40 soliton periods (Z=20π). 
 

 
Fig. 15(a)  Surface plot for interaction between the adjacent soliton pulses at 
zero-dispersion wavelength with β=0.6 after 40 soliton periods (Z=20π). 
 

 
Fig. 15(b) 3-Dimentional plot for interaction between the adjacent soliton 
pulses at zero-dispersion wavelength with β=0.6 after 40 soliton periods 
(Z=20π). 
 
  

 
Fig. 16(a) Surface plot for interaction between the adjacent soliton pulses with 
D=0.2 and β=0.6 after 40 soliton periods (Z=20π). 
 

 
Fig. 16(b) 3-Dimentional plot for interaction between the adjacent soliton 
pulses with D=0.2 and β=0.6 after 40 soliton periods (Z=20π). 
 

Fig. 9 is the plot showing the interaction between 
neighbouring solitons without third-order dispersion (β=0), 
and Fig. 10 is with third-order dispersion parameter β=1 after 
travelling a normalized distance of 40 soliton periods (Z=20π). 
The surface plot and its 3-dimentional plot showing the 
interaction of solitons without TOD (β=0) are given in Figs. 
11(a) and 11(b) respectively, and the similar plots with β=1 
are depicted in Figs. 12(a) and 12(b) respectively. From these 
results it can be observed that increase in third-order 
dispersion enhances the interaction between neighbouring 
solitons. 

Fig. 13 shows the soliton interaction at zero-dispersion 
wavelength with third-order dispersion parameter β=0.6, and 
Fig. 14 shows with GVD parameter D=0.2. The surface plot 
and its 3-dimentional plot showing the interaction of solitons 
at zero-dispersion wavelength are given in Figs. 15(a) and 
15(b) respectively, and the similar plots with D=0.2 are 
depicted in Figs. 16(a) and 16(b) respectively. From these 
results we observed that the soliton interaction due to TOD 
becomes severe at zero-dispersion wavelength, and it can be 
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reduced if the fiber optic system operates far from zero-
dispersion wavelength. 

IV. CONCLUSION 
In this paper we have examined the behavior of optical 

pulses in single mode fibers with third-order dispersion. The 
modified coupled nonlinear Schrödinger equations, describing 
soliton propagation with third-order dispersion are 
numerically solved using split-step Fourier algorithm. From 
the simulation results it is observed that the resultant soliton 
deviates more from its reference position and hence enhances 
the interaction between neighboring solitons in the presence of 
third-order dispersion, than in its absence.  It is further 
observed that the affects of TOD are severe near zero-
dispersion wavelength and can be reduced by increasing GVD 
parameter. Hence we conclude that the soliton interaction in 
single mode fibers completely destroys the soliton condition 
near zero-dispersion, and hence increases the bit error rate. 
However at wavelengths other than zero-dispersion, the 
solitons are more robust to third-order dispersion. 
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