
International Journal of Medical, Medicine and Health Sciences

ISSN: 2517-9969

Vol:6, No:8, 2012

406

 

 

  
Abstract—Methods of contemporary mathematical physics such 

as chaos theory are useful for analyzing and understanding the 
behavior of complex biological and physiological systems. The three 
dimensional model of HIV/AIDS is the basis of active research since 
it provides a complete characterization of disease dynamics and the 
interaction of HIV-1 with the immune system. In this work, the 
behavior of the HIV system is analyzed using the three dimensional 
HIV model and a chaotic measure known as the Hurst exponent.  
Results demonstrate that Hurst exponents of CD4, CD8 cells and 
viral load vary nonlinearly with respect to variations in system 
parameters. Further, it was observed that the three dimensional HIV 
model can accommodate both persistent (H>0.5) and anti-persistent 
(H<0.5) dynamics of HIV states. In this paper, the objectives of the 
study, methodology and significant observations are presented in 
detail. 
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I. INTRODUCTION 

HE mathematical models used to represent the dynamics 
of infectious diseases can explain highly complex clinical 

signals and symptoms. It is in the context of modeling, that 
scientists and technologists can apply their knowledge to 
formulate guidelines for clinical tests and practical 
measurements [1,2]. Mathematical modeling of the interaction 
between HIV-1 and the immune system improves the 
understanding of the dynamics of the disease [3]. Many HIV 
dynamic models have been proposed by researchers [4-8] to 
provide theoretical principles for development of treatment 
strategies for HIV infected patients [9].  

The nonlinear three dimensional HIV model is the basis of 
active research [1] since it includes most aspects known thus 
far regarding the dynamics of HIV-1 in the human body [3]. 
Since all parameters of this model can be determined from 
CD4 cell levels and viral load in blood, the three dimensional 
model is highly useful for practical applications [10]. This 
model can be used to simultaneously obtain the response of the 
CD4 lymphocyte population, the CD8 lymphocyte population 
and the HIV-1 viral load and permits an analytical study of the 
dynamics of the disease. The model can also be used   to  
determine the   state of health of an   individual   and verify the 
effects of drugs [3]. The analysis of complexity of the HIV 
model is essential for choosing proper parameter estimation 
methods and for designing suitable control strategies.  
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The nonlinear analysis on HIV models is critical to explore 

viral fitness assays and estimate viral fitness parameters [11]. 
There are several reports regarding the nonlinear analyses on 
models describing HIV dynamics. Bortz and Nelson (2004) 
[12] performed a formal sensitivity analysis on a nonlinear 
model of HIV infection dynamics and presented the results of 
both a differential analysis as well as a principle component 
based analysis. David et al. (2008) [13] performed sensitivity 
analysis on a nonlinear HIV model using both classical 
sensitivity functions and generalized sensitivity functions. 
Naresh et al. (2009) [14] performed numerical analysis on a 
nonlinear HIV model to investigate the influence of certain 
key parameters on the spread of the disease.  

Ye and Ding (2009) [15] introduced fractional order into an 
HIV model and analyzed its chaotic behavior using an Adams-
type predictor-corrector method. Al-Sheikh et al. (2011) [16] 
performed stability analysis on a non-linear mathematical 
model which analyzes the spread and control of HIV. Lavielle 
et al. (2011) [17] used a maximum likelihood estimation 
algorithm, to analyze simultaneously the HIV viral load 
decrease and the CD4 increase in patients using a nonlinear 
HIV model. Further, Ho and Ling (2010) [18] have shown that 
the system dynamics of the three dimensional HIV model is 
sensitive to both the initial conditions and the system 
parameters. Hence, the HIV system is chaotic and exhibits a 
bifurcation behavior. 

Methods of contemporary physics such as chaos theory are 
important for biological systems research [19]. Chaos and 
many regulatory mechanisms control the dynamics of living 
systems. These mechanisms are associated with the regulation 
of voltage-dependent ion channels, regulation of enzyme 
activity, the control of receptor activity or transport processes, 
viral dynamics and also circadian rhythms [20,21]. In analysis 
of bio-systems and process, different chaotic measures are 
used. Among such measures, calculating chaotic exponents 
such as Hurst exponents and dimensional analysis are most 
important and common [22]. 

The objective of this work is to extensively analyze the 
complexity of the HIV/AIDS system using the three 
dimensional HIV model and a nonlinear, chaotic measure 
known as the Hurst exponent.  

II. METHODOLOGY 

A.  The three dimensional HIV model 

The response of the concentrations of the CD4 lymphocyte 
population, the CD8 lymphocyte population and the HIV-1 
viral load can be characterized by the following first order 
nonlinear differential equation [18, 23-25]. 
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where, x(t), y(t) and z(t) are the concentrations of the CD4 
lymphocyte population, the CD8 lymphocyte population and 
the HIV-1 viral load, respectively. x0 and y0 are the normal 
unperturbed concentrations of the CD4 and CD8 lymphocyte 
population. a, b, c, d, e and f are the system parameters. The 
description of each parameter [26] is provided in Table 1.  

 
TABLE I 

DESCRIPTION OF HIV MODEL PARAMETERS 

Parameter Description 
a death rate of CD4 cells 
b rate of infection of CD4 cells by virus 
c death rate of CD8 cells 
d rate of increase of CD8 cells in response to increased 

viral load 
e rate of increase of viral load 
f rate of decrease of viral load 

B. Estimation of Hurst exponent 

Hurst exponent (H) [27-29] is responsible for a measure of 
predictability of a time series. Hurst exponent values range 
between 0 and 1. A value 0.5 < H < 1 indicates persistent 
behavior where one can expect with increasing certainty that 
whatever direction of change has been current will continue. 
Values 0 < H < 0.5 indicates anti-persistent behavior, in that 
one can expect whatever direction of change is current is 
unlikely to continue. A straight line with non zero gradient 
would have a Hurst exponent of 1. 

In this work, the Hurst exponents of CD4 cell population, 
CD8 cell population and HIV-1 viral load were calculated 
using the aggregated variance method [30-32]. Let (Xt)t∈N be a 
time series, shortly denoted by (Xt). For an integer m between 
2 and N/2, the series is divided into blocks of length m and the 
sample average is computed over each kth block.  
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For successive values of m, the sample variance 2
ms  is 

plotted against m on a log-log plot. The estimate of H is the 
slope of the least squares line fit to the points of the plot.  

III.  RESULTS AND DISCUSSION 

Figure1 shows the variation in the Hurst exponents of CD4, 

CD8 cell populations and HIV-1 viral load as a function of 
parameter ‘a’ in the range of 0 to 1. A nonlinear variation is 
seen in the Hurst exponent of CD4 cell population in the 
adopted range of parameter ‘a’. The Hurst exponent of CD8 
cells appear to decrease and then increase as the value of 
parameter ‘a’ is increased from 0 to 1. Further, only small 
variations in the Hurst exponent of viral load are seen as the 
value of parameter ‘a’ increases. 
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Fig. 1 Variation of the Hurst exponents of CD4, CD8 cell 

populations and HIV1 viral load shown as a function of parameter ‘a’ 
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Fig. 2 Variation of the Hurst exponents of CD4, CD8 cell 

populations and HIV1 viral load shown as a function of parameter ‘b’ 
 
Figure 2 shows the variation in the Hurst exponents of CD4, 

CD8 cell populations and HIV-1 viral load as a function of 
parameter ‘b’ in the range of 10 to 250. It is seen that the Hurst 
exponents of CD4 and CD8 cell population decreases and then 
increases as the value of parameter ‘b’ increases. Whereas, the 
Hurst exponent of viral load increases initially and further 
decreases exponentially as parameter ‘b’ increases. 

The variation in Hurst exponents of CD4, CD8 cell 
populations and HIV1 viral load is shown as a function of 
parameter ‘c’ in Figure 3. The Hurst exponents of CD4 cells 
and viral load decreases almost linearly as the value of 
parameter ‘c’ increases in the range of 0 to 1. Further, a 
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nonlinear variation is seen in the Hurst exponent of CD8 cell 
population in the adopted parameter range.  

The variation in Hurst exponents of CD4, CD8 cell 
populations and viral load is shown as a function of parameter 
‘d’ in Figure 4. It is found that the Hurst exponents of CD4 
and CD8 cells increase nonlinearly as the value of parameter 
‘d’ increases in the range of 0 to 40. However, the Hurst 
exponent of viral load decreases in the adopted parameter 
range. 
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Fig. 3 Variation of the Hurst exponents of CD4, CD8 cell 

populations and HIV1 viral load shown as a function of parameter ‘c’ 
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Fig. 4 Variation of the Hurst exponents of CD4, CD8 cell 
populations and HIV1 viral load shown as a function of parameter ‘d’ 

 
Similarly, Figure5 shows the variation in the Hurst 

exponents of CD4, CD8 cell populations and HIV-1 viral load 
as a function of parameter ‘e’ in the range of 0 to 0.02. It is 
seen that the Hurst exponents of CD4 and CD8 cells decrease 
nonlinearly with increase in parameter ‘e’. Also, a nonlinear 
variation is seen in the Hurst exponent of viral load in the 
considered range of parameter ‘e’. 

Figure 6 shows the variation in the Hurst exponents of CD4, 
CD8 cell populations and viral load as a function of parameter 
‘f’ in the range of 0 to 0.03. The Hurst exponent of viral load 

appears to decrease as the value of parameter ‘f’ increases. 
However, the Hurst exponents of CD4 and CD8 cells are seen 
to vary nonlinearly in the adopted parameter range. 
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Fig. 5 Variation of the Hurst exponents of CD4, CD8 cell 

populations and HIV1 viral load shown as a function of parameter ‘e’ 
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Fig. 6 Variation of the Hurst exponents of CD4, CD8 cell 

populations and HIV1 viral load shown as a function of parameter ‘f’ 
 
Table II shows the parameter range and the corresponding 

behavior of CD4 cell population. It is found that the CD4 cell 
population exhibits persistent behavior (H>0.5) in the adopted 
range of parameters ‘a’, ‘b’, ‘c’ and ‘e’. Anti-persistent 
behavior (H<0.5) in CD4 cells is seen in the case of 
parameters ‘d’ and ‘f’ in the range of  0-1.25 and 0-0.0028 
respectively. It appears that the parameters ‘d’ and ‘f’ 
contribute to the anti-persistent behavior of CD4 cells. 

Similarly, the parameter range and the corresponding 
behavior of CD8 cell population is shown in Table 3. The CD8 
cell population is found to exhibit persistent behavior in the 
adopted range of parameters ‘b’ and ‘c’. Anti-persistent 
behavior in CD8 cells is seen in the case of parameters ‘a’, ‘d’, 
‘e’ and ‘f’ in the range of  0.32-0.42, 0-4, 0.0136-0.02 and 
0.0024-0.0044 respectively. It is noted that the parameters ‘a’, 
‘d’, ‘e’ and ‘f’ contribute to the anti-persistent behavior of 
CD8 cells. 
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Further, typical persistent and anti-persistent behavior of 
CD4 cell population is shown in Figures 7 and 8 respectively. 

 
TABLE II 

 THE PARAMETER RANGE AND THE CORRESPONDING BEHAVIOR OF CD4 CELL 

POPULATION 
Parameter Parameter range Behavior of CD4 cell 

population 
a 0-1 Persistent 

- Anti-persistent 
b 
 

10-200 Persistent 
- Anti-persistent 

c 0-1 Persistent 
- Anti-persistent 

d 1.5-40 Persistent 
0-1.25 Anti-persistent 

e 0-0.02 Persistent 
- Anti-persistent 

f 0.0029-0.03 Persistent 
0-0.0028 Anti-persistent 

 
TABLE III 

THE PARAMETER RANGE AND THE CORRESPONDING BEHAVIOR OF CD8 CELL 

POPULATION 
Parameter Parameter range Behavior of CD8 cell 

population 
a 0-0.31, 0.43-1 Persistent 

0.32-0.42 Anti-persistent 
b 
 

10-200 Persistent 
- Anti-persistent 

c 0-1 Persistent 
- Anti-persistent 

d 4.25-40 Persistent 
0-4 Anti-persistent 

e 0-0.0135 Persistent 
0.0136-0.02 Anti-persistent 

f 0-0.0023, 0.0045-0.03 Persistent 
0.0024-0.0044 Anti-persistent 
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Fig. 7 A persistent behavior of CD4 cell population obtained using 
the three dimensional HIV model with a=0.25, b=50, c=0.25, d=10, 

e=0.01 and f=0.009 
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Fig. 8 An anti-persistent behavior of CD4 cell population obtained 
using the three dimensional HIV model with a=0.25, b=50, c=0.25, 

d=10, e=0.01 and f=10-6 

IV. CONCLUSIONS 

A mathematical model that describes the dynamics of HIV 
infection is highly useful to decide on treatment strategies for 
HIV/AIDS patients [33]. The dynamic three dimensional HIV 
model is a commonly used model since it includes most 
aspects known thus far regarding the dynamics of HIV- 1 in 
the human body [3].  

In this work, the complexity of the dynamic three 
dimensional HIV model has been analyzed using the Hurst 
exponent. The HIV model was simulated using Euler’s method 
for different parameter values and the responses of CD4, CD8 
lymphocyte populations and viral load were obtained. The 
Hurst exponents of the obtained states were calculated using 
the aggregate variance method.   

Results demonstrate that Hurst exponents of CD4, CD8 cells 
and viral load vary nonlinearly in the adopted range of 
parameters ‘a’, ‘b’, ‘c’, ‘d’, ‘e’ and ‘f’. Also, it was found that 
the three dimensional HIV model can accommodate both 
persistent and anti-persistent dynamics of HIV states. Further, 
the parameters ‘d’ and ‘f’ were found to contribute to the anti-
persistent behavior (H<0.5) of CD4 cells. Whereas, the 
parameters ‘a’, ‘d’, ‘e’ and ‘f’ contribute to the anti-persistent 
behavior of CD8 cells. The viral load was found to exhibit 
persistent behavior in the considered range of parameters.  

This study seems to be of high clinical significance since the 
analysis of complexity of the HIV model is essential for 
choosing proper parameter estimation methods and for 
designing suitable treatment strategies. 
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