
International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:3, No:2, 2009

152

Algorithms for the Fast Computation of

PWL and PHL Transforms

Fituri H Belgassem, Abdulbasit Nigrat, Seddeeq Ghrari
Higher Institute of Electronics Engineering, P.O.Box 38645 Beni-Walid, Libya

Email: fhbelgasem@yahoo.com

Abstract—In this paper, the construction of fast algorithms for

the computation of Periodic Walsh Piecewise-Linear PWL transform
and the Periodic Haar Piecewise-Linear PHL transform will be
presented. Algorithms for the computation of the inverse transforms
are also proposed. The matrix equation of the PWL and PHL
transforms are introduced. Comparison of the computational
requirements for the periodic piecewise-linear transforms and other
orthogonal transforms shows that the periodic piecewise-linear
transforms require less number of operations than some orthogonal
transforms such as the Fourier, Walsh and the Discrete Cosine
transforms.

Keywords—Piecewise linear transforms, Fast transforms, Fast

algorithms.

I. INTRODUCTION
AST algorithms are used to greatly reduce the number of
computations required to determine the transform

coefficients as compared to direct computation of the
transform. The main idea of efficient or fast computational
algorithms is the ability to subdivide the total computational
task into a series of computational steps such that partial
results from initial steps can be repeatedly utilized in
subsequent steps. These algorithms result from matrix
manipulations such as sparse matrix factorization and matrix
transpose [1],[2]. For the discrete transforms which are based
on piecewise-linear functions such as PWL and PHL
transforms, the methods of matrix factorization and
transposition do not give satisfactory results due to the non-
orthogonality and non-symmetry properties of the matrices of
these transforms. This also implies that a completely different
fast algorithm is required for the computation of the inverse
transform as opposed to orthogonal transforms where the fast
algorithm of the inverse transform usually has a similar
structure as that of the forward algorithm with minor
modifications. Fast algorithms for the computation of
piecewise-linear transforms are based on the reordering of the
transform matrix in such a way as to obtain sub-matrices
having a structure identical to Walsh-Hadamard matrices.

II. PERIODIC PIECEWISE-LINEAR TRANSFORMS

 1. PWL Transform: The Periodic Walsh Piecewise-Linear
PWL functions which are the basis functions of the PWL
transform are obtained by integrating periodic Walsh
functions [5]. The matrix equation of the forward and inverse
PWL transforms may are given by:
(a) Forward transform

 [C(N)]=[− − +2 1()k][PWL(N)][X(N)] (1)

(b) Inverse transform

 [X(N)]=[IPWL(N)][C(N)] (2)

where [C(N)] -vector of PWL coefficients
 [X(N)] -vector of sampled signal.
 [PWL(N)]-matrix of forward transform.
 [IPWL(N)]-matrix of inverse transform. [− − +2 1()k]-
diagonal matrix of normalization.

 2. PHL Transform: The set of Periodic Haar Piecewise
Linear (PHL) functions [6] is obtained by integrating the well
known set of Haar functions. The PHL functions are the basis
functions for the PHL transform. The matrix form of the
forward and inverse PHL transforms are defined as follows:
(a) Forward transform

 [C(N)]=[1
2

]k 1− + [PHL(N)][X(N)] (3)

(b) Inverse transform

 [X(N)]=[IPHL(N)][C(N)] (4)

where [C(N)]-vector of PHL coefficients
 [X(N)] - vector of sampled signal.
 [PHL(N)]-matrix of forward transform. [IPHL(N)] -
matrix of inverse transform.

 [1
2

]k 1− + -diagonal matrix of normalization.

III. FAST COMPUTATION OF THE PWL TRANSFORM

Construction of a fast algorithm for the computation of the
forward PWL transform requires ordering of the transform
matrix in such a way so that sub-matrices of orders from (N/2

F

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:3, No:2, 2009

153

x N/2) to (2x2) having a structure identical to Walsh-
Hadamard matrices for which algorithms already exists, will
be obtained. The ordering which achieves this is the bit
reversal order (BRO) of the columns of the transform matrix.
After this operation the PWL matrix, for N=8, will have the
following form:

[(8)]PWL BRO =

−
−
− −

− −
− − −

− − −
− − − −

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

1 1 1 1 1 1 1 1
2 2 0 0 0 0 0 0
0 0 2 2 0 0 0 0
2 2 2 2 0 0 0 0
0 0 0 0 2 2 2 2
2 2 0 0 2 2 2 2
0 0 2 2 2 2 2 2
2 2 2 2 2 2 2 2

=

−

−

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

−

1 1
2 2

1 1
0 0

1 1 1 1

0 0
2 2

0 0
2 2
0 0
2 2

A

B
A

0

0

 (5)

 where A= −
− −
⎡

⎣
⎢

⎤

⎦
⎥

2 2
2 2

 ; B=
A1 A2
A A
⎡

⎣
⎢

⎤

⎦
⎥ ;

Sub-matrix A1 is obtained by changing the sign of the second
column of sub-matrix A , and A2 is obtained by changing the
sign of the first column of A. Fig..1 represents the flow graphs
for sub-matrices A and B which are designated by FT(2) and
FT(4), respectively. The coefficients of the PWL spectrum
can be successively written as:
 c(0)=x(0)+x(1)+x(2)+x(3)+x(4)+x(5)+x(6)+x(7)
 c(1)=2x(0)-2x(4)
 c(2)=2x(6)-2x(2)
 c(3)=2x(0)+2x(4)-2x(2)-2x(6)
 c(4)=2x(1)-2x(5)+2x(3)+2x(7)
 c(5)=2x(0)-2x(4)-2x(1)+2x(5)+2x(3)-2x(7)
 c(6)=2x(2)-2x(6)-2x(1)+2x(5)-2x(3)+2x(7)
 c(7)=2x(0)+2x(4)+2x(2)+2x(6)-2x(1)-2x(5)-2x(3)-2x(7)

This leads to the signal flow graph for the fast PWL transform
for N=8 shown in Fig.2. The arrows in the flow graph
represent a negative operation (subtraction). The input data is
arranged in a bit reversal order and the output spectral
coefficients are obtained in natural order. This algorithm can
be generalized for any order N, provided that it is an integer
power of 2. It is seen that this algorithm has a similar
structure to that proposed in [3]. It requires
{ N NN4 2 42 1[(log)]+ + } additions and N normalizations.

The fast algorithm for the computation of the inverse PWL
transform is based on the Paley's order of Walsh functions.
The IPWL matrix for N=8 has the following form:

[]IPWL(8) =

− − −
−

−
− −

− −
− − −
− −

− − − −

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

1 1 1 0 1 0 0 0
1 0 1 1 1 1
1 0 1 1 1 0 0 0
1 0 1 1 1 1
1 1 1 0 1 0 0 0
1 0 1 1 1 1
1 0 1 1 1 0 0 0
1 0 1 1 1 1

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

 (6)

 (a) FT(2).

(b) FT(4).

Fig. 1 (a) Flow graph of sub-matrix A. (b) Flow graph of sub-matrix
B

 x(2) -x(2)+x(6)

 x(6) -x(2)-x(6)

 x(1) -[x(1)-x(3)+x(5)-x(7)]

 x(5) -[x(1)-x(3)-x(5)+x(7)]

 x(3) -[x(1)+x(3)-x(5)-x(7)]

 x(7) -[x(1)+x(3)+x(5)+x(7)]

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:3, No:2, 2009

154

 1

2

3

F
T
(2)

x(i)

0
4

2

6

1

5

3

7

FT(4)

0

1

2
3

0

1

2

3

4

5

6

7

.()1
8

⎫
⎬
⎭

−.()1
2

⎫

⎬
⎪⎪

⎭
⎪
⎪

−. ()1
4

.()− 1
8

c(i)

Fig.2 Flow diagram for the fast PWL transform, N=8.

Rearranging the rows of the above matrix according to the bit
reversal rule gives:

[]IPWL BRO(8) =

− −
−

−
−
−
−

−
− − −

− −
− −

− −

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

1 1
1 1

1 0
1 0

1 0 0 0
1 0 0 0

1 0
1 0

1 0 0 0
1 0 0 0

1
1

0
0

1 1 1 1
1 1 1 1

1
1

0
0

1 1 1 1
1 1 1 1

1
2
1
2

1
2
1
2

1
2
1
2

1
2
1
2

1 1
1 -1

 =

1 1
1 1

1 0
1 0

1 0 0 0
1 0 0 0

1 0
1 0

1 0 0 0
1 0 0 0

1
1

0
0

1
1

0
0

1
2
1
2

1
2
1
2

1
2
1
2

1
2
1
2

− −
−

−
−
−
−

−
−

− −

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

A

B

 (7)

 where A=
1 1
1 1−
⎡

⎣
⎢

⎤

⎦
⎥ ; B=

A A
A A−
⎡

⎣
⎢

⎤

⎦
⎥

In Fig.3 are shown the signal flow graphs for sub-matrices A
and B, represented by IT(2) and IT(4), respectively. Based on
the IPWL matrix as given by Eqn.(6), the input sequence x(i)
can be determined successively as follows:

 x(0)=c(0)-c(1)-c(2)-c(4)

 x(4)=c(0)+c(1)-c(2)-c(4)
 x(2)=2c(2)+c(3)+ 1

2 0 4[() ()]x x+

 x(6)=2c(2)-c(3)+ 1
2 0 4[() ()]x x+ (2.61d)

 x(1)=2c(4)+c(5)+c(6)+c(7)+ 1
2 0 2[() ()]x x+

 x(5)=2c(4)-c(5)+c(6)-c(7)+ 1
2 4 6[() ()]x x+

 x(3)=2c(4)+c(5)-c(6)-c(7)+ 1
2 2 4[() ()]x x+

(a) IFT(2).

(b) IFT(4)

.
Fig. 3 (a) Flow graph of sub-matrix A. (b) Flow graph of sub-matrix

B.

c(i)

c(0)-c(2)-c(4)

c(1)

2.c(2)

c(3)

2.c(4)

c(5)

c(6)

c(7)

IT(2)

IT(4)

0 0

4 1

2 2

6 3

1 4

5 5

3 6

7 7

x(i)
0

1

2

3

4

5

6

7

x’(i)

Notation:
x’(a)
x’(b)
x’(c)

x(b)=x’(b)+0.5[x’(a)+x’(c)]

0

 Fig. 4 Flow diagram for the fast IPWL transform, N=8.

 c(2) c(2)+c(3)

 c(3) c(2)-c(3)

 c(4) [c(4)+c(5)+c(6)+c(7)]

 c(5) [c(4)-c(5)+c(6)+c(7)]

 c(6) [c(4)+c(5)-c(6)-c(7)]

 c(7) [c(4)-c(5)-c(6)+c(7)]

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:3, No:2, 2009

155

IV. FAST COMPUTATION OF THE PHL TRANSFORM The forward PHL matrix of order 8 is given by [4]

 x(7)=2c(4)-c(5)+c(6)-c(7)+ 1
2 0 6[() ()]x x+

 These equations are represented by the flow diagram of the
IPWL transform , for N=8, shown in Fig.4. The transform
coefficients c(2) and c(4) must be multiplied by 2. The output
data sequence x(i); i=0,1, ... , N-1. is in natural order. This
algorithm has the advantage that it is recursive and thus can be
generalized to any order N (where N is an integer power of 2).
It is seen that this algorithm requires less number of additions
and multiplications than that given in [3]. The number of
additions and multiplications needed are (Nlog 2 N) and (N-2),
respectively.

[(8)]PHL =

−
−

−
−

−
−

−

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

1 0 0 0 0 0 0 0
2 0 0 0 2 0 0 0
2 0 2 2 0 2 0 0 0
2 0 0 0 2 0 2 2 0

2 4 2 0 0 0 0 0
0 0 2 4 2 0 0 0
0 0 0 0 2 4 2 0
2 0 0 0 0 0 2 4

 (8)

If we write the equations defining the PHL transform
coefficients c(i), i=0,1,2,.. ..,N-1, including the multiplication
by the normalization coefficients [4], we obtain

 c x() ()0 0=

 c x x() [() ()]1 2 0 2 41
2= − −

 c x x x() [() () ()]2 2 0 2 2 2 2 41
4= − − +

 c x x x() [() () ()]3 2 0 2 4 2 2 61
4= − + −

 c x x x() [() () ()]4 2 0 4 1 2 41
8= − − +

 c x x x(5) [() () ()]= − − +1
8 2 2 4 3 2 4

 c x x x() [() (5) ()]6 2 4 4 2 61
8= − − +

 c x x x() [() () ()]7 2 0 4 6 2 71
8= − − +

The above set of equations leads to the flow diagram shown in
Fig.5, for N=8. It can be seen that the input data sequence,
x(i), to the flow diagram is in natural order, however, the
output coefficients , c(i), are in different order. Therefore a
final reordering step is required at the end to obtain the natural
order of the coefficients. Examination of the flow diagram for
the PHL transform reveals that the number of operations
required are (2N-3) additions, (N-2) normalizations, and (N-2)
binary shifts, however, as known in digital implementation,
binary shifts are faster than multiplications or additions.

-2

-21

2
-23

4

5
-2

6
-2

7

0

-2

-1

4

O

R

D

E

R

I

N

G

1

2

3

4

5

6

7

⎫
⎬
⎭

−*()2
4

2

5

1

6

3

7

⎫

⎬
⎪⎪

⎭
⎪
⎪

−*()1
4

c(i)
00

x(i)
0

 Fig.5 Flow diagram for the fast PHL ransform, N=8.

To construct the algorithm for the fast computation of the
inverse PHL transform, the rows of inverse matrix are first
reordered in a bit reversal order. For N=8 this yields;

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:3, No:2, 2009

156

[]IPHL BRO(8) =

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

1 0 0 0 0 0 0 0
1 2 0 0 0 0 0 0
1 2 0 0 0 0 0
1 0 2 0 0 0 0

1 0 2 0 0 0

1 0 0 0 2 0

1 0 0 2 0 0

1 0 0 0 0 2

1
2
1
2
1
4

2
2

3
4

2
2

3
4

2
2

1
4

2
2

(9)
 The input data sequence, x(i), is then determined
successively based on (9), as follows:

 x c() ()0 0=
 x c c() () ()4 0 1= +

x c c c c x x() () () () () [() ()]2 0 1 2 2 2 2 0 41
2

1
2= + + = + +

x c c c c x x() () () () () [() ()]6 0 1 2 3 2 3 0 41
2

1
2= + + = + +

x c c c c c x x() () () () () () [() ()]1 0 1 2 2 4 2 4 0 21
4

2
2

1
2= + + + = + +

x c c c c c x x() () () () (5) (5) [() ()]3 0 1 2 2 2 2 43
4

2
2

1
2= + + + = + +

x c c c c c x x(5) () () () () () [() ()]= + + + = + +0 1 3 2 6 2 6 4 63
4

2
2

1
2

x c c c c c x x() () () () () () [() ()]7 0 1 3 2 7 2 7 0 61
4

2
2

1
2= + + + = + +

The above equations can be represented by the flow diagram
shown in Fig.6. The algorithm for the inverse PHL transform
requires (3N/4) additions and (N-3) multiplications. Partial
normalization is performed by post-multiplying the
coefficients c(i), i=2,...,N-1 by factors which are a power of

2 , for total of (N-2) normalizations are required. Note that
the arrows in the flow diagrams of the IPHL transform
indicate a multiplication by (1/2).

c (i)
0

1
0
4

2

3

4

5

6

7

2

6

0

2

4
6

1

5

3

7

x(i)

0

1

2

3

4

5

6

7

2 .
⎧
⎨
⎩

2 .

⎧

⎨
⎪⎪

⎩
⎪
⎪

 (Note: Arrows indicate a multiplication by 1/2)

Fig. 6 Flow diagram for the fast inverse PHL transform, for N=8.

V. COMPARISON OF COMPUTATIONAL COMPLEXITY

Computational complexity is one of the most important
factors in evaluating a transform. High computational
complexity leads to high implementation cost. For the purpose
of comparison, the computational requirements of different
transforms are listed in Table I. Table I shows the number of
additions required for different transforms.

Note that all operations in Table I are real except the
multiplications and additions of the FFT which are complex. It
can be seen that PHL requires the least number of additions
after the IPHL transform, and also requires the least number of

normalizations and no multiplications are required, at the
expense of some binary shifting operations (which are known
to be much faster than additions and multiplications in digital
implementation). Therefore the computational complexity of
the PHL algorithm is simpler than other transforms considered
in this comparison. The IPHL transform requires the least
number of multiplications and less number of additions than
the other transforms and the same number of normalizations
as that of the PHL transform. The IPWL algorithm requires
less number of additions and multiplications than that given in
[3].

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:3, No:2, 2009

157

TABLE I
COMPUTATIONAL REQUIREMENTS FOR DIFFERENT TRANSFORMS

 Transform Additions Multiplications
N li ti

Binary shifts

 PWL (N/4)[(log)2 2 N +(N/4)+11] N
 IPWL N Nlog2 N-2

 PHL 2N-3 N-2 N-2

 IPHL (3N/4) N-3 N-2

 FFT N Nlog2 (N/2) log2 (N/2) N

 WH N Nlog2 N

 DCT (3N/2) (log)2 1N N− + (N/2) log2 N

VI. CONCLUSION

Methods for constructing the algorithms for the fast
computation of the PWL and PHL transforms have
proposed. It has been shown that the proposed algorithms
are characterized by the simple computational complexity.
Comparison analysis of fast algorithms is has considered.
Results of this analysis have shown that the computational
complexity of the PWL and PHL algorithms are generally
simpler than some orthogonal transforms.

REFERENCES
[1] Brigham E. O. , The Fast Fourier Transform, Prentice-Hall,

Englewood Cliffs, NJ, 1974.
[2] Elliot D., Rao K. R. , Fast Transforms : Algoritms, Analysis,

Applications, Academic Press, 1982
[3] Dziech A, Kwater M "Fast Transforms Based on Piecewise-Linear

Functions" IEEE Workshop on ASSP, Beijing 1986.
[4] A. Dziech, F. Belgassem, S. Aboukres, A. Nabout "Periodic Haar

Piecewise Linear Transform" Proceedings of the CESA'96
IMACS/IEEE-SMC Multiconference, Lile-France, July 1996,
pp.157-160.

[5] Dziech A, Pardyka I "Shape Approximation using Fast Piecewise
Linear Transforms" AMSE Review, vol. 8, No.1,1988, pp.19-30.

[6] Dziech A, Belgassem F, Ammar K, B. Bushofa " One-dimensional
Haar Piecewise Linear Series and Transform" Proceedings of the
32nd. Science Week, University of Damascus, Damascus, Syria,
Nov. 1992, pp.515-522.

[7] Dziech A , Pardyka I "Shape descriptors based on Fast Piecewise
Linear Transforms" AMSE Int conference on Modelling and
Simulation, Karlsrhe,1987.

[8] Paul C R, Koch R W "On Piecewise-Linear Basis Functions and
Piecewise-Linear Signal Expansion" IEEE Trans. Acoust. Speech
Signal Process.,ASSP-22, No.4 , Aug.1974, pp.263-268.

[9] Lee. P, Huang F "Restructured Recursive DCT and DST Algorithms"
IEEE Trans. on Signal Processing, vol. 42, No.7, July 1994, pp 1600-
1609.

