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Abstract—In this paper, the construction of fast algorithms for 

the computation of Periodic Walsh Piecewise-Linear PWL transform 
and the Periodic Haar Piecewise-Linear PHL transform will be 
presented. Algorithms for the computation of the inverse transforms 
are also proposed. The matrix equation of the PWL and PHL 
transforms are introduced. Comparison of the computational 
requirements for the periodic piecewise-linear transforms and other 
orthogonal transforms shows that the periodic piecewise-linear 
transforms require less number of operations than some orthogonal 
transforms such as the Fourier, Walsh and the Discrete Cosine 
transforms. 
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I.  INTRODUCTION 
AST algorithms are used to greatly reduce the number of 
computations required to determine the transform 

coefficients as compared to direct computation of the 
transform. The main idea of efficient or fast computational 
algorithms is the ability to subdivide the total computational 
task into a series of computational steps such that partial 
results from initial steps can be repeatedly utilized in 
subsequent steps. These algorithms result from matrix 
manipulations such as sparse matrix factorization and matrix 
transpose [1],[2].  For the discrete transforms which are based 
on piecewise-linear functions such as PWL and PHL 
transforms, the methods of matrix factorization and 
transposition do not give satisfactory results due to the non-
orthogonality and non-symmetry properties of the matrices of 
these transforms. This also implies that a completely different 
fast algorithm is required for the computation of the inverse 
transform as opposed to orthogonal transforms where the fast 
algorithm of the inverse transform usually has a similar 
structure as that of the forward algorithm with minor 
modifications. Fast algorithms for the computation of 
piecewise-linear transforms are based on the reordering of the 
transform matrix in such a way as to obtain sub-matrices 
having a structure identical  to Walsh-Hadamard matrices. 
 

 

II.  PERIODIC PIECEWISE-LINEAR TRANSFORMS 

  1. PWL Transform:   The Periodic Walsh Piecewise-Linear 
PWL functions which are the basis functions of the PWL 
transform are obtained by integrating periodic Walsh 
functions [5]. The matrix equation of the forward and inverse 
PWL transforms may are given by: 
(a) Forward transform  

           [C(N)]=[− − +2 1( )k ][PWL(N)][X(N)]                 (1) 

(b) Inverse transform  

            [X(N)]=[IPWL(N)][C(N)]                          (2)                   

where   [C(N)] -vector of PWL  coefficients     
            [X(N)] -vector of sampled signal. 
      [PWL(N)]-matrix of forward transform. 
      [IPWL(N)]-matrix of inverse transform. [− − +2 1( )k  ]-
diagonal matrix of normalization.  
 
  2. PHL Transform: The set of Periodic Haar Piecewise 
Linear (PHL) functions [6] is obtained by integrating the well 
known set of Haar functions. The PHL functions are the basis 
functions for the PHL transform. The matrix form of the 
forward and inverse PHL transforms are defined as follows: 
(a) Forward transform  

       [C(N)]=[ 1
2

]k 1− + [PHL(N)][X(N)]                     (3) 

(b) Inverse transform  

         [X(N)]=[IPHL(N)][C(N)]                           (4) 

where  [C(N)]-vector of  PHL coefficients  
            [X(N)] - vector of sampled signal.    
           [PHL(N)]-matrix of forward transform.    [IPHL(N)] - 
matrix of inverse transform.  

      [ 1
2

]k 1− + -diagonal matrix of normalization. 

   
III.  FAST COMPUTATION OF THE PWL TRANSFORM 

Construction of a fast algorithm for the computation of the 
forward PWL transform requires ordering of the transform 
matrix in such a way so that sub-matrices of orders from (N/2 
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x N/2) to (2x2) having a structure identical to Walsh-
Hadamard matrices for which algorithms already exists, will 
be obtained. The ordering which achieves this is the bit 
reversal order (BRO) of the columns of the transform matrix. 
After this operation the PWL matrix, for N=8, will have the 
following form: 
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 where  A= −
− −
⎡

⎣
⎢

⎤

⎦
⎥

2 2
2 2

    ;     B=
A1 A2
A A
⎡

⎣
⎢

⎤

⎦
⎥ ; 

Sub-matrix A1 is obtained by changing the sign of the second 
column of sub-matrix A , and A2 is obtained by changing the 
sign of the first column of A. Fig..1 represents the flow graphs 
for sub-matrices A and B which are designated by FT(2) and 
FT(4), respectively.  The coefficients of the PWL spectrum 
can be successively written as: 
    c(0)=x(0)+x(1)+x(2)+x(3)+x(4)+x(5)+x(6)+x(7)                              
    c(1)=2x(0)-2x(4)                                     
    c(2)=2x(6)-2x(2)   
    c(3)=2x(0)+2x(4)-2x(2)-2x(6)                           
    c(4)=2x(1)-2x(5)+2x(3)+2x(7)     
    c(5)=2x(0)-2x(4)-2x(1)+2x(5)+2x(3)-2x(7)      
    c(6)=2x(2)-2x(6)-2x(1)+2x(5)-2x(3)+2x(7)                                       
    c(7)=2x(0)+2x(4)+2x(2)+2x(6)-2x(1)-2x(5)-2x(3)-2x(7)  

This leads to the signal flow graph for the fast PWL transform 
for N=8 shown in Fig.2. The arrows in the flow graph 
represent a negative operation (subtraction). The input data is 
arranged in a bit reversal order and the output spectral 
coefficients are obtained in natural order. This algorithm can 
be generalized for any order N, provided that it is an integer 
power of 2.  It is seen that this algorithm has a similar 
structure to that proposed in [3]. It requires 
{ N NN4 2 42 1[( log ) ]+ + } additions and N normalizations.  

The fast algorithm for the computation of the inverse PWL 
transform is based on the Paley's order of Walsh functions. 
The IPWL matrix for N=8 has the following form: 
 

[ ]IPWL(8) =
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 (a) FT(2). 

(b) FT(4). 

Fig. 1 (a) Flow graph of sub-matrix A. ( b) Flow graph of sub-matrix 
B 

 

 

      x(2)                                                  -x(2)+x(6)

      x(6)                                                  -x(2)-x(6)
 

    x(1)                                                                         -[x(1)-x(3)+x(5)-x(7)]

     x(5)                                                                         -[x(1)-x(3)-x(5)+x(7)]

            x(3)                                                                         -[x(1)+x(3)-x(5)-x(7)]

                              x(7)                                                                         -[x(1)+x(3)+x(5)+x(7)]
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Fig.2 Flow diagram for the fast PWL transform,  N=8. 

 
Rearranging the rows of the above matrix according to the bit 
reversal rule gives: 
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 where           A= 
1 1
1 1−
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A A
A A−
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In Fig.3 are shown the signal flow graphs for sub-matrices A 
and B, represented by IT(2) and IT(4), respectively.  Based on 
the IPWL matrix as given by Eqn.(6), the input sequence x(i) 
can be determined successively as follows:   

   x(0)=c(0)-c(1)-c(2)-c(4)    

   x(4)=c(0)+c(1)-c(2)-c(4)     
   x(2)=2c(2)+c(3)+ 1

2 0 4[ ( ) ( )]x x+       

   x(6)=2c(2)-c(3)+ 1
2 0 4[ ( ) ( )]x x+  (2.61d) 

   x(1)=2c(4)+c(5)+c(6)+c(7)+ 1
2 0 2[ ( ) ( )]x x+          

   x(5)=2c(4)-c(5)+c(6)-c(7)+ 1
2 4 6[ ( ) ( )]x x+    

   x(3)=2c(4)+c(5)-c(6)-c(7)+ 1
2 2 4[ ( ) ( )]x x+    

  

(a) IFT(2). 

(b) IFT(4) 

. 
Fig. 3 (a) Flow graph of sub-matrix A. (b) Flow graph of sub-matrix 

B.  
 

 
c(i)

c(0)-c(2)-c(4)

c(1)

2.c(2)

c(3)

2.c(4)

c(5)

c(6)

c(7)

IT(2)

IT(4)

0      0

4      1

2      2

6      3

1      4

5      5

3      6

7      7

x(i)
0

1

2

3

4

5

6

7

x’(i)

Notation:
x’(a)
x’(b)
x’(c)

x(b)=x’(b)+0.5[x’(a)+x’(c)]

0

 Fig. 4 Flow diagram for the fast IPWL transform, N=8.  
 

 

      c(2)                                    c(2)+c(3)

      c(3)                                    c(2)-c(3)

    c(4)                                                 [c(4)+c(5)+c(6)+c(7)] 
  
     c(5)                                                 [c(4)-c(5)+c(6)+c(7)] 
  

         c(6)                                                 [c(4)+c(5)-c(6)-c(7)] 
 

 

 

                              c(7)                                                 [c(4)-c(5)-c(6)+c(7)]  
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IV.  FAST COMPUTATION OF THE PHL TRANSFORM The forward PHL matrix of order 8 is given by [4]  

   x(7)=2c(4)-c(5)+c(6)-c(7)+ 1
2 0 6[ ( ) ( )]x x+    

   These equations are represented by the flow diagram of the 
IPWL transform , for N=8, shown in Fig.4. The transform 
coefficients c(2) and c(4) must be multiplied by 2. The output 
data sequence x(i); i=0,1, ... , N-1. is in natural order. This 
algorithm has the advantage that it is recursive and thus can be 
generalized to any order N (where N is an integer power of 2).   
It is seen that this algorithm requires less number of additions 
and multiplications than that given in [3]. The number of 
additions and multiplications needed are (Nlog 2 N) and (N-2), 
respectively.  
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                                                                                      (8)  

If we write the equations defining the PHL transform 
coefficients c(i), i=0,1,2,.. ..,N-1, including the multiplication 
by the  normalization coefficients [4], we obtain  

    c x( ) ( )0 0=         

   c x x( ) [ ( ) ( )]1 2 0 2 41
2= − −              

    c x x x( ) [ ( ) ( ) ( )]2 2 0 2 2 2 2 41
4= − − +              

   c x x x( ) [ ( ) ( ) ( )]3 2 0 2 4 2 2 61
4= − + −     

    c x x x( ) [ ( ) ( ) ( )]4 2 0 4 1 2 41
8= − − +                        

    c x x x(5) [ ( ) ( ) ( )]= − − +1
8 2 2 4 3 2 4          

    c x x x( ) [ ( ) (5) ( )]6 2 4 4 2 61
8= − − +    

   c x x x( ) [ ( ) ( ) ( )]7 2 0 4 6 2 71
8= − − +  

    
The above set of equations leads to the flow diagram shown in 
Fig.5, for N=8.  It can be seen that the input data sequence, 
x(i), to the flow diagram is in natural order, however, the 
output coefficients , c(i), are in different order. Therefore a 
final reordering step is required at the end to obtain the natural 
order of the coefficients.  Examination of the flow diagram for 
the PHL transform reveals that the number of operations 
required are (2N-3) additions, (N-2) normalizations, and (N-2) 
binary shifts, however, as known in digital implementation, 
binary shifts are faster than multiplications or additions. 
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   Fig.5 Flow diagram for the fast PHL ransform, N=8.  
  
To construct the algorithm for the fast computation of the 
inverse PHL transform,  the rows of inverse matrix are first  
reordered in a bit reversal order. For N=8 this yields; 
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[ ]IPHL BRO(8) =
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(9) 
 The input data  sequence, x(i), is then determined 
successively based on (9), as follows: 
 
 x c( ) ( )0 0=                           
 x c c( ) ( ) ( )4 0 1= +       

x c c c c x x( ) ( ) ( ) ( ) ( ) [ ( ) ( )]2 0 1 2 2 2 2 0 41
2

1
2= + + = + +

x c c c c x x( ) ( ) ( ) ( ) ( ) [ ( ) ( )]6 0 1 2 3 2 3 0 41
2

1
2= + + = + +

x c c c c c x x( ) ( ) ( ) ( ) ( ) ( ) [ ( ) ( )]1 0 1 2 2 4 2 4 0 21
4

2
2

1
2= + + + = + +

x c c c c c x x( ) ( ) ( ) ( ) (5) (5) [ ( ) ( )]3 0 1 2 2 2 2 43
4

2
2

1
2= + + + = + +

x c c c c c x x(5) ( ) ( ) ( ) ( ) ( ) [ ( ) ( )]= + + + = + +0 1 3 2 6 2 6 4 63
4

2
2

1
2

x c c c c c x x( ) ( ) ( ) ( ) ( ) ( ) [ ( ) ( )]7 0 1 3 2 7 2 7 0 61
4

2
2

1
2= + + + = + +

                
The above equations can be represented by the flow diagram 
shown in Fig.6.  The algorithm for the inverse PHL transform 
requires (3N/4) additions and (N-3) multiplications. Partial 
normalization is performed by post-multiplying the 
coefficients c(i),  i=2,...,N-1 by factors  which are a  power of  

2 ,  for  total  of (N-2) normalizations are required. Note that 
the arrows in the flow diagrams of the IPHL transform 
indicate a multiplication by (1/2). 
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                                  (Note: Arrows indicate a multiplication by 1/2) 

Fig. 6 Flow diagram for the  fast inverse PHL  transform,  for N=8. 

 
V. COMPARISON OF COMPUTATIONAL COMPLEXITY 

Computational complexity is one of the most important 
factors in evaluating a transform. High computational 
complexity leads to high implementation cost. For the purpose 
of comparison, the computational requirements of different 
transforms are listed in Table I. Table I shows  the number of 
additions required for different transforms.       

Note that all operations in Table I are real except the 
multiplications and additions of the FFT which are complex. It 
can be seen that PHL requires the least number of additions 
after the IPHL transform, and also requires the least number of 

normalizations and no multiplications are required, at the 
expense of some binary shifting operations (which are known 
to be much faster than additions and multiplications in digital 
implementation). Therefore the computational complexity of 
the PHL algorithm is simpler than other transforms considered 
in this comparison. The IPHL transform requires the least 
number of multiplications and less number of additions than 
the other transforms and the same number of normalizations 
as that of the PHL transform. The IPWL algorithm requires 
less number of additions and multiplications than that given in 
[3]. 
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TABLE I 
COMPUTATIONAL REQUIREMENTS FOR DIFFERENT TRANSFORMS 

   Transform         Additions  Multiplications  
N li ti

Binary shifts 

        PWL (N/4)[( log )2 2 N +(N/4)+11]           N  
       IPWL          N Nlog2          N-2   

         PHL              2N-3                                 N-2         N-2 

       IPHL             (3N/4)         N-3         N-2  

         FFT          N Nlog2  (N/2) log2 (N/2)          N  

         WH                 N Nlog2            N  

       DCT    (3N/2) (log )2 1N N− +    (N/2) log2 N    

 
VI. CONCLUSION 

Methods for constructing the algorithms for the fast 
computation of the PWL and PHL transforms have 
proposed. It has been shown that the proposed algorithms 
are characterized by the simple computational complexity. 
Comparison analysis of fast algorithms is has considered. 
Results of this analysis have shown that the computational 
complexity of the PWL and PHL algorithms are generally 
simpler than some orthogonal transforms. 
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