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Learning of Class Membership Values by 
Ellipsoidal Decision Regions 

Leehter Yao and Chin-Chin Lin 

Abstract—A novel method of learning complex fuzzy decision
regions in the n-dimensional feature space is proposed. Through the 
fuzzy decision regions, a given pattern's class membership value of 
every class is determined instead of the conventional crisp class the 
pattern belongs to. The n-dimensional fuzzy decision region is 
approximated by union of hyperellipsoids. By explicitly
parameterizing these hyperellipsoids, the decision regions are 
determined by estimating the parameters of each hyperellipsoid.
Genetic Algorithm is applied to estimate the parameters of each region 
component. With the global optimization ability of GA, the learned 
decision region can be arbitrarily complex. 

Keywords— ellipsoid, genetic algorithm, decision regions,
classification

I. INTRODUCTION

ATTERN classification mainly deals with determination of 
decision regions based on the given prototypes. The 

information carried by the every prototype consists of the
features associated with the prototype and the class the 
prototype belongs to. Since the information carried by each
prototype are gathered by human beings, it is understood that
uncertainty might exist within the information assigned to the
prototype. Hence, fuzziness could be involved in feature space
or in class assignment. For the ease of analysis and 
manipulation, most of the research in the field [1-7] gives crisp
feature descriptions yet leave class assignment or classification 
fuzzily defined. Different from the deterministic classification
[8-9] where each prototype is classified into one and only one 
class, membership degrees are employed in fuzzy classification 
defining degrees of belonging of each prototype to every class. 
There have been numerous approaches proposed for clustering
[1, 10-14] based on the prototypes with fractional membership
degrees belonging to different classes. However, not too many
researches investigate learning of fuzzy decision regions based 
on the prototypes with fractional membership degrees
belonging to every different class. The conventional fuzzy
classification approach assigns each prototype's degree of 
belonging to different class by a real number between 0 and 1. 
The real number is called the class membership value. The

training of conventional fuzzy classification approach is to find
the model that determines the crisp classification based on the
training prototype. For some classification applications such as 
medical diagnosis, geographical analysis or decision making,
the classification aims to generate each pattern's class 
membership values for each class other than the crisp pattern 
class. For some applications, the crisp class that a given pattern
is classified may not be as important as the class membership
values since the class membership values will serve as
important decision support data.  In the paper, a novel approach
is proposed to the train the decision region so that the class
membership value of every class can be determined through the
decision regions. A set of hyperellipsoids with adaptively tuned
centers, orientations and sizes are employed to learn the fuzzy 
decision regions. If the prototypes are classified into c classes, 
there are in fact c decision regions to be learned since each 
prototype has crisply defined coordinates in the feature space 
and c respectively assigned membership degrees belonging to
each of c classes. The proposed learning scheme for decision 
regions is basically nonparametric since no statistical
information of the prototypes is assumed. The decision regions
determined by the perceptron algorithm [15-16] or the least
mean square algorithm [8-9] are compose of half spaces. 
Hyperellipsoids geometrically locates and cover the decision
regions more precisely and yet requires more concise
parameterizations.[17-18]
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Since the decision region can be approximated by an union
of a finite number of hyperellipsoids, learning of complex
decision region is equivalent to the estimation of the parameters
of hyperellipsoids. Multiple hyperellipsoids are respectively
employed to approximate the decision regions in [19] and [20].
In [19], a multivariate Gaussian distribution function of
prototypes is assumed. The locus of prototypes with constant
probability density function forms a hyperellipsoid in the
feature space. Therefore, [19] aims to learn the distribution
function of prototypes, which is equivalent to learning the
parameters of hyperellipsoids. The Genetic Algorithm (GA) is 
utilized to learn the hyperellipsoids in [20]. Both [19] and [20]
consider only the prototypes with crisp classification, i.e., each
prototype is assigned one and only one class. In this paper, the
decision region for the prototypes with fuzzy classification will 
be investigated.

Similar to [20], the GA is also to be used in this paper to
estimate the parameters of ellipsoids. The number of
hyperellipsoids required to approximate the decision region is 
generally unknown in advance. More hyperellipsoids than
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actually necessary are assigned for the learning. It will be
shown that by appropriately defining the criterion function for 
minimization, GA is not only able to learn the parameters of
each hyperellipsoids but also tends to minimize the total 
volume of hyperellipsoids. An efficient method will be 
proposed along with the parameter learning process by GA to
identify redundant hyperellipsoids so that the redundant 
hyperellipsoids can be eliminated. With the global optimization
ability of GA, the decision region to be learned can be
arbitrarily complex including linearly inseparable, nonconvex 
and disconnected ones. The GA is implemented to learn the
decision regions for all classes in parallel. However, the
optimization of parameters to learn the decision region for each 
class is not performed separately since membership degrees
belonging to different classes learned in every generation of
GA are closely related. The optimization of GA is performed
adjoining the constraints for membership degrees of all classes.
By use of the fuzzy partition techniques in fuzzy c-means
clustering algorithm [1], membership degrees are determined
by minimizing the objective function adjoining the constraint
by means of Lagrange multipliers. Although the learning of 
decision regions proposed in this paper is a supervised learning
approach, the unsupervised learning scheme such as fuzzy
c-means algorithm is employed along with GA.

The organization of this paper is as follows. The problem and
some preliminaries are stated in section II. In section III, the
object function of GA is described and analyzed. The ways of 
identifying redundant hyperellipsoids following the learning 
process by GA is also introduced. In section IV, the
implementation of GA to learn the decision regions is described.
The simulation results are shown in section V. Finally,
conclusions are drawn in section VI.

II. PROBLEM STATEMENT

Fuzzy partition of pattern space is employed for the
classification discussed in this paper so that membership
degrees of respectively belonging to c classes are defined for 
every prototype. Let W  Rn be the feature space and F be the
set of m prototypes such that for every prototype (xj, uij)  F, xj

 W and uij  [0, 1], i = 1…c, j = 1…m. Two additional
constraints need to be defined for the values of uij. The first one 
is to assume that membership degrees of xj belonging to all c

classes are equal to 1; that is, 

 (1) ....1.1
1

mju
c

i

ij

The second constraint is to assume that every class is nonempty
and different from the entire pattern space; that is, 

(2)....1,0
1

cimu
m

j

ij

The fuzzy classification problem investigated in this paper can
be considered as determining c fuzzy decision regions G1,

G2, …, Gc. For every prototype xj, the degree of belonging to
the decision region Gi is defined by the value of uij. Every fuzzy 
decision region is to be approximated by the union of a finite
number of hyperellipsoids. The candidate hyperellipsoid is

called the region component. Let Sip be the p-th region
component approximating Gi, Sip can be expressed by the
function fip as: 
 fip(x; vip, Aip) = (x – vip)

T
Aip(x-vip) (3)

where vip W denotes the center of Sip and Aip  Rn n is the
matrix corresponding to the topological structure of the data.
The matrix Aip can be defined as 
 Aip = ip ip (4)
where ip denotes the rotation of the region component in the n

dimensional pattern space while ip is a diagonal matrix with
the length of the region component’s axes in each direction on 
the diagonal.  If ipk, is angle of rotation with respect to the k-th 

axis for Sip, k = 1…n, , define the rotation element as 

, (5)
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where ( ipk) is located in the k-th and (k+1)-th rows and 
columns of ( ipk).  Note, however, that

.
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Referring to (5) and (6), the matrix, ip, denoting the rotations
of Sip in the pattern space, can be defined as

(8);3)(
1

nfor
n

k

ipkip

and )( 1ipij
 for n = 2. (9)

As for the matrix ip, if dipk, is the k-th axis of Sip, k = 1…n,
then ip can be defined as 

 (10) 
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In this paper, GA is utilized to learn the parameterizations of 
region components as shown in (3)-(10) based on the
information carried by prototypes. For any fuzzy decision 
region, Gi, the number of region components required to 
approximate Gi is generally unknown a priori. More than 
enough candidate region components are thus assigned to learn 
to fuzzy decision region based on the prototypes (xj, uij), j =

1…m. If hi region components are necessary to approximate Gi

by intuitive assessment or experience, bi (>hi) region 
components with different parameterizations as in (3)-(10) are
set to learn Gi. Let Qi be the set of bi candidate region 
components to approximate the fuzzy decision region Gi. Then, 
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learning fuzzy decision region is equivalent to tuning the
parameters of region components in Qi so that 

(11)
i

b

p

ipi ciGWSQ
i

...1,)(
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III. LEARNING OF FUZZY DECISION REGIONS

A. Fitness Function of GA

GA learns different sets of region components Q1, Q2,…,Qc

to approximate the fuzzy decision regions G1, G2,…,Gc.  The 
approximation is performed in the sense of minimum
misclassification errors as well as minimum total volume of 
region components.  GA is implemented to learn the fuzzy
decision regions G1, G2,…,Gc, in parallel while satisfying the 
constraints of fuzzy partitions in (1) and (2) at the same time.

Since the volume of a region component Sip is proportional to 

the determinant of 1

ip
, the fitness function for GA to learn the 

parameters of region components approximating Gi is given as 

(12)
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where ea denotes the misclassification errors due to the set of 
region components; and weights the total volume of region 
components with respect to the misclassification errors. Based
on the misclassification errors as well as the total volume of
region components, GA is able to tune the parameters of each
region component to minimize the misclassification errors as
well as to adjust the sizes and orientations of region 
components to geometrically approximate the fuzzy decision 
region in parallel. 

Referring to (3)-(10), the parameters of a region component
Sip to be learned by GA are the coordinates of center vip [vip1,

vip2,…,vipn]
T, the angles of rotations in each direction ip [ ip1,

ip2,…, ipn]
T and the length of each axes of the ellipsoid dip

[dip1, dip2,…,dipn]
T, i = 1…c, p = 1…bi. In order to learn the 

fuzzy decision region Gi, it is shown in (11) that more than 
enough region components Sip are set to learn by GA. The
S-norm of an union in (11) is operated by max(·). Referring to 
(11) and (3), the distance between the j-th prototype and the 
region component Qi can be calculated by: 
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where denotes the operation of maximization.  Similar to the 
fuzzy partition techniques utilized in fuzzy c-means algorithm,
membership degrees are determined by minimizing the 
following objective function adjoining the constraint in (1): 
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where is the estimated membership degree associated with

y
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ij in (13), i is a weighting exponent which determines the 

fuzziness of membership degrees , and ijû j is the Lagrange 

multiplier. Membership degrees are determined by 

minimizing the objective function in (14); they thus can be
obtained by setting 
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Solving  in (15) and (16), gives ijû
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The total misclassification errors ea in (12) can be calculated by

(18)
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In order to calculate the misclassification error for each 
prototype (xj, uij), the distance between xj and region 
components Q1, Q2,…, Qc, denoted by y1j, y2j,…, ycj, are first 
calculated by (13). The membership degrees of the given
prototype belonging to each class are then calculated by (17)
based on y1j, y2j,…, ycj. Finally, the misclassification error
corresponding to the given prototype is calculated by (18). 
Therefore, although region components Q1, Q2,…, Qc are
learned in parallel to approximate the fuzzy decision regions G1,

G2,…, Gc, the learning for Q1, Q2,…, Qc are cross correlated.
Note that since the weighting exponent i ( 1) has 

significant influence on the fuzziness of fuzzy partition, it is 
also learned by GA along with the parameters of each region
component, i.e., vip, ip and dip, i = 1…c, p = 1…bi, based on the 
fitness function in (12) and (18).

In fuzzy c-means algorithm, cluster center is iteratively 
adjusted so that the total distance norms between the prototype 
and every cluster center are minimized. In (13), the 
Mahalanobis norm is used for measuring the distance between 
the prototype and the center of Qi, Sip, i = 1…c, p = 1…bi.

Similar to fuzzy c-means algorithm, a virtual cluster center 

and the virtual distance norm are induced from (13) for 

each fuzzy decision region G

'

iv

2

ijAD

i corresponding to the prototypes
(xj, uij,), i = 1…c, j = 1…m, i.e.,
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Instead of iteratively determining the cluster center as in fuzzy 
c-means algorithm, centers as well as other parameters of Qi are 
iteratively determined by GA in this paper. Since the distance 
norm in (19) is not a linear function, centers of Qi cannot be 
calculated by differentiating the objective function with respect 
to the parameters of region component center (vip) as in the 
regular fuzzy c-means algorithm. GA is thus utilized instead as 
the tool of optimization. Both fuzzy c-means algorithm and the 
method proposed in this paper, aim to minimize the total 
distance norms as in (19) between prototypes and each cluster 
center. For fuzzy c-means algorithm, the minimization of
distance norms are performed by iteratively tuning cluster 
center as the weighted topological mean among the given
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prototypes, where the weights are the membership degrees 
calculated based on the distance norms between prototypes and 
cluster center. The minimization of distance norms proposed in 
this paper is nevertheless achieved by iteratively tuning a set of 
candidate hyperellipsoids to cover the prototypes based on the 
membership degree associated with each prototype.

B. Trimming of Redundant Region Components

Since suitable number of region components required to learn 
the fuzzy decisions is generally unknown. To begin with, more
than enough region components are assigned to learn the fuzzy
decision regions. It might be possible that GA tunes the
parameters of region components so that less number of region 
components are well conglomerated to approximate the fuzzy
decision region.  In other words, redundant region components
might exist after the learning process by GA. It is thus 
necessary to design a scheme to trim off those redundant region 
components to increase the classification accuracy. In order to 
determine the redundant region components, the contribution
degree of each estimated region component is defined.
Referring to (13), bi region components are set to conglomerate
as Qi to approximate the fuzzy decision region Gi. In the feature 
space W  Rn, there is one and only one region component that 
is closest to a prototype xj, j = 1…m. For any p-th region 
component learning the i-th fuzzy decision region, Sip, p  [1,

bi], define the threshold function T( ) as 
,v,d;x,v,d;x

x
iqiqiqjipipipj

j
.otherwise,0

;pq],b,1[q),(f)(fif,1
)S,(T

iijij
ip

(20)
The contribution degree of an estimated region component Sip

can be defined as the number of the prototypes that are closest
to it. Let g(Sip) be the contribution degree of Sip, i = 1…c, p =

1…bi, then 

(21)
m
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With the contribution degree given as in (21), the redundant
region components can thus be defined as the ones with 
contribution degree less than a preset value.  Within Qi, let the 

redundant region components be irS , r  [1,bi], then 

)irS(g (22)

where  is a preset threshold value determining whether the
evaluated region component is considered to be redundant. If i

region components are determined to be redundant, trimming
off these redundant region components from Qi will thus
increase the classification efficiency since fewer coefficients 

are required to parameterize fuzzy decision regions. Let iQ̂  be 

the refined set of candidate region components to approximate
fuzzy decision region Gi, then referring to (11), 
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IV. IMPLEMENTATION OF THE GENETIC ALGORITHM

Each n-dimensional region component Sip is parameterized
by the coordinates of center vip, the angles of rotations in each
direction ip and the length of each axes dip, i = 1…c, p = 1…bi.

Along with the weighting exponent i, there are (3n+1)

parameters to be learned by GA for each region component.
Every estimated parameter is encoded as a string of binary
digits.  The binary strings are then cascaded to form a 
chromosome.  If c decision regions are to be determined from
the information carried by prototypes, only (c-1) sets of 
parameters need to be learned since the c-th decision region can 
be determined based on the constraint in (1).  That is, 
membership degree of the c-th decision region is determined by
subtracting all the membership degrees belonging to other 
classes from 1.  Therefore, total number of parameters encoded 
in one chromosome is given by

(24)
1-c

1i

ib)1n3(

Referring to (12) and (18), fuzzy decision regions G1,

G2,…,Gc are learned by optimizing vip, ip, dip and i via GA, 
i.e.
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V. NUMERICAL SIMULATION

In this section, a numerical example is presented verifying
the proposed algorithm. It will be shown that the number of 
region components required to approximate the decision region 
for every class are unknown a priori. Although more than 
enough region components are assigned to learn the decision
region, the redundant region components can be easily
identified and trimmed off based on the learning results. The 
weighting coefficient in (12) is set to be 0.15. In order to 
assess the learning efficiency and accuracy, the prototypes are 
divided into two parts; one part for the learning and the other 
part for the test.  In this example, 695 prototypes with 10% 
noise are set for the learning.  The membership degrees for
class 1, 2 and 3 of these 695 prototypes are shown in Fig. 1, 
respectively. The distribution of prototypes in this example is 
not linearly separable. The decision region of every class is 
more complicated and more difficult to learn.  In this example,
12 region components are assigned, respectively, to learn each 
of 3 classes.  The learning results that 6 out of 12 candidate 
region components for both class 1 and 2, 5 out of 12 candidate 
region components for both class 3 remain based on 
contribution degree of each region component.  The decision 
regions for class 1, 2 and 3 are shown in Fig. 2, respectively.
As the decision regions are learned based on the prototypes,
another set of 695 data is employed for test.  The average 
misclassification error e is calculated to be 0.00881.  The 
learning of decision regions is still accurate and efficient.

VI. CONCLUSION

It has been shown in this paper that the desired fuzzy
decision region is approximated by a finite number of ellipsoids. 
By appropriately parameterizing the hyperellipsoids, the GA is 
applied to estimate the associated parameters, and thus to learn 
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the decision region.  Since the minimization criterion of GA is 
defined to be a combination of misclassification error and the 
sum of the volume of the estimated hyperellipsoids, the
learning hyperellipsoids tends to agglomerate together with the 
least total volume to approximate the decision regions.
Compared to the traditional methods such as statistical
approaches or artificial neural networks that approximate
decision regions with half spaces, the proposed method locates 
and approximates the decision regions more precisely and yet
employs more concise parameterizations.
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(a)                                                            (b )    (c) 
Fig. 1. The distribution of prototypes. (a) class 1; (b) class 2; (c) class3. 

(a)                                                            (b )    (c) 
Fig. 2. The decision regions for (a) class 1; (b) class 2; (c) class3. 


