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Particle filter applied to noisy synchronization in
polynomial chaotic maps

Moussa Yahia, Pascal Acco and Malek Benslama

Abstract—Polynomial maps offer analytical properties used to
obtain better performances in the scope of chaos synchronization
under noisy channels. This paper presents a new method to simplify
equations of the Exact Polynomial Kalman Filter (ExPKF) given in
[1]. This faster algorithm is compared to other estimators showing
that performances of all considered observers vanish rapidly with
the channel noise making application of chaos synchronization in-
tractable. Simulation of ExPKF shows that saturation drawn on the
emitter to keep it stable impacts badly performances for low channel
noise. Then we propose a particle filter that outperforms all other
Kalman structured observers in the case of noisy channels.

Keywords—Chaos synchronization, Saturation, Fast ExPKF, Parti-
cle filter, Polynomial maps.

I. INTRODUCTION

CHAOTIC synchronization under noisy channel played a
key role during last decade in chaotic telecommunica-

tion systems. First theoretical works on chaos synchroniza-
tion neglected noise considerations [2], [3]. Then, the idea
to use coupled chaotic oscillators in telecommunication is
introduced [4], [5]. Additive noise in the channel destroys
synchronization properties and rises the problem of noise
cleaning. As performances quickly decay in presence of noise
other communication schemes, as non-coherent and impulse
synchronization, where considered to avoid synchronization.
Kolumbán et. al give a review of communication schemes and
performance limits in three papers [6], [7], [8].

The problem of synchronization takes roots in control
system theory and can be seen as the state estimation of a
stochastic non-linear system.

A. Kalman structured observers

Kalman filtering can be applied to synchronize systems.
In the discrete time and linear case, the emitter state xk is
modeled by a linear dynamical function f(x), with additive
dynamic noise ηk ∼ G (0, Q) 1 and measurement noise
νk ∼ G (0, R): {

xk+1 = f(xk) + ηk

yk = h(xk) + νk
(1)

The linear measurement function h(x) and measurement noise
νk represent the channel model and channel noise respectively.
As the dynamic noise ηk represents real noise in the emitter,
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1x ∼ G (m, v) means that the random variable x has a Gaussian probability

density function of mean m and variance v

or approximate numerical noise encountered in the simulation
or calculator, the initial state x0 is a random variable with pdf2

p(x0) = G (
x̄0, σ

2
x

)
.

The Kalman filter constructs an estimated state x̂k knowing
the measurements yk at the receiver. This receiver is optimal
in regard of the mean square error criteria (MSE)

MSE =
1
N

N∑
k=0

(xk − x̂k)2 (2)

The structure of the Kalman observer needs to estimate mean,
variance and covariance of stochastic variables:

⎧⎪⎨
⎪⎩

x̂k+1 = x̃k+1/k + Kk+1

(
yk+1 − ỹk+1/k)]

)
Pk+1 = Pk+1/k − K2

k+1 Pyk+1/k yk+1/k

Kk+1 =
Pxk+1/k yk+1/k

Pyk+1/k yk+1/k

(3)

For linear functions f and h, expressions 3 are analytical and
easy to compute, whereas many techniques where developed
to deal with non-linear functions f and h.

The Extended Kalman filter (EKF) uses successive linear
approximations of the mean and variance statistics to build
its state estimates [9][10]. Strongly non-linear systems, like
chaotic dynamics, approximations generate large estimation
errors which limit the use of EKF to weakly nonlinear systems.

The Unscented Kalman Filter (UKF) was introduced [11],
[12] to solve this problem. The Gaussian random state is
represented using a minimal number of samples, called sigma
points. At each iteration, the UKF propagate the sigma points
through the true nonlinear function and computes the posterior
mean and covariance approximation. The approximation of
higher order moments is enabled by changing the sigma points
weights. This solution is advantageous to cope with strongly
nonlinear system and to avoid computation of function deriva-
tive as for the EKF.

Norgaard et al. [13] use polynomial interpolation of the dy-
namical function f and exploit Stirling’s formula to obtain the
mean and covariance of the state distribution. This nonlinear
transformation is then exploited in a recursive manner owing
to a Kalman Filter structure.

More recently, Luca et al [1] continue this work and propose
a closed-form state estimator named Exact Polynomial Kalman
Filter(ExPKF) for polynomial nonlinear system with f and h
polynomial of respective order N and M .

ExPKF can then synchronize to a chaotic polynomial map
with optimal performances. Still is the problem of emitter
stability when noise is added to the chaotic recurrence.

2probability density function
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B. Emitter stability

For secure and/or wide-band communication purpose, the
emitter iterative map T : xk+1 = f(xk) is placed in an
attractive basin of a chaotic strange attractor. We will focus on
chaotic system whose attractive basin is a simple connex set
U = [a, b] . Then chaotic properties guarantee that the map is
onto, i.e. f(U) ⊂ U , and there is no divergent trajectories.

Stability problems arise when the dynamic noise ηk is added
to f(xk). The noise can then push the stable state xk out the
attractive basin and start to follow a divergent trajectory.

An easy solution is to saturate to the set U each iteration
of the map. In this case the dynamic noise ηk in 1 is replaced
with:

η�
k =

⎧⎨
⎩

ηk when ηk ∈ [a − f(xk), b − f(xk)]
a when ηk < a − f(xk)
b when ηk > b − f(xk)

(4)

Whatever the noise ηk is, the system still remains in the
attractive basin U . A counterpart of this solution is that the
dynamic noise η�

k pdf is no more Gaussian and no more
uncorrelated to the state xk.

C. Contents

In section II we give a simpler expression of mean, variance
and covariance of the ExPKF that leads to a faster algorithm
than [1]. Section III compares synchronization performances
and shows the impact of saturation effects. To take into account
emitter saturations a particle filter is introduced in the last
section.

II. FASTER EXPKF ALGORITHM

In the paper [1], the authors use full Taylor series expansion
to obtain exact expression of mean, variance and covariance of
any random variable distribution. In this section we will com-
pute directly the necessary statistics values of the transformed
random variable through a polynomial function. Using our
simpler expressions we obtain an ExPKF faster to compute.

A. Statistics through polynomial transformation

Consider a single dimensional polynomial form:

y = g(x) =
N∑

n=0

anxn (5)

In order to find the statistical values of a transformed random
variable y we first focus on terms (z = xn), the initial
independent distribution x can written by the following form

x = x̄ + δx (6)

where δx is the zero mean random variable extracted from
the initial random variable x of mean x̄. By mean of Pascal’s
triangle the terms xn can then be expanded to:

xn =
n∑

i=0

Ci
n x̄n−i δxi (7)

where Ci
n = n!

i!(n−i)! , is the combinatorial function, conse-
quently the expression 5 becomes:

y =
N∑

n=0

an

n∑
i=0

C
n

i x̄n−iδxi (8)

The mean ȳ = E[y] = E[g(x)] can be expressed as

ȳ =
N∑

n=0

an

n∑
i=0

C
n

i x̄n−imi (9)

where mi denote the ith-order moment of the random variable
δx. In order to facilitate the computation this last Equation (9)
is written in a more compact form as

ȳ = aT
0:NCx̄

0:Nmx
0:N (10)

where a0:N is the polynomial coefficient vector [a0, ..., aN ]T ,
mx

i:j = [mi, ..., mj ]
T and Cx̄

i:j denoting a lower triangular
matrix computed such as

Cx̄
i:j =

⎡
⎢⎢⎢⎢⎣

C0
i x̄0 0 0 ... 0

C0
i+1x̄

1 C1
i+1x̄

0 0 ... 0
C0

i+2x̄
2

C1
i+2x̄

1 C2
i+2x̄

0 ... 0
... ... ... ... ...

C0
j x̄j C1

j x̄j−1 C2
j x̄j−2 ... Cj

j x̄0

⎤
⎥⎥⎥⎥⎦ (11)

Variance σ2
y = E[y2] − y2 is expressed from expectation of

polynomial y2 which coefficient vector noted e0:2N
is obtained

by the convolution product of the vector a0:N with itself:

e0:2N
= a0:N∗a0:N (12)

then the term E[y2] is the same calculus than (9)applied to
the polynomial vector (12)

E[y2] =
2N∑
n=0

e
n

n∑
i=0

C
i

nx̄n−imi (13)

finally we get the variance σ2
y in the compact matrix form

σ2
y = eT

0:2NCx̄
0:2Nmx

0:N − ȳ
2

(14)

Covariance Pxy between the two variables x and y is obtained
from the polynomial xy whose coefficient are dT

0:N+1 =
[0, a0 , ..., aN

]T :

Pxy = E[(x − x̄)(y − ȳ)]E [xy] − x̄ȳ

= dT
0:N+1C

x̄
0:N+1m

x
0:N+1 − x̄ȳ (15)

In the case where the estimates are supposed Gaussian; m0 =
1, m1 = 0 and for any k > 1,

mk =
{

k − 1)σ2
xmk−2 if k is even

0 otherwise
(16)

where σ2
x is the variance of the priori stat x, then the moments

vector is given by:
mx

0:N = [m0, m1, m2, m3, m4, ...] = [1, 0, σ2
x, 0, 3σ4

x, ...]T
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B. Algorithm complexity

It is necessary to know in general, how much computation
time is involved in implementing the algorithm, in other
words to make a complexity calculation before passing to
the execution on the CPU. The purpose of our redraw of
the expressions is to minimize the number of operations to
generate the required statistical values of the transformed
random variable via the polynomial function. In the latter
work (see [1]) and for an N order polynomial map, the
matrix multiplication evidently requires N4 multiplications,
plus a smaller number of operations to compute the variance
σ2

y . So this ExPKF Algorithm appears to be an O(N4)
process. In our development it is easy to observe through the
expressions (10), (14) and (15) that the ExPKF can, in fact,
be computed in O(N2) operation with an algorithm called the
ExPKF Fast Algorithm which will be mentioned bellow.

C. ExPKF fast algorithm

Those previous simple expressions developed in (II-A) are
then used to complete the prediction step of the ExPKF. This
step computes the predicted statistics used to complete the
update step (3).

The mean and the covariance of the predicted state are
obtained with (10) and (14):

x̃k+1/k = E[f(xk) + ηk] = aT
0:N C

x̂k/k

0:N m
xk/k

0:N (17)

Pk+1/k = E[(xk+1/k − x̃k+1/k)2]

= (e0:2N
)

T

C
x̂

k
0:2N mxk

0:2N
− x̃2

k+1/k + Q (18)

The predicted observation, the transition/innovation covari-
ances and the variance are obtained with (10), (15) and (14):

ỹk+1/k = E[h(xk+1/k)] = bT
0:M C

x̃k+1/k

0:M m
xk+1/k

0:M (19)

Pxk+1/k yk+1/k
= d

T

0:M+1
C

x̃k+1/k

0:M+1
m

xk+1/k

0:M+1
− x̃k+1/k ỹ

k+1/k
(20)

Pyk+1/k yk+1/k
= (e0:2M

)
T

C
x̃k+1/k

0:2M
mxk+1/k

0:2M
− ỹ2

k+1/k
+ R (21)

III. SATURATION IMPACT ON SYNCHRONIZATION
PERFORMANCE

Luca et al. compare synchronization performances of the
EKF, UKF and the Scaled Uncented Kalman Filter (ScUKF) to
the ExPKF. Figure 7 in [1] gives the normalized mean square
error MSE/R obtained with those filters for a fourth order
Chebychev polynomial f(x) = T4(x) = 8x4 − 8x2 + 1. We
note that for noise variance R > 10−2 all filters performances
tend to a limit MSE/R ≈ 0.94. That means we can expect
synchronization only for very clean channels. Luca’s simula-
tions are done with a dynamic noise Q = R

10 which do not
help to distinguish whether the dynamic noise or measurement
noise limits the MSE/R performances to 0.94.

Moreover, Section I-B stands that dynamic noise ηk gen-
erates saturation at the emitter. To seek the real impact of
saturations, Fig. 2 shows performances with Q and R varying
independently using our fast ExPKF algorithm.

Saturations occur more and more frequently as noise vari-
ance Q increase. The hypothesis of Gaussian dynamic noise

Fig. 1. Synchronization MSE/R for f(x) = T4(x). UKF and Scaled
Uncented Kalman Filter (ScUKF) data are taken directly from [1]. ExPKF
performances are computed with our faster ExPKF algorithm in the same
conditions: x0 ∼ G (0.5, 0.26), Q = R

10
, 103 transition iterations, N = 105.

Fig. 2. MSE/R performances of our fast ExPKF algorithm and ExPKFI:
x0 ∼ G (0.5, 0.26), Q = R

10
, 103 transition iterations, Nsamples = 105.

For small value of Q performances of the fast ExPKF algorithm gives the
same results as in Fig.7 of [1] which validate the fast algorithm equations.

ηk is not met and turn this noise into a non Gaussian
correlated noise η�

k of equation 4. Then the ExPKF becomes
under optimal. The Exact Polynomial Kalman Filter Initialized
ExPKFI is then introduced as an optimal filter which can
handle saturations. This filter uses an ideal second channel
to transmit the information s(k) whether or not a saturation at
step time k exists. This filter is given as a theoretical boundary
to measure performance losses due to saturation.

The ExPKFI operates like the ExPKF when there is no
saturation s(k) = 0. When an upper/lower saturation happens
s(k) = a or b, then the filter is re-initialized to x̂k = s(k)
with estimated covariance Pxk/yk

= 0 as the state is perfectly
known at each saturation.

Fig. 2 leads to the following remarks:
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1) Whatever the dynamic noise is, the filter tends to its
performance limit MSE/R ≈ 0.94 when the mea-
surement noise variance R is greater than 10−2. So
the performance limits for high dynamical noise is not
linked to saturation effects.

2) For low dynamic noise
(
0 to 10−7

)
the ExPKFI filter is

similar to ExPKF as long as very few saturation appears
during those simulations. Higher dynamic noise forces
the ExPKFI to use the ideal channel to re-initialize
and so increase its performances independently of the
measurement noise. Solutions that handle saturations
could improve performances up to the ExPKFI curves.

3) For small measurement noise, MSE/R falls from 0.85
to 0.98 when the dynamic noise increases. The ExPKF
seems to be more sensible to saturation effect for low
channel noise.

In the next section we use a particle filter to handle correctly
saturation effects so as to reach the ExPKFI performances.

IV. PARTICLE FILTER

Particle Filter (PF) was introduced by Gordon et al. in [14].
The same model 1 is extended to any nonlinear function f
and h. Dynamic and measurement noise ηk νk are indepen-
dent random variables with probability density function (pdf)
Pη(Q) and Pν(R). That means the model is no more limited
to the scope of polynomial function and can also represent
non Gaussian noise as the saturation effects.

PF considers any pdf of the noise and propagate this noise
in the nonlinear function. As equations are intractable in this
general form a discrete approximation of the pdf is used, then
the pdf of the random state P (xk) is approximated by a finite
number N of particle ζi

k, i = 1 : N

P (x) ≈
N∑

i=1

wi
kδζi

k
(xk) (22)

A. Particle filter equations

At each step time the particles ζi
k are propagated through 1

and the weights wi
k are updated using Bayesian rules with the

measurement.
Particles are very similar to the UKF sigma points. The

main difference is that UKF use a minimal number of sigma
points so as to estimate the Gaussian pdf propagation through
the nonlinearity. A great number of particles is used to make
a discrete approximation of the propagated pdf which can be
of any form.

Starting from the prior pdf P (x0) of x , the posterior pdf
is iteratively obtained using the following prediction 23 and
update 24 relations:

P (xk/Yk−1) =
∫

xk∈X

P (xk/xk−1)P (xk−1/Yk−1)dxk−1 (23)

P (xk/Yk) =
1
c

P (yk/xk) P (xk/Yk−1) (24)

where c is a normalizing constant and Yk−1 is the sequence
{y0, ..., yk−1} of available measurements.

Fig. 3. Performance MSE/R for Fast ExPKF, ExPKFI and particle filter
with 60 and 90 particles. Conditions are the same than for Fig.7 of Luca et
al. paper including the relation Q = R

10

Particle filter keeps a representation of P (xk/Yk
) with a

set of weighed particles
{
ζi
k, wi

k

}
with (i = 1, ..., N) and(∑N

i=1 wi
k = 1

)
. The particle filter algorithm is initialized by3

{
ζi
0, w

i
0

}
iid∼P (x0)

The prediction equation 23 is approached by the distribution
P (xk/Yk−1)iid∼

{
ζi
k −, wi

k−1

}
of the propagated particles

ζi
k − where ζi

k − = f(ζi
k−1) + ηi

k with ηi
kiid∼Pη(Q)

The update equation 24 is approached by the distribution
P (xk/Yk)iid∼{

ζi
k, wi

k

}
where ζi

k = ζi
k −

wi
k =

wi
k−1 P (yk/xk = ζi

k)∑N
i=1 wi

k−1 P (yk/xk = ζi
k−1)

(25)

Finally the estimated state is the mean

x̂k =
N∑

i=1

wi
kζi

k

The main problem of this algorithm is that the weight wi
k are

decreasing and that the filter is likely to degenerate. However
an indicator for the degree of degeneracy:

Neff
k =

1∑N
i=1(w

i
k)2

(26)

which is the effective sample size presented in [15]. When
Neff

k

N < 0.75 it is necessary to resample the particle as
proposed in the generic particle filter GPF (Algorithm 3 of
[15]).

B. GPF applied to polynomial map

To compare with results obtained with Kalman filter, we
apply the GPF to the same polynom T4(x) with Gaussian

3iid∼ means identically independent distributed
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noises ηk and νk. To handle saturations phenomenons, the
noise ηk is replaced in the GPF filter by its Non-Gaussian
uncorrelated counterpart η�

k. In fact this is simply done in the
same way as for the emitter by computing Gaussian noise ηk

and truncate the value of f(xk) + ηk into the set U .
It appears clearly in Fig 3 that the GPF works very effi-

ciently for high channel noise and tends to the performance
of the ExPKFI.

Small measurement noise lower the value of P (yk/xk =
ζi
k) and then decrease rapidly the particle weights. Then

several resampling steps are operated which explain the unex-
pected bad performances of the filter for low noise channel.

V. CONCLUSION

This paper offers two main results. First we redraw equa-
tions of the Exact Polynomial Kalman Filter. We minimize
the Algorithm complexity to O(N2), however, we obtained a
faster ExPKF algorithm which confirms the results of Luca et
al. Then we apply particle filtering to polynomial chaotic maps
to handle properly saturations that are drawn in the emitter
to keep it stability. Performance in terms of mean square
synchronization error are plotted and compared to previous
results. The particle filter outperform all results and offer
possibility to use synchronization under noisy channels for
communication applications.
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